JPH03199882A - Operation of plant including air liquefying and separating device - Google Patents

Operation of plant including air liquefying and separating device

Info

Publication number
JPH03199882A
JPH03199882A JP33623789A JP33623789A JPH03199882A JP H03199882 A JPH03199882 A JP H03199882A JP 33623789 A JP33623789 A JP 33623789A JP 33623789 A JP33623789 A JP 33623789A JP H03199882 A JPH03199882 A JP H03199882A
Authority
JP
Japan
Prior art keywords
oxygen
amount
limit value
nitrogen
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33623789A
Other languages
Japanese (ja)
Other versions
JPH0794954B2 (en
Inventor
Hirohito Morifuji
森藤 博仁
Kazutoshi Tashiro
田代 計利
Nobuhiko Ando
安東 伸彦
Makoto Uekusa
植草 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Steel Corp
Original Assignee
Fuji Electric Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP1336237A priority Critical patent/JPH0794954B2/en
Publication of JPH03199882A publication Critical patent/JPH03199882A/en
Publication of JPH0794954B2 publication Critical patent/JPH0794954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To permit safe and economical operation by a method wherein an operation changing pattern for the individual increasing or decreasing operation of respective products and the simultaneous increasing or decreasing operation of a plurality of products are selected based on the set values of respective products, inputted through other routs, to effect an operation for changing the operations. CONSTITUTION:A computer system 1, operating an oxygen plant 3 controlled through a measurement control device 2, is provided with an expert system while the expert system is started by a method wherein either one or a plurality of objective values of the generating amount of product oxygen, product nitrogen and crude argon is inputted simultaneously from an operation monitoring picture 4 by an operator and effects increasing and decreasing operation based on process data, such as the flow rate, the purity, the level of liquid oxygen in the bottom part of an upper tower, the opening degree of a valve regulating the flow rate of liquid nitrogen from a lower tower into the upper tower and the like of the present time, and a knowledge base. In this case, when the objective value of the generating amount is inputted by the operator employing the operation monitoring picture 4, the objective value is checked whether there is any error or not. When there is no error, the value is compared with a present amount and when the objective value is larger, respective operation changing patterns are judged automatically so as to effect the increasing operation but when the objective value is smaller, said patterns are judged automatically so as to effect the decreasing operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、計算機(コンピュータ)を用いて空気液化
分離装置等のプラントを自動運転するに当たり、最適な
自動操業変更および製品純度等のプロセス状態の監視・
調整操作を行なうための運転方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is aimed at automatically operating a plant such as an air liquefaction separation device using a computer, and determining process conditions such as optimal automatic operation changes and product purity. monitoring/
This invention relates to an operating method for performing adjustment operations.

〔従来の技術〕[Conventional technology]

第10図に空気液化分離装置の例を示す。 FIG. 10 shows an example of an air liquefaction separation device.

すなわち、原料となる空気は空気濾過器を経て空気圧縮
機で約5kg/−に圧縮加圧された後、水洗冷却塔で冷
却洗浄される。次に熱交換器に入り、製品酸素、製品窒
素および廃窒素と熱交換して約1、70℃近くまで冷却
され、精測塔下塔に導かれる。下塔に導入された空気は
予備精測され、下塔の頂部で窒素分に富んだ窒素ガスを
得るとともに下塔の底部で酸素成分約40%の液体空気
となる。なお、下塔の中間部より抽出された気体空気は
熱交換器における原料空気との熱交換に用いられた後膨
張タービンに入り、ここで寒冷を発生した後上塔に導か
れる。一方、下塔の底部に溜まった液体空気、頂部およ
び頂部近傍に溜まった窒素分を多く含む液体窒素は各々
導管を通って上塔の中部、上部および上部近傍へ導かれ
る。さらに、上塔で精測分離され、上塔底部より製品酸
素ガス。
That is, the raw material air is compressed and pressurized to about 5 kg/- by an air compressor through an air filter, and then cooled and washed in a water washing cooling tower. Next, it enters a heat exchanger, exchanges heat with product oxygen, product nitrogen, and waste nitrogen, is cooled to about 1.70°C, and is led to the precision measurement column lower column. The air introduced into the lower column is preliminarily measured, and nitrogen-rich nitrogen gas is obtained at the top of the lower column, and liquid air with an oxygen content of approximately 40% is obtained at the bottom of the lower column. Note that the gaseous air extracted from the middle part of the lower tower is used for heat exchange with raw material air in a heat exchanger, and then enters an expansion turbine, where it is cooled and then guided to the upper tower. On the other hand, the liquid air accumulated at the bottom of the lower column and the liquid nitrogen containing a large amount of nitrogen accumulated at the top and near the top are guided through conduits to the middle, upper, and vicinity of the upper column of the upper column, respectively. Furthermore, it is precisely measured and separated in the upper tower, and the product oxygen gas is released from the bottom of the upper tower.

