JPH0476380A - Method and device for air separation suitable for fluctuation of demand - Google Patents

Method and device for air separation suitable for fluctuation of demand

Info

Publication number
JPH0476380A
JPH0476380A JP2187603A JP18760390A JPH0476380A JP H0476380 A JPH0476380 A JP H0476380A JP 2187603 A JP2187603 A JP 2187603A JP 18760390 A JP18760390 A JP 18760390A JP H0476380 A JPH0476380 A JP H0476380A
Authority
JP
Japan
Prior art keywords
amount
liquefied
oxygen
nitrogen gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2187603A
Other languages
Japanese (ja)
Other versions
JP2967427B2 (en
Inventor
Toshiyuki Nojima
俊幸 野島
Hideyuki Honda
秀幸 本田
Osamu Utada
宇多田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2187603A priority Critical patent/JP2967427B2/en
Publication of JPH0476380A publication Critical patent/JPH0476380A/en
Application granted granted Critical
Publication of JP2967427B2 publication Critical patent/JP2967427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To keep the condition of a fractionating tower best at all times, obtain respective product gas with a high obtaining rate and cope with the fluctuation of demand with simple device and structure by a method wherein a liquefied oxygen producing means and an amount of nitrogen gas control means are operated to regulate so that the evaporating amount of the liquefied oxygen becomes an amount corresponding to the producing amount of nitrogen gas produced by the liquefying of the nitrogen gas while the amount of nitrogen gas, produced from a sub fractionating tower, is controlled so as to be kept in constant. CONSTITUTION:When the demand of product oxygen gas is reduced, a pressure in a product oxygen supplying conduit 11 is increased in accordance with the reduction of said demand whereby the pressure regulator 36a of a liquefied oxygen producing means is operated to choke a control valve 36b in accordance with the increasing amount of the pressure. Accordingly, the amount of introduction of the liquefied oxygen from a liquefied oxygen storage tank 13 is reduced and the evaporating amount of a sub heat exchanger 14 is reduced whereby the amount of product oxygen gas, supplied to the demanding source, can be reduced. In this case, a nitrogen gas amount control means is operated to increase the introducing amount of nitrogen gas into a nitrogen gas indroducing tube 19 and maintain the condition of an auxiliary fractionating tower 6 in constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、需要変動に適した空気分離方法及び装置に関
し、詳しくは、精留塔の状態を一定に維持しながら需要
変動に対応する空気分離方法及び装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air separation method and device suitable for demand fluctuations, and more specifically, the present invention relates to an air separation method and device suitable for demand fluctuations. This invention relates to a separation method and apparatus.

〔従来の技術〕[Conventional technology]

空気分離装置から得られる酸素や窒素の量を、その需要
変動に応じて増減する手段として、従来から様々な方法
及び装置が提案されてきている。
Various methods and devices have been proposed in the past as means for increasing or decreasing the amount of oxygen or nitrogen obtained from an air separation device in response to fluctuations in demand.

例えば、特公昭49−45998号公報に記載された空
気分離装置では、製品酸素ガスの需要変動に対して、需
要が減少した場合には、精留塔上部塔から導出する酸素
ガス量を減らすとともに、上部塔から導出する液化酸素
量を増して液化酸素貯槽に貯留し、逆に製品酸素ガスの
需要が増大した場合には、上部塔からの酸素ガスの導出
量を増すとともに、前記液化酸素貯槽内の液化酸素を精
留塔下部塔から導出した窒素ガスで気化させて製品酸素
ガスとし、前記上部塔から得られる酸素ガスと合流させ
るように構成している。また、液化酸素貯槽内の液化酸
素を気化させる際に液化した液化窒素は、−旦液化窒素
貯槽に貯留された後、上部塔の還流液として上部塔に導
入するようにしている。
For example, in the air separation device described in Japanese Patent Publication No. 49-45998, when the demand for product oxygen gas decreases, the amount of oxygen gas drawn out from the upper column of the rectification column is reduced, and , the amount of liquefied oxygen led out from the upper tower is increased and stored in the liquefied oxygen storage tank, and conversely, when the demand for product oxygen gas increases, the amount of oxygen gas led out from the upper tower is increased, and the amount of oxygen gas led out from the upper tower is increased and stored in the liquefied oxygen storage tank. The liquefied oxygen in the distillation column is vaporized with nitrogen gas derived from the lower column of the rectification column to produce oxygen gas, which is then combined with the oxygen gas obtained from the upper column of the rectification column. Furthermore, the liquefied nitrogen that is liquefied when the liquefied oxygen in the liquefied oxygen storage tank is vaporized is first stored in the liquefied nitrogen storage tank and then introduced into the upper tower as a reflux liquid from the upper tower.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の方法では、製品酸素ガスの需要変
動により、上部塔から導出する酸素ガスと液化酸素の割
合が変化し、また、下部塔からの窒素ガスの導出量や上
下両塔の還流液量が変化するため、精留塔内の圧力や精
留バランスが不安定となり、効率が低下することがあっ
た。
However, in the above method, the ratio of oxygen gas and liquefied oxygen derived from the upper column changes due to fluctuations in the demand for product oxygen gas, and the amount of nitrogen gas derived from the lower column and the amount of reflux liquid in both the upper and lower columns changes. As a result, the pressure inside the rectification column and the rectification balance became unstable, resulting in a decrease in efficiency.

特にアルゴンを採取するために、上部塔に粗アルゴン塔
を付設した空気分離装置においては、上部塔内の精留バ
ランスの乱れがアルゴンの採取効率に大きく影響を与え
るため、アルゴンの収率を大幅に悪化させてしまうこと
があった。
In particular, in air separation equipment in which a crude argon column is attached to the upper column in order to extract argon, disturbances in the rectification balance in the upper column have a large effect on the argon extraction efficiency, so the argon yield can be significantly reduced. Sometimes it made things worse.

また、上記公報以外にも、いくつかの方法や装置が提案
されているが、いずれも精留塔の状態が変化するため、
各製品ガスの収率をある程度犠牲にして需要変動に対応
しているのが実情である。
In addition to the above publications, several methods and devices have been proposed, but all of them change the state of the rectification column, so
The reality is that demand fluctuations are responded to by sacrificing the yield of each product gas to some extent.