頂部より製品窒素ガス、中部より廃窒素ガスとして抽出
され、上述の如く熱交換器内で原料空気と熱交換後、外
部へ供給される。一方、原料アルゴンガスは上塔中部近
傍より抽出され、導管を通って粗アルゴン塔へ供給され
る。
Product nitrogen gas is extracted from the top and waste nitrogen gas is extracted from the middle, and after heat exchange with raw air in the heat exchanger as described above, it is supplied to the outside. On the other hand, raw argon gas is extracted from near the middle of the upper column and supplied to the crude argon column through a conduit.

このように構成される空気液化分離装置の自動化につい
ては、従来から種々提案はされているものの、計算機の
プログラムが複雑となってその必要容量が増大し、不経
済となるなどの理由から、画一的な制御方法がとられて
いるのが一般的である。例えば、自動操業変更に関して
は、空気液化分離装置の主製品である酸素発生量の自動
変更であり、この酸素発生量に見合う原料空気量を始め
とする変更に必要な調節弁関係の調整を行ない、併せて
酸素量に見合う製品窒素やアルゴン発生量を定め、酸素
の発生量が定まれば他の製品発生量も定まる、と言った
ような画一的なものに過ぎない。
Although various proposals have been made for automating air liquefaction separation equipment configured in this way, the computer program becomes complicated, the required capacity increases, and it becomes uneconomical. Generally, a uniform control method is used. For example, automatic operation changes involve automatic changes in the amount of oxygen generated, which is the main product of air liquefaction separation equipment, and adjustments are made to the control valves necessary to change the amount of feed air to match this amount of oxygen generated. In addition, the amount of product nitrogen or argon generated is determined in accordance with the amount of oxygen, and once the amount of oxygen generated is determined, the amounts of other products generated are also determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような方法では酸素の発生量に対し
常に窒素あるいはアルゴンなどの他の製品発生量も定ま
ってしまうため、特に鉄鋼業のように酸素、窒素および
アルゴンの使用量が一定でない分野においては、その誤
差分だけの余剰製品を大気に放散しながら操業を続ける
こととなり、製品製造単価の増大を招くことになる。
However, in this method, the amount of other products such as nitrogen or argon generated is always fixed in relation to the amount of oxygen generated, so this method is particularly useful in fields such as the steel industry where the amounts of oxygen, nitrogen, and argon used are not constant. , the operation will continue while the surplus product corresponding to the error is dissipated into the atmosphere, resulting in an increase in the unit manufacturing cost of the product.

一方、製品純度および精留塔上塔液体酸素液面レベルな
どの空気液化分離装置の状態制御においても、従来型の
異常または正常復帰の判断方法が絶対値管理であるため
、特に空気液化分離装置のように、制御操作を行なって
も純度等に変化が現われるまでに時間遅れのあるプラン
トでは、絶対値管理だけではオーバーシュート現象をお
こし、規定値以内に安定維持させることが困難である。
On the other hand, the conventional method of determining abnormality or return to normality is absolute value control in controlling the state of the air liquefaction separation equipment, such as product purity and liquid oxygen level in the upper column of the rectification column. In plants such as those in which there is a time delay before a change in purity, etc. appears even after control operations are performed, absolute value management alone causes an overshoot phenomenon, making it difficult to maintain stability within the specified value.

また、空気液化分離装置は各製品の純度間や純度と精留
塔上塔液体酸素液面レベル間に強い相互干渉作用を有す
る特徴を持っており、従来型の計算機を用いた例えば酸
素純度制御方法の如く、製品酸素発生量を増減するか、
あるいは原料空気量を増減するなどの画一的な制御方法
では、空気液化分離装置の状態如何によっては必ずしも
うまく行かず、他の製品純度にも影響がでるためその純
度制御も必要になるなど、空気液化分離装置を安定維持
させることが困難である、などの問題がある。
In addition, air liquefaction separation equipment is characterized by strong mutual interference between the purity of each product and between the purity and the liquid oxygen level in the upper column of the rectification column. How to increase or decrease the amount of product oxygen generated,
Alternatively, a uniform control method such as increasing or decreasing the amount of raw air may not necessarily work depending on the condition of the air liquefaction separation device, and the purity of other products may also be affected, so purity control is also required. There are problems such as difficulty in stably maintaining the air liquefaction separation device.

したがって、この発明の目的は上述の如き従来方式の欠
点を解消し、安定かつ経済的な運転を可能にすることに
ある。
Therefore, an object of the present invention is to eliminate the drawbacks of the conventional system as described above and to enable stable and economical operation.

〔課題を解決するための手段〕[Means to solve the problem]

計算機により制御されて酸素、窒素または酸素。 Oxygen, nitrogen or oxygen controlled by computer.

窒素およびアルゴンを製造する空気液化分離装置の操業
を変更するに当たり、前記各製品の単独増減操作および
複数製品の同時増減操作のための操業変更パターンを、
別途人力される前記各製品の設定値にもとづき選択して
操業変更操作を行なう。
When changing the operation of the air liquefaction separation equipment that produces nitrogen and argon, the operation change pattern for the individual increase/decrease operation of each product and the simultaneous increase/decrease operation of multiple products,
The operation change operation is performed by selecting based on the setting values of each product that are manually input separately.

ここで、異常時調整中に増減操作指示が与えられたとき
に、この増減操作指示によって現在の異常が回復する方
向の場合は増減操作指示を有効とし、現在の異常が悪化
(拡大)する方向の場合は無効とする一方、操業変更中
に異常が発生したときは、その異常を回復させるための
調整を実行しつつ操業変更を継続する。
Here, when an increase/decrease operation instruction is given during abnormality adjustment, if the increase/decrease operation instruction is in the direction of recovering from the current abnormality, the increase/decrease operation instruction is valid, and the current abnormality is worsened (expanded). If an abnormality occurs during operational changes, the operational changes will be continued while making adjustments to recover from the abnormalities.

また、計算機を用いてプロセス量を制御するに当たり、
各プロセス量の各々に上限値、上上限値。
In addition, when controlling the process amount using a computer,
Upper limit value and upper limit value for each process quantity.

下限値およびff限値を設定しておき、上上限値または
ff限値を越えたときは無条件に異常と判断して異常復
旧のための調整を開始するとともに、各プロセスの状態
値が上限値と上上限値または下限値とff限値との間に
あるときは過去所定時間の実績状態値から傾きと上上限
値またはff限値に到達するまでの時間を予測し、この
時間が所定値以内の場合に異常と判断して異常復旧のた
めの調整を開始する一方、調整の結果前記算出された傾
きが変化(上昇→下降、下降−上昇〉したときは上限値
または下限値に到達するまでの時間を求め、これが所定
値以内の場合は正常復帰と判断して調整操作を終了する
The lower limit value and ff limit value are set, and when the upper limit value or ff limit value is exceeded, it is unconditionally determined to be abnormal and adjustment for abnormality recovery is started, and the state value of each process is set as the upper limit value. When the value is between the upper upper limit value or the lower limit value and the ff limit value, the slope and the time until reaching the upper upper limit value or the ff limit value are predicted from the actual state value of the past predetermined time, and this time is calculated as the predetermined value. If it is within the value, it is determined that there is an abnormality and adjustment is started to recover from the abnormality, while as a result of the adjustment, when the calculated slope changes (rise → fall, fall - rise>), the upper limit or lower limit is reached. If the time is within a predetermined value, it is determined that the adjustment has returned to normal and the adjustment operation is completed.

さらには、酸素、窒素または酸素、窒素およびアルゴン
を製造する空気液化分離装置を制御するに当たり、酸素
純度と窒素純度または酸素純度と精留塔液体酸素レベル
を含むプロセス量が同時に異常になった場合は、互いに
干渉して悪影響を及ぼすことなく最適な操作端および操
作量を選択して操作を行なう。
Furthermore, when controlling an air liquefaction separation device that produces oxygen, nitrogen, or oxygen, nitrogen, and argon, if the process quantities, including oxygen purity and nitrogen purity, or oxygen purity and rectification tower liquid oxygen level, become abnormal at the same time. The operation is performed by selecting the optimum operating end and operating amount without interfering with each other and causing adverse effects.

〔作用〕[Effect]

第1は、計算機にエキスパートシステムを用いたことで
あり、これにより以下の如き、従来のプログラムでは複
雑で容量を増大させるといわれている運転方法でも、°
簡単かつ経済的に実施できるようにした。
The first is the use of an expert system in the computer, which enables the following operating methods, which are said to be complex and increase capacity with conventional programs, to be
Made easy and economical to implement.