そこで、本発明は、精留塔の状態を常に最良の状態に保
ち、各製品ガス、特にアルゴンガスが高収率で得られる
とともに、簡単な装置構成で需要変動に対応することが
できる空気分離方法及び装置を提供することを目的とし
ている。
Therefore, the present invention has developed an air separation system that can keep the rectification column in the best condition, obtain each product gas, especially argon gas, at a high yield, and can respond to demand fluctuations with a simple equipment configuration. The present invention aims to provide methods and apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明は、精留塔の上
部塔から導出した一定量の酸素ガスを、主熱交換器に導
入して前記原料空気と熱交換させ、常温付近迄温度回復
させて製品酸素ガスとして取出すと同時に、上部塔から
一定量の液化酸素を導出して液化酸素貯槽に導入し、前
記製品酸素ガスの需要変動に応じて該液化酸素貯槽内の
液化酸素を導出し、副熱交換器に導入して、後述の窒素
ガスと熱交換させて気化し、気化した酸素ガスを前記製
品酸素ガスに合流させるとともに、精留塔から一定量の
窒素ガスを導出して分岐し、前記液化酸素の気化量に応
じた量の窒素ガスを前記副熱交換器に導入して液化させ
、あるいは該分岐した窒素ガスを前記副熱交換器に導入
して前記液化酸素の気化量に応じた量の窒素ガスを液化
させ、液化した液化窒素を液化窒素貯槽に導入し、残余
の窒素ガスを系外に導出することを特徴とする需要変動
に適した空気分離方法を提供するとともに、精留塔の状
態を一定に維持するために、定常運転時に原料空気量を
一定に制御する原料空気量制御手段と、複精留塔下部塔
底部の液化空気の液面を一定に制御するか、あるいは該
液化空気の上部塔への流量を一定に制御する液化空気量
制御手段と、主凝縮器における液化酸素の液面を一定に
制御するか、あるいは液化酸素の液化酸素貯槽への導出
量を一定に制御する液化酸素量制御手段と、液化窒素貯
槽から上部塔頂部に導入する液化窒素量を一定に制御す
る液化窒素量制御手段と、上部塔下部から導出する酸素
ガスの流量を一定に制御する酸素ガス量制御手段と、下
部塔及び/又は上部塔から導出する窒素ガスの圧力また
は流量を一定に制御する窒素ガス量制御手段とを設ける
とともに、製品酸素ガスの需要変動に応じて前記液化酸
素貯槽の液化酸素を導出して気化する液化酸素導出手段
を設けたことを特徴とする需要変動に適した空気分離装
置を提供するものである。
In order to achieve the above object, the present invention introduces a certain amount of oxygen gas derived from the upper column of the rectification column into the main heat exchanger to exchange heat with the raw material air, and recovers the temperature to around room temperature. At the same time, a certain amount of liquefied oxygen is derived from the upper column and introduced into a liquefied oxygen storage tank, and the liquefied oxygen in the liquefied oxygen storage tank is derived in response to fluctuations in demand for the product oxygen gas. , introduced into the auxiliary heat exchanger and vaporized by exchanging heat with nitrogen gas, which will be described later. The vaporized oxygen gas is combined with the product oxygen gas, and a certain amount of nitrogen gas is drawn out from the rectification column and branched. and introducing nitrogen gas in an amount corresponding to the vaporized amount of the liquefied oxygen into the auxiliary heat exchanger to liquefy it, or introducing the branched nitrogen gas into the auxiliary heat exchanger to reduce the vaporized amount of the liquefied oxygen. In addition to providing an air separation method suitable for demand fluctuations, which is characterized by liquefying an amount of nitrogen gas according to the amount of nitrogen gas, introducing the liquefied liquefied nitrogen into a liquefied nitrogen storage tank, and leading the remaining nitrogen gas out of the system. In order to maintain a constant state of the rectification column, there is a feed air amount control means that controls the feed air amount to a constant level during steady operation, and a feed air amount control means that controls the liquid level of the liquefied air at the bottom of the lower column of the double rectification column to a constant level. Alternatively, a liquefied air amount control means for controlling the flow rate of the liquefied air to the upper column at a constant level, and a liquefied air amount control means for controlling the liquid level of the liquefied oxygen in the main condenser at a constant level, or leading the liquefied oxygen to a liquefied oxygen storage tank. liquefied nitrogen amount control means for controlling the amount of liquefied oxygen at a constant level; liquefied nitrogen amount control means for controlling the amount of liquefied nitrogen introduced from the liquefied nitrogen storage tank to the top of the upper column at a constant level; and a nitrogen gas amount control means that controls the pressure or flow rate of the nitrogen gas derived from the lower column and/or the upper column to be constant, and also according to fluctuations in the demand for product oxygen gas. The present invention provides an air separation device suitable for demand fluctuations, characterized in that it is provided with liquefied oxygen deriving means for deriving and vaporizing liquefied oxygen from the liquefied oxygen storage tank.

〔作 用〕[For production]

従って、製品ガスを需要変動に応じて増減しても、精留
塔からは常に一定量のガス及び液が導出されるとともに
、それに応じた量の原料空気、還流液等が導入されるの
で、精留塔内の精留状態を常に最良の状態に維持するこ
とができる。
Therefore, even if the product gas is increased or decreased according to demand fluctuations, a constant amount of gas and liquid is always drawn out from the rectification column, and a corresponding amount of raw material air, reflux liquid, etc. is introduced. The rectification condition in the rectification column can always be maintained in the best condition.

〔実施例〕〔Example〕

以下、本発明を、図面に示す空気分離装置の一実施例を
参照しながら、各気液の流れに基づいて、さらに詳細に
説明する。
Hereinafter, the present invention will be explained in more detail based on the flow of each gas and liquid, with reference to an embodiment of the air separation device shown in the drawings.

まず、第1図において、原料空気は、圧縮機1で圧縮さ
れ、冷却装置2を経て吸着器3に導入され、含有する水
分や炭酸ガス等の不純物が除去された後、コールドボッ
クス4に導入される。コルドボックス4に導入された原
料空気は、主熱交換器5で各種帰還ガスと熱交換して冷
却され、複精留塔6の下部塔7の下部に導入される。下
部塔7内での精留操作により、原料空気は下部塔上部の
窒素ガスと、下部塔底部の酸素富化液化空気(以下、液
化空気という)とに分離し、該液化空気は、下部塔7か
ら導出されて膨張弁31bを経て上部塔9の中段に導入
され、上部塔9内での精留により、上部塔上部の窒素ガ
スと上部塔底部の液化酸素及び酸素ガスとに分離する。
First, in FIG. 1, raw air is compressed by a compressor 1, introduced into an adsorber 3 via a cooling device 2, and after removing impurities such as moisture and carbon dioxide contained therein, it is introduced into a cold box 4. be done. The raw air introduced into the cold box 4 is cooled by exchanging heat with various return gases in the main heat exchanger 5, and then introduced into the lower part of the lower column 7 of the double rectification column 6. By the rectification operation in the lower column 7, the feed air is separated into nitrogen gas at the top of the lower column and oxygen-enriched liquefied air (hereinafter referred to as liquefied air) at the bottom of the lower column. 7 and introduced into the middle stage of the upper column 9 via the expansion valve 31b, and is separated into nitrogen gas at the top of the upper column and liquefied oxygen and oxygen gas at the bottom of the upper column by rectification in the upper column 9.

また、窒素ガスは、その一部が主凝縮器28で液化し、
下部塔7から導出されて弁8を経て上部塔9の頂部に導
入され、上部塔9の還流液となる。
In addition, a part of the nitrogen gas is liquefied in the main condenser 28,
It is led out from the lower column 7 and introduced into the top of the upper column 9 via the valve 8, and becomes the reflux liquid of the upper column 9.

この複精留塔6からは、分離した酸素ガス、液化酸素及
び窒素ガスが、それぞれ一定量で導出されている。即ち
、上部塔下部の酸素ガスは、導管10により導出されて
主熱交換器5に導入され、原料空気と熱交換して常温付
近まで温度回復した後、製品酸素供給導管11から需要
先に供給される。
From this double rectification column 6, separated oxygen gas, liquefied oxygen, and nitrogen gas are each led out in fixed amounts. That is, the oxygen gas at the bottom of the upper tower is led out through the conduit 10 and introduced into the main heat exchanger 5, and after exchanging heat with the raw air and recovering the temperature to around normal temperature, it is supplied to the demand from the product oxygen supply conduit 11. be done.

尚、この製品酸素ガスの抜出し量は、標準使用量に応じ
て設定するものとし、需要減少時に酸素ガスの使用量が
零の時間帯がある場合は、全量液化酸素で抜出し、酸素
ガス抜出し一定量が零の場合を標準として運転条件の設
定を行う。
The amount of oxygen gas extracted from this product shall be set according to the standard usage amount. If there is a time period when the amount of oxygen gas used is zero when demand decreases, the entire amount will be extracted with liquefied oxygen, and the amount of oxygen gas extracted will be constant. The operating conditions are set using the case where the amount is zero as the standard.

上部塔底部の液化酸素は、導管12により導出されて液
化酸素貯槽13に導入され、製品酸素ガスの需要変動に
応じて該液化酸素貯槽13から導出され、副熱交換器1
4で後述の窒素ガスと熱交換を行い、気化した後に前記
製品酸素供給導管11の製品酸素ガスに合流する。
The liquefied oxygen at the bottom of the upper column is led out through a conduit 12 and introduced into a liquefied oxygen storage tank 13, and is led out from the liquefied oxygen storage tank 13 in response to fluctuations in demand for product oxygen gas.
In step 4, heat exchange is performed with nitrogen gas, which will be described later, and after vaporization, the product oxygen gas is merged with the product oxygen gas in the product oxygen supply conduit 11.

一方、上部塔9の頂部から導出された高純度製品窒素ガ
スは、導管15に導入され、上記酸素ガスと同様に、主
熱交換器5を経て常温として系外に導出される。また、
上部塔9の上部から導管15aに導出された低純度窒素
ガスは、上記同様に、主熱交換器5を紅で系外に導出さ
れる。この低純度窒素ガスは、一部を製品ガスとして用
いる場合もあり、廃ガスとして、前記吸着器3の再生等
に用いた後に放出する部分もある。
On the other hand, the high-purity product nitrogen gas led out from the top of the upper column 9 is introduced into the conduit 15, and is led out of the system through the main heat exchanger 5 at room temperature, like the oxygen gas mentioned above. Also,
The low-purity nitrogen gas led out from the upper part of the upper column 9 to the conduit 15a is led out of the system through the main heat exchanger 5 in the same manner as described above. A portion of this low-purity nitrogen gas may be used as a product gas, and a portion may be released as waste gas after being used for regeneration of the adsorber 3 or the like.

下部塔7の上部から導管16に導出された高純度窒素ガ
スは、その一部が導管17に分岐し、さらにその一部が
副熱交換器14での液化酸素気化用の熱源として用いら
れ、液化した後に液化窒素貯槽18に導入される。この
熱源としての窒素ガス量は、液化酸素の気化に要する量
を副熱交換器14に導入するか、または上記気化相当量
より過剰の量を供給し、未成化分は、液化窒素貯槽より
再度副熱交換器14を経て導管19に合流させて放出し
てもよい。
A part of the high-purity nitrogen gas led out from the upper part of the lower column 7 to the conduit 16 is branched to the conduit 17, and further part of it is used as a heat source for vaporizing liquefied oxygen in the auxiliary heat exchanger 14, After being liquefied, it is introduced into the liquefied nitrogen storage tank 18. The amount of nitrogen gas used as a heat source is determined by introducing the amount required for vaporizing the liquefied oxygen into the auxiliary heat exchanger 14, or by supplying an amount in excess of the amount equivalent to the vaporization, and uncomposed components are recycled from the liquefied nitrogen storage tank. It may also be discharged through the secondary heat exchanger 14 and into the conduit 19.

上記液化窒素貯槽18内の液化窒素は、常時−定量が底
部から導出され、還流液として上部塔6の頂部に導入さ
れている。この一定量の液化窒素は、−度下部塔7に導
入し、下部塔7の頂部から上部塔9頂部へ弁8を介して
導入するラインへ合流させても良い。また、副熱交換器
14に導入される以外の高純度窒素ガスは、高純度窒素
ガス導出管19から系外に導出される。
The liquefied nitrogen in the liquefied nitrogen storage tank 18 is constantly drawn out in fixed amounts from the bottom and introduced into the top of the upper column 6 as a reflux liquid. This fixed amount of liquefied nitrogen may be introduced into the lower column 7 and merged into a line leading from the top of the lower column 7 to the top of the upper column 9 via the valve 8. Further, high-purity nitrogen gas other than that introduced into the auxiliary heat exchanger 14 is led out of the system from a high-purity nitrogen gas outlet pipe 19.

また、前記下部塔7から導出された高純度窒素ガスの常
時一定量の残部は、主熱交換器5で一旦常温付近まで温
度回復し、または温度回復後一定量が分岐して膨張ター
ビン20のブレーキブロワ−21に導入されて昇圧した
後、温端側から主熱交換器5に導入され、中間温度まで
冷却されて主熱交換器5の中間部から導出され、膨張タ
ービン20に導入される。膨張タービン20て膨張降温
した高純度窒素ガスは、前記上部塔9頂部から導出され
た高純度製品窒素ガスに合流して再び主熱交換器5に導
入され、寒冷回収が行われた後に系外に導出される。こ
のようにすることにより、下部塔7からの窒素の抜出し
量を減少させて、後述のアルゴンの収率を上げることが
できる。尚、膨張タービン20に導入する窒素ガスは、
上記下部塔7頂部の高純度窒素ガスに限らず、頂部から
任意段数下からの低純度窒素ガスを一定量導出して、上
記同様の経路で膨張タービン20に供給しても良い。
Further, the remaining constant amount of the high-purity nitrogen gas led out from the lower column 7 is temporarily recovered to near normal temperature in the main heat exchanger 5, or after the temperature is recovered, a constant amount is branched and sent to the expansion turbine 20. After being introduced into the brake blower 21 and pressurized, it is introduced into the main heat exchanger 5 from the hot end, cooled to an intermediate temperature, led out from the middle part of the main heat exchanger 5, and introduced into the expansion turbine 20. . The high-purity nitrogen gas expanded and cooled by the expansion turbine 20 joins the high-purity product nitrogen gas led out from the top of the upper column 9 and is again introduced into the main heat exchanger 5, where it is cooled and recovered before being discharged from the system. is derived. By doing so, the amount of nitrogen extracted from the lower column 7 can be reduced and the yield of argon, which will be described later, can be increased. Note that the nitrogen gas introduced into the expansion turbine 20 is
Not only the high-purity nitrogen gas at the top of the lower column 7, but also a certain amount of low-purity nitrogen gas from an arbitrary number of stages below the top may be led out and supplied to the expansion turbine 20 through the same route as above.