第2は、操業変更に当たり、従来は製品酸素の発生量に
必要な原料空気流量を算出して、製品酸素発生量に対応
した原料空気流量あるいはその他製品流量や装置安定操
業に必要な調整弁の開度調整を行なっていたが、この発
明による操業においては製品窒素に必要な原料空気流量
、またはアルゴンに必要な原料空気流量の関係を把握し
、各製品の発生量をそれぞれ自由に設定して各製品発生
バランスをとるに当たって最低必要な原料空気流量を供
給するようにしたこと、併せて上記バランスにおける装
置安定操業に必要な調整弁の最適開度の関係を把握した
ことにより、その関係式を計算機に記憶しておき、各製
品発生量を任意に選択できる、自由度のある操業変更と
最も経済的な運転とを可能にしている。
Second, when changing operations, conventionally, the feed air flow rate required for the amount of product oxygen generated was calculated, and the feed air flow rate corresponding to the amount of product oxygen generated, or other adjustment valves necessary for product flow rate and stable operation of the equipment, was calculated. However, in the operation according to the present invention, the relationship between the raw material air flow rate required for product nitrogen or the raw material air flow rate required for argon is understood, and the generation amount of each product can be freely set. By supplying the minimum necessary raw material air flow rate to balance each product generation, and by understanding the relationship between the optimal opening degree of the regulating valve necessary for stable operation of the equipment in the above balance, the relational expression can be calculated. The amount of each product generated can be arbitrarily selected by storing it in the computer, allowing for flexible operational changes and the most economical operation.

第3は、空気液化分離装置の純度または精留塔内の液面
レベル、圧力といったプロセスの状態を監視するに当た
り、従来の絶対値管理に対して許容値、異常値の2つの
値を設定し、この2つの値への到達時間によって状態監
視を行なうことにより、フィードフォワード制御は勿論
のこと、異常状態のランク付けも容易に行なえ、このラ
ンクと各種制御方法を組み合わせることで、より一層制
御性能を向上させる。
Thirdly, when monitoring process conditions such as the purity of the air liquefaction separation device or the liquid level and pressure in the rectification column, two values, an allowable value and an abnormal value, are set in contrast to the conventional absolute value control. By monitoring the condition based on the time it takes to reach these two values, it is possible to perform not only feedforward control, but also to easily rank abnormal conditions. By combining this ranking with various control methods, control performance can be further improved. improve.

第4は、純度または精留塔内の液面レベルの如きプロセ
ス状態の制御において、例えば製品酸素純度の純度制御
であれば、制御操作種別として製品酸素発生量の増減、
原料空気流量の増減、膨張タービン風量などの複数の操
作種別を設け、製品酸素純度のみの異常や製品酸素純度
と製品窒素純度など複数の異常が重なったときや、上記
異常ランクの程度によってそれぞれ異なった制御操作を
自動的に選択、実施することにより、成る1つの制御を
行なったために別の制御が必要になる、といった相互干
渉動作を防止し、安定な操業を可能にする。
Fourth, in the control of process conditions such as purity or liquid level in a rectification column, for example, in the case of purity control of product oxygen purity, the control operation type is an increase or decrease in the amount of product oxygen generated.
Multiple operation types such as increase/decrease of feed air flow rate and expansion turbine air volume are provided, and the operation varies depending on the degree of the above abnormality rank, such as when there is an abnormality in only the product oxygen purity, multiple abnormalities such as product oxygen purity and product nitrogen purity, etc. By automatically selecting and executing the control operations that have been performed, mutually interfering operations such as one control requiring another control can be prevented, and stable operation can be achieved.

〔実施例〕〔Example〕

第1図はこの発明が適用されるシステムを示すブロック
図、第2図は計算機システムの全体動作を説明するため
の概略フローチャート、第3図は0 第2図に■で示す動作の一例を説明するための概略フロ
ーチャート、第4図は第2図に■で示す動作の一例を具
体的に説明するためのフローチャートである。
Fig. 1 is a block diagram showing a system to which this invention is applied, Fig. 2 is a schematic flowchart for explaining the overall operation of the computer system, Fig. 3 is an explanation of an example of the operation indicated by 0 in Fig. 2. FIG. 4 is a flowchart for concretely explaining an example of the operation indicated by ■ in FIG. 2.

第1図において、■は計算機システム、2は計測制御装
置、3は空気液化分離装置(#素プラントともいう)、
4はCRTデイスプレィ、5はプリンタである。なお、
計測制御装置2を介して制御される酸素プラント3の運
転を行なう計算機システム1は少なくともエキスパート
システムを有しており、このエキスパートシステムは推
論機構と、酸素プラントの運転につき