さらに、この複精留塔6には、粗アルゴン塔22が付設
されている。この粗アルゴン塔22には、導管23によ
り上部塔中段下部のアルゴン原料ガスが一定量導入され
、精留されて該塔上部の導管24から一定量の粗アルゴ
ンが導出される。該粗アルゴン塔22での精留によりア
ルゴン分が低下した液化酸素は、該塔底部から導管25
を経て上部塔に戻される。また、粗アルゴン塔22の頂
部に設けられた凝縮器26には、前記下部塔7の底部か
ら導出された液化空気の一部が分岐して膨張弁27を経
て導入され、該粗アルゴン塔22の還流液を生成すると
ともに、該液化空気は、一部が気化した後に上部塔9に
導入される。
Further, a crude argon column 22 is attached to this double rectification column 6. A fixed amount of argon raw material gas from the middle and lower part of the upper column is introduced into the crude argon column 22 through a conduit 23, and after being rectified, a fixed amount of crude argon is led out from a conduit 24 at the top of the column. The liquefied oxygen whose argon content has been reduced by the rectification in the crude argon column 22 is passed from the bottom of the column to the conduit 25.
After that, it is returned to the upper tower. Further, a part of the liquefied air drawn out from the bottom of the lower column 7 is branched and introduced into the condenser 26 provided at the top of the crude argon column 22 via an expansion valve 27. The liquefied air is introduced into the upper column 9 after being partially vaporized.

そして、この空気分離装置には、複精留塔6の運転状態
を一定に保つとともに、製品酸素ガスの需要変動に対応
するため、各種自動制御手段が設けられている。まず、
原料空気供給系統には、定常運転時に原料空気量を一定
に制御する原料空気量制御手段としての流量調節器30
aと圧縮機の風量調節器30b又は吸入ガイドベーンと
が設けられている。液化空気の系統には、下部塔7の底
部の液化空気の液面を一定に制御するか、あるいは該液
化空気の上部塔9への流量を一定に制御する液化空気量
制御手段としての液面計31aと調節弁31bとが設け
られている。上部塔9の底部の液化酸素の導出系統には
、主凝縮器28における液化酸素の液面を一定に制御す
るか、あるいは液化酸素の液化酸素貯槽13への導出量
を一定に制御する液化酸素量制御手段としての液面計3
28と調節弁32bとが設けられている。液化窒素貯槽
18から上部塔9の頂部に液化窒素を導入する系統には
、該液化窒素量を一定に制御する液化窒素量制御手段と
しての流量調節器33aと調節弁33bが設けられてい
る。上部塔下部から酸素ガスを導出する系統には、該酸
素ガスの流量を−定に制御する酸素ガス量制御手段とし
ての流量調節器34aと調節弁34bが設けられている
。下部塔7から窒素ガスを導出する系統には、該窒素ガ
スの圧力または流量を一定に制御する窒素ガス量制御手
段としての圧力調節器35aと調節弁35b、及び膨張
タービン流量を制御するための流量調節器35Cと調節
弁35dが設けられている。
This air separation apparatus is provided with various automatic control means in order to maintain a constant operating state of the double rectification column 6 and to respond to fluctuations in the demand for product oxygen gas. first,
The raw material air supply system includes a flow rate regulator 30 as a raw material air amount control means for controlling the raw material air amount to a constant level during steady operation.
a and a compressor air volume regulator 30b or suction guide vane. The liquefied air system includes a liquid level as a liquefied air amount control means that controls the liquid level of the liquefied air at the bottom of the lower column 7 to be constant, or controls the flow rate of the liquefied air to the upper column 9 to be constant. A total of 31a and a control valve 31b are provided. The liquefied oxygen lead-out system at the bottom of the upper column 9 includes a liquefied oxygen system that controls the level of liquefied oxygen in the main condenser 28 to a constant level, or controls the amount of liquefied oxygen led out to the liquefied oxygen storage tank 13 to a constant level. Liquid level gauge 3 as a quantity control means
28 and a control valve 32b are provided. A system for introducing liquefied nitrogen from the liquefied nitrogen storage tank 18 to the top of the upper column 9 is provided with a flow regulator 33a and a control valve 33b as liquefied nitrogen amount control means for controlling the amount of liquefied nitrogen at a constant level. A system for introducing oxygen gas from the lower part of the upper column is provided with a flow rate regulator 34a and a control valve 34b as oxygen gas amount control means for controlling the flow rate of the oxygen gas at a constant level. The system for deriving nitrogen gas from the lower column 7 includes a pressure regulator 35a and a control valve 35b as nitrogen gas amount control means for controlling the pressure or flow rate of the nitrogen gas at a constant level, and a control valve 35b for controlling the flow rate of the expansion turbine. A flow rate regulator 35C and a control valve 35d are provided.

そして、製品酸素ガスの需要変動に応じて前記液化酸素
貯槽13の液化酸素を導出して気化する系統には、液化
酸素導出手段として、前記製品酸素供給導管11内の圧
力変化に応じて作動する圧力調節器36aと調節弁36
bとが設けられている。
A system for deriving and vaporizing liquefied oxygen from the liquefied oxygen storage tank 13 in response to fluctuations in demand for product oxygen gas includes a liquefied oxygen deriving means that operates in response to pressure changes within the product oxygen supply conduit 11. Pressure regulator 36a and control valve 36
b is provided.

次に、このように構成した空気分離装置で、前記製品酸
素ガスの需要変動に対応する場合の動きを説明する。
Next, a description will be given of how the air separation apparatus configured as described above responds to fluctuations in the demand for the product oxygen gas.

まず、製品酸素ガスの需要が増大した場合には、該需要
増加に伴い前記製品酸素供給導管11内の圧力が低下す
るので、前記液化酸素導出手段の圧力調節器36aが作
動して、圧力の低下量に応じて調節弁36bを開く。こ
れにより、製品酸素供給導管11内と液化酸素貯槽13
内との圧力差で液化酸素が導管29に導出されて副熱交
換器14に導入され、該副熱交換器14に導入される窒
素ガスと熱交換を行い、気化して酸素ガスとなり、製品
酸素供給導管11の製品酸素ガスに合流して需要先に供
給される。副熱交換器14に液化酸素が導入されると、
該副熱交換器]4に液化酸素気化用の熱源として導入さ
れる窒素ガスの液化量が増し、窒素ガス導出管19内の
圧力が低下するので、前記窒素ガス量制御手段の圧力調
節器35aが作動して調節弁35bを絞り、副熱交換器
14に導入する窒素ガス量を液化酸素の気化量に対応し
た量にするとともに、該導出管19内の圧力を一定に保
つ。一方、膨張タービン20へ供給される窒素ガス量は
、流量調節器35C3調節弁35dにより常に一定量に
保たれている。従って、下部塔7から導出された窒素の
分岐量が一定に保たれ、下部塔7から導出される窒素ガ
スの一部が液化しても窒素ガス導出系統16の圧力や流
量が変化することを防止し、下部塔上部から導出する窒
素ガス量を一定に保つようにする。
First, when the demand for product oxygen gas increases, the pressure inside the product oxygen supply conduit 11 decreases with the increase in demand, so the pressure regulator 36a of the liquefied oxygen deriving means is activated to reduce the pressure. The control valve 36b is opened depending on the amount of decrease. As a result, the inside of the product oxygen supply conduit 11 and the liquefied oxygen storage tank 13
The liquefied oxygen is led out to the conduit 29 and introduced into the secondary heat exchanger 14 due to the pressure difference between the inside and outside, where it exchanges heat with the nitrogen gas introduced into the secondary heat exchanger 14, vaporizes and becomes oxygen gas, and produces the product. It joins the product oxygen gas in the oxygen supply conduit 11 and is supplied to the demand destination. When liquefied oxygen is introduced into the secondary heat exchanger 14,
The amount of liquefied nitrogen gas introduced into the auxiliary heat exchanger] 4 as a heat source for vaporizing liquefied oxygen increases, and the pressure inside the nitrogen gas outlet pipe 19 decreases, so that the pressure regulator 35a of the nitrogen gas amount control means is actuated to throttle the control valve 35b so that the amount of nitrogen gas introduced into the auxiliary heat exchanger 14 corresponds to the amount of vaporized liquefied oxygen, and the pressure inside the outlet pipe 19 is kept constant. On the other hand, the amount of nitrogen gas supplied to the expansion turbine 20 is always kept constant by the flow rate regulator 35C3 control valve 35d. Therefore, the amount of branched nitrogen derived from the lower column 7 is kept constant, and even if a part of the nitrogen gas derived from the lower column 7 is liquefied, the pressure and flow rate of the nitrogen gas derivation system 16 will not change. The amount of nitrogen gas discharged from the upper part of the lower column is kept constant.

一方、製品酸素ガスの需要が減少した場合には、該需要
減少に伴い前記製品酸素供給導管11内の圧力が高まる
ので、前記液化酸素導出手段の圧力調節器36aが作動
して、圧力の増加量に応じて調節弁36bを絞る。これ
により、液化酸素貯槽13からの液化酸素導出量が減少
し、副熱交換器14での気化量が減少するので、需要先
に供給する製品酸素ガス量を減少させることができる。
On the other hand, when the demand for product oxygen gas decreases, the pressure within the product oxygen supply conduit 11 increases due to the decrease in demand, so the pressure regulator 36a of the liquefied oxygen deriving means operates to increase the pressure. The control valve 36b is throttled according to the amount. As a result, the amount of liquefied oxygen drawn out from the liquefied oxygen storage tank 13 is reduced, and the amount of vaporized in the auxiliary heat exchanger 14 is reduced, so that the amount of product oxygen gas to be supplied to customers can be reduced.

このときも、前記窒素ガス量制御手段が作動して窒素ガ
ス導出管19への窒素ガスの導出量を増加させ、複精留
塔6の状態を一定に維持するように作動する。
At this time as well, the nitrogen gas amount control means operates to increase the amount of nitrogen gas delivered to the nitrogen gas delivery pipe 19 and to maintain the state of the double rectification column 6 constant.

尚、上記の変動期間中、上部塔9頂部から導管15によ
り導出する高純度製品窒素ガス、及び同項9上部から導
管15aにより導出する低純度窒素ガスは、共に一定流
量に維持されている。これらのガスの一定流量の維持は
、そのための制御手段を設けても良いが、手動操作でも
良い。
During the above fluctuation period, both the high-purity product nitrogen gas led out from the top of the upper column 9 through the conduit 15 and the low-purity nitrogen gas led out from the top of the upper column 9 through the conduit 15a are maintained at a constant flow rate. A control means may be provided to maintain a constant flow rate of these gases, but manual operation may also be used.

従って、製品酸素ガスの需要変動に対しては、前記液化
酸素導出手段と窒素ガス量制御手段とが作動し、液化酸
素の気化量と、窒素ガスの液化による窒素ガス導出量と
を、両者が対応する量になるよう調節するとともに、複
精留塔6から導出する窒素ガス量を一定に保つように制
御するので、複精留塔6の状態を一定に保ったまま製品
酸素ガスの供給量を調節することができる。同時に、前
記各制御手段が常時作動しているため、各部の運転状態
が常に最良の状態に保たれ、最高の収率で運転すること
が可能となる。特に上部塔9内の状態を一定に保つこと
ができるため、前記粗アルゴン塔22に導入するアルゴ
ン富化ガスの組成を一定にでき、得られる粗アルゴン中
に含まれる窒素や酸素等の不純物成分を低減するととも
に、粗アルゴンの収率を向上させることができる。
Therefore, in response to fluctuations in the demand for product oxygen gas, the liquefied oxygen deriving means and the nitrogen gas amount control means operate, and both control the vaporized amount of liquefied oxygen and the amount of nitrogen gas derived by liquefying nitrogen gas. At the same time, the amount of nitrogen gas led out from the double rectifier 6 is controlled to be constant, so the amount of product oxygen gas supplied can be adjusted while keeping the condition of the double rectifier 6 constant. can be adjusted. At the same time, since each of the control means is always in operation, the operating conditions of each part are always kept in the best condition, making it possible to operate with the highest yield. In particular, since the condition inside the upper column 9 can be kept constant, the composition of the argon-enriched gas introduced into the crude argon column 22 can be kept constant, and impurity components such as nitrogen and oxygen contained in the obtained crude argon. can be reduced and the yield of crude argon can be improved.

また、本実施例に示すように、圧縮機や冷凍機等の回転
機器を有する付帯設備を設けることなく需要変動に対応
することができるので、これらの機器の起動、停止作業
も不要であり、装置の建設コストの低減とともに、運転
コストの低減も図ることができる。加えて、精留塔の状
態が常時一定に保たれるので、該空気分離装置に設けら
れる回転機器は、常時一定の回転、負荷で運転できるた
め、その制御も容易であり、処理量の変動が無いので必
要最小限の大きさの機器を設置でき、これによってもコ
ストの低減を図れる。
Furthermore, as shown in this embodiment, it is possible to respond to demand fluctuations without installing ancillary equipment including rotating equipment such as compressors and refrigerators, so there is no need to start or stop these equipment. In addition to reducing the construction cost of the device, it is also possible to reduce the operating cost. In addition, since the condition of the rectification column is always kept constant, the rotating equipment installed in the air separation equipment can always be operated at a constant rotation and load, making it easy to control and reducing fluctuations in throughput. Since there is no need for equipment, it is possible to install equipment of the minimum necessary size, which also reduces costs.

尚、上記実施例では、酸素ガスの需要変動に対応する例
で説明したが、上記説明からも明らかなように、製品酸
素ガスの増減に伴い、窒素ガス導出管から導出される窒
素ガス量も変化するので、窒素ガス導出管の圧力変化等
、窒素ガス需要量の変動により生じる変化に対応して、
前記液化酸素導出手段と窒素ガス量制御手段とを連動さ
せるようにすれば、容易に窒素ガスの需要変動にも対応
することが可能である。
In the above embodiment, an example was explained in which the demand for oxygen gas fluctuates. However, as is clear from the above description, as the product oxygen gas increases or decreases, the amount of nitrogen gas discharged from the nitrogen gas discharge pipe also changes. Therefore, in response to changes caused by fluctuations in the amount of nitrogen gas demanded, such as changes in the pressure of the nitrogen gas outlet pipe,
By linking the liquefied oxygen deriving means and the nitrogen gas amount control means, it is possible to easily respond to fluctuations in the demand for nitrogen gas.

ここで、前記構成の空気分離装置において、製品酸素ガ
スの平均需要量が約20000 Nrrr/h。
Here, in the air separation apparatus having the above configuration, the average demand amount of the product oxygen gas is about 20,000 Nrrr/h.

需要変動幅が24000〜9000 NrrIl/hで
あり、8時間の内、需要増大時間が約6時間、需要減少
時間が約2時間の設備の操作条件を計算した結果を説明
する。
The results of calculating the operating conditions for a facility in which the demand fluctuation range is 24,000 to 9,000 NrrIl/h and the demand increase time is about 6 hours and the demand decrease time is about 2 hours out of 8 hours will be explained.

まず、原料空気量は、約100000  Nrr?/h
の一定量であり、酸素は、酸素ガスとして約9000 
Nイ/h、液化酸素として約1100ONr//hが、
それぞれ精留塔から常時導出され、酸素ガスは、その全
量が常時製品酸素ガスとして製品酸素供給導管から需要
先に供給される。
First, the amount of raw air is approximately 100,000 Nrr? /h
The amount of oxygen is approximately 9000 as oxygen gas.
N/h, approximately 1100ONr//h as liquefied oxygen,
The oxygen gas is constantly led out from each rectification column, and the entire amount of oxygen gas is always supplied as product oxygen gas to the demand end from the product oxygen supply conduit.

そして、需要減少時の液化酸素は、その全てが液化酸素
貯槽に貯留されるため、製品酸素ガスの供給量は900
ONrrl’/hとなる。このとき、窒素ガス導出管か
らは、精留塔から導出した窒素ガスの一部、1700O
Nrrr/hの窒素ガスが導出される。
When the demand decreases, all of the liquefied oxygen is stored in the liquefied oxygen storage tank, so the supply amount of product oxygen gas is 900%.
ONrrl'/h. At this time, a part of the nitrogen gas led out from the rectification column, 1700O
Nitrogen gas of Nrrr/h is led out.

需要増大時には、液化酸素貯槽内の液化酸素が1500
ONrrl’/h気化して製品に合流し、製品酸素ガス
の供給量を24000 Nrr?/hに増加させる。こ
のとき、液化酸素1500ONr&/hに相当する窒素
ガスの全量17000  Nrd/hが副熱交換器に導
入され、液化窒素となり液化窒素貯槽に導入される。
When demand increases, the amount of liquefied oxygen in the liquefied oxygen storage tank increases to 1,500 ml.
ONrrl'/h vaporizes and merges with the product, increasing the supply amount of product oxygen gas to 24,000 Nrr? /h. At this time, a total amount of 17,000 Nrd/h of nitrogen gas, which corresponds to 1,500 ONr/h of liquefied oxygen, is introduced into the auxiliary heat exchanger to become liquefied nitrogen and introduced into the liquefied nitrogen storage tank.

また、液化窒素貯槽内の液化窒素は、常時1300ON
rrl’/hが還流液として上部塔に導入されている。
In addition, the liquefied nitrogen in the liquefied nitrogen storage tank is always 1300 ON.
rrl'/h is introduced into the upper column as reflux liquid.

このときの主要部の流量変化を第2図に示す。Figure 2 shows the flow rate changes in the main parts at this time.

上記のように、精留塔における気液の収支を一定に保っ
た状態で、製品酸素供給導管及び窒素ガス導出管の圧力
変化に応じて弁を開閉するだけで、容易に製品酸素ガス
の需要変動に対応することができ、その対応幅も広くと
ることができる。
As mentioned above, the demand for product oxygen gas can be easily met by simply opening and closing the valves according to pressure changes in the product oxygen supply pipe and nitrogen gas outlet pipe while keeping the gas-liquid balance constant in the rectification column. It can respond to fluctuations and has a wide range of responses.

第3図は、本発明の他の実施例を示すもので、製品窒素
ガスを、昇圧機40で昇圧して送り出す装置に本発明を
適用したものである。即ち、上部塔9の頂部から導管1
5に導出した製品窒素ガスを、昇圧機40で昇圧して製
品窒素導管41に送り出すとともに、昇圧後の製品窒素
ガスの一部を分岐して副熱交換器14に導入し、前記液
化酸素の加熱源とする。また、上記導管15には、流量
調節器35e、調節弁35fあるいは圧力調節器が設け
られ、上部塔9の頂部から導出する製品窒素ガス量を一
定にし、上部塔9内の状態を常に一定状態に保つように
している。これにより、下部塔7からの窒素の抜出し量
を減らしてアルゴンの収率を上げることができ、ざらに
昇圧機40は、需要変動に合わせて起動/停止を行い、
動力消費を最小限にすることができる。
FIG. 3 shows another embodiment of the present invention, in which the present invention is applied to an apparatus that boosts the pressure of product nitrogen gas using a booster 40 and sends it out. That is, from the top of the upper column 9 to the conduit 1
The product nitrogen gas led out to step 5 is pressurized by a pressure booster 40 and sent to a product nitrogen conduit 41, and a part of the product nitrogen gas after pressure increase is branched and introduced into the auxiliary heat exchanger 14 to convert the liquefied oxygen into Use as a heating source. Further, the conduit 15 is provided with a flow rate regulator 35e, a regulating valve 35f, or a pressure regulator to keep the amount of product nitrogen gas led out from the top of the upper column 9 constant and to keep the condition inside the upper column 9 constant. I try to keep it that way. As a result, the amount of nitrogen extracted from the lower column 7 can be reduced and the yield of argon can be increased.
Power consumption can be minimized.

また、第4図及び第5図は、本発明のさらに他の実施例
を示すものである。即ち、副熱交換器14における液化
酸素の気化導出温度を、主熱交換器5の冷端側の温度と
し、副熱交換器14では潜熱の熱交換のみを行うように
したものである。従って、窒素ガスは主熱交換器5に導
入されること無く副熱交換器14に導入され、副熱交換
器14で気化した酸素ガスは、主熱交換器5で温度回復
した後に需要先に送られる。第4図と第5図の差は、第
5図における副熱交換器14が凝縮器タイプであること
のみである。
Further, FIGS. 4 and 5 show still another embodiment of the present invention. That is, the temperature at which the liquefied oxygen is vaporized in the secondary heat exchanger 14 is set to the temperature on the cold end side of the main heat exchanger 5, and the secondary heat exchanger 14 only exchanges latent heat. Therefore, the nitrogen gas is introduced into the auxiliary heat exchanger 14 without being introduced into the main heat exchanger 5, and the oxygen gas vaporized in the auxiliary heat exchanger 14 is sent to the consumer after its temperature is recovered in the main heat exchanger 5. Sent. The only difference between FIG. 4 and FIG. 5 is that the secondary heat exchanger 14 in FIG. 5 is of a condenser type.

尚、上記第3図、第4図及び第5図においては、空気分
離装置の主要部のみを示し、前記第1図に示した実施例
装置と同一構成要素には同一符号を付して詳細な説明を
省略する。
In addition, in FIGS. 3, 4, and 5 above, only the main parts of the air separation device are shown, and the same components as those in the embodiment shown in FIG. Further explanations will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、精留塔の状態を
一定に保ったまま需要変動に対応できるので、精留効率
、製品収率を最良の状態にでき、製品のコスト、動力原
単位を低減することができる。また、需要変動に対応す
る部分に圧縮機や冷凍機等の機器を設置する必要がない
ので、設備コストの低減とともに、動力費や保守費の低
減も図れ、また、装置の信頼性、運転性にも優れている
As explained above, according to the present invention, it is possible to respond to demand fluctuations while keeping the condition of the rectification column constant, so it is possible to optimize rectification efficiency and product yield, and reduce product cost and power source. units can be reduced. In addition, since there is no need to install equipment such as compressors and refrigerators in areas that respond to demand fluctuations, equipment costs can be reduced, as well as power and maintenance costs, and equipment reliability and operability can be improved. It is also excellent.

さらに、変動量、変動パターンに対する適応性にも優れ
ている。
Furthermore, it has excellent adaptability to fluctuation amounts and fluctuation patterns.

特に、粗アルゴン塔を付設した空気分離装置においては
、上部塔の状態を一定に保つことが粗アルゴンの収率を
高める大きな要因であるので、本発明の方法及び装置は
、酸素及び/又は窒素の需要変動に効率よく対応すると
ともに、アルゴンも同時に効率よく採取できるので、各
種製品ガスをより低置に得ることが可能となる。
In particular, in air separation equipment equipped with a crude argon column, maintaining the condition of the upper column constant is a major factor in increasing the yield of crude argon. In addition to efficiently responding to demand fluctuations, argon can also be efficiently extracted at the same time, making it possible to obtain various product gases at lower locations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気分離装置の一実施例を示す系統図
、第2図は需要変動時の流量変化を示す図、第3図は本
発明の他の実施例を示す系統図、第4図及び第5図はそ
れぞれ本発明のさらに他の実施例を示す系統図である。
FIG. 1 is a system diagram showing one embodiment of the air separation device of the present invention, FIG. 2 is a diagram showing flow rate changes when demand fluctuates, and FIG. 3 is a system diagram showing another embodiment of the present invention. 4 and 5 are system diagrams showing still other embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1、原料空気を圧縮し、炭酸ガス、水分を除去し、帰還
ガスと熱交換させて冷却し、精留塔に導入して酸素、窒
素等を製品として採取する空気分離方法において、前記
精留塔の上部塔から導出した一定量の酸素ガスを、主熱
交換器に導入して前記原料空気と熱交換させ、常温付近
迄温度回復させて製品酸素ガスとして取出すと同時に、
上部塔から一定量の液化酸素を導出して液化酸素貯槽に
導入し、前記製品酸素ガスの需要変動に応じて該液化酸
素貯槽内の液化酸素を導出し、副熱交換器に導入して、
後述の窒素ガスと熱交換させて気化し、気化した酸素ガ
スを前記製品酸素ガスに合流させるとともに、精留塔か
ら一定量の窒素ガスを導出して分岐し、前記液化酸素の
気化量に応じた量の窒素ガスを前記副熱交換器に導入し
て液化させ、あるいは該分岐した窒素ガスを前記副熱交
換器に導入して前記液化酸素の気化量に応じた量の窒素
ガスを液化させ、液化した液化窒素を液化窒素貯槽に導
入し、残余の窒素ガスを系外に導出することを特徴とす
る需要変動に適した空気分離方法。 2、前記精留塔から導出する窒素ガスが、下部塔から導
出した窒素ガスであることを特徴とする請求項1記載の
需要変動に適した空気分離方法。 3、前記下部塔から導出した窒素ガスを、主熱交換器で
昇温した後、少なくともその一部の一定量を分岐し、ま
たは分岐後に主熱交換器で昇温し、膨張タービンのブレ
ーキブロワーに導入して昇圧し、主熱交換器で中間温度
まで冷却後導出し、膨張タービンに導入して膨張降温さ
せた後に、再び前記主熱交換器に導入して寒冷回収を行
うことを特徴とする請求項2記載の需要変動に適した空
気分離方法。 4、原料空気圧縮機、不純物除去用吸着器、主熱交換器
、複精留塔、液化酸素貯槽、液化窒素貯槽等を備え、原
料空気を液化精留して酸素、窒素等を採取する空気分離
装置において、精留塔の状態を一定に維持するために、
定常運転時に原料空気量を一定に制御する原料空気量制
御手段と、複精留塔下部塔底部の液化空気の液面を一定
に制御するか、あるいは該液化空気の上部塔への流量を
一定に制御する液化空気量制御手段と、主凝縮器におけ
る液化酸素の液面を一定に制御するか、あるいは液化酸
素の液化酸素貯槽への導出量を一定に制御する液化酸素
量制御手段と、液化窒素貯槽から上部塔頂部に導入する
液化窒素量を一定に制御する液化窒素量制御手段と、上
部塔下部から導出する酸素ガスの流量を一定に制御する
酸素ガス量制御手段と、下部塔及び/又は上部塔から導
出する窒素ガスの圧力または流量を一定に制御する窒素
ガス量制御手段とを設けるとともに、製品酸素ガスの需
要変動に応じて前記液化酸素貯槽の液化酸素を導出して
気化する液化酸素導出手段を設けたことを特徴とする需
要変動に適した空気分離装置。 5、請求項4記載の需要変動に適した空気分離装置にお
いて、前記液化酸素貯槽から導出する液化酸素と窒素ガ
スとを熱交換させて液化酸素を気化させる副熱交換器を
設けるとともに、前記液化酸素量と窒素ガス量とを対応
する量に調節する調節手段を設けたことを特徴とする需
要変動に適した空気分離装置。 6、請求項4記載の需要変動に適した空気分離装置にお
いて、前記上部塔から導出する窒素ガスが、高純度窒素
ガス及び/又は低純度窒素ガスであることを特徴とする
需要変動に適した空気分離装置。
[Claims] 1. Air separation in which raw air is compressed, carbon dioxide gas and moisture are removed, the air is cooled by heat exchange with return gas, and the air is introduced into a rectification column to collect oxygen, nitrogen, etc. as products. In the method, a certain amount of oxygen gas derived from the upper column of the rectification column is introduced into the main heat exchanger to exchange heat with the raw material air, and the temperature is recovered to around room temperature, and at the same time, it is taken out as product oxygen gas. ,
Deriving a certain amount of liquefied oxygen from the upper column and introducing it into a liquefied oxygen storage tank, and leading out the liquefied oxygen in the liquefied oxygen storage tank according to demand fluctuations of the product oxygen gas and introducing it into a secondary heat exchanger,
It is vaporized by heat exchange with nitrogen gas, which will be described later, and the vaporized oxygen gas is combined with the product oxygen gas, and a certain amount of nitrogen gas is derived from the rectification column and branched, depending on the amount of vaporized liquefied oxygen. Introducing an amount of nitrogen gas into the secondary heat exchanger to liquefy it, or introducing the branched nitrogen gas into the secondary heat exchanger to liquefy an amount of nitrogen gas corresponding to the amount of vaporization of the liquefied oxygen. , an air separation method suitable for demand fluctuations, characterized by introducing liquefied nitrogen into a liquefied nitrogen storage tank and leading the remaining nitrogen gas out of the system. 2. The air separation method suitable for demand fluctuations according to claim 1, wherein the nitrogen gas derived from the rectification column is nitrogen gas derived from the lower column. 3. After the nitrogen gas led out from the lower column is heated in the main heat exchanger, at least a certain amount of it is branched, or after branched, the nitrogen gas is heated in the main heat exchanger and then heated in the brake blower of the expansion turbine. It is characterized by introducing it into the main heat exchanger to increase the pressure, cooling it to an intermediate temperature in a main heat exchanger, leading it out, introducing it into an expansion turbine to expand and lower the temperature, and then introducing it into the main heat exchanger again to perform cold recovery. An air separation method suitable for demand fluctuations according to claim 2. 4.Equipped with a raw air compressor, an adsorber for removing impurities, a main heat exchanger, a double rectification tower, a liquefied oxygen storage tank, a liquefied nitrogen storage tank, etc., and collects oxygen, nitrogen, etc. by liquefying and rectifying the raw air. In the separation equipment, in order to maintain the condition of the rectification column constant,
Feed air amount control means for controlling the feed air amount to a constant level during steady operation, and controlling the liquid level of the liquefied air at the bottom of the lower column of the double rectification column to be constant, or the flow rate of the liquefied air to the upper column to be constant. liquefied oxygen amount control means for controlling the liquefied air amount to a constant level in the main condenser or for controlling the amount of liquefied oxygen delivered to the liquefied oxygen storage tank; liquefied nitrogen amount control means for controlling the amount of liquefied nitrogen introduced from the nitrogen storage tank to the top of the upper column at a constant level; Alternatively, a nitrogen gas amount control means is provided to control the pressure or flow rate of the nitrogen gas derived from the upper tower to a constant level, and liquefied oxygen is derived from the liquefied oxygen storage tank and vaporized according to fluctuations in demand for product oxygen gas. An air separation device suitable for demand fluctuations, characterized by being equipped with an oxygen deriving means. 5. The air separation device suitable for demand fluctuations according to claim 4, further comprising: an auxiliary heat exchanger for exchanging heat between liquefied oxygen and nitrogen gas derived from the liquefied oxygen storage tank to vaporize the liquefied oxygen; An air separation device suitable for demand fluctuations, characterized by being provided with a regulating means for adjusting the amount of oxygen and the amount of nitrogen gas to corresponding amounts. 6. The air separation apparatus suitable for demand fluctuations according to claim 4, characterized in that the nitrogen gas derived from the upper column is high purity nitrogen gas and/or low purity nitrogen gas. Air separation equipment.
JP2187603A 1990-07-16 1990-07-16 Air separation method and apparatus suitable for demand fluctuation Expired - Lifetime JP2967427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187603A JP2967427B2 (en) 1990-07-16 1990-07-16 Air separation method and apparatus suitable for demand fluctuation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187603A JP2967427B2 (en) 1990-07-16 1990-07-16 Air separation method and apparatus suitable for demand fluctuation

Publications (2)

Publication Number Publication Date
JPH0476380A true JPH0476380A (en) 1992-03-11
JP2967427B2 JP2967427B2 (en) 1999-10-25

Family

ID=16209002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187603A Expired - Lifetime JP2967427B2 (en) 1990-07-16 1990-07-16 Air separation method and apparatus suitable for demand fluctuation

Country Status (1)

Country Link
JP (1) JP2967427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032129A (en) * 2008-07-29 2010-02-12 Air Water Inc Air separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032129A (en) * 2008-07-29 2010-02-12 Air Water Inc Air separator

Also Published As

Publication number Publication date
JP2967427B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP3515165B2 (en) Air separation method and equipment
JP3117702B2 (en) Method and apparatus for producing oxygen gas of variable flow rate by rectification of air
JPH0861844A (en) Method and equipment for restarting sub-column for separating argon and oxygen by distilation
US2280383A (en) Method and apparatus for extracting an auxiliary product of rectification
JPS6146747B2 (en)
JPH0842962A (en) Method and equipment for separating air at low temperature
JPH06201259A (en) Method and apparatus for manufacturing gaseous nitrogen at variable flow rate
JPH0217795B2 (en)
JP3644918B2 (en) Air separation device and air separation method
JP3884240B2 (en) Air separation device and control operation method thereof
JPH0476380A (en) Method and device for air separation suitable for fluctuation of demand
JP2005265392A (en) Air liquefying separating device and its operating method
US20030213688A1 (en) Process control of a distillation column
US20120125044A1 (en) Feed compression method and apparatus for air separation process
JP3026098B2 (en) Air liquefaction separation method and apparatus suitable for fluctuations in demand
JP2645994B2 (en) Oxygen purity control method in air liquefaction separator
JP3220755B2 (en) Air liquefaction separation method and apparatus
JP3065968B2 (en) Air liquefaction separation device and air liquefaction separation method
JP3181482B2 (en) High-purity nitrogen gas production method and apparatus used therefor
JP2791580B2 (en) Air liquefaction separation method and apparatus
JP7460974B1 (en) Nitrogen generator and nitrogen generation method
JP3710252B2 (en) Control method of air liquefaction separation device
JP3306668B2 (en) Air liquefaction separation method and apparatus
JP4944297B2 (en) Control method and control device for air liquefaction separation device
JP4104726B2 (en) Operation method of air liquefaction separator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

EXPY Cancellation because of completion of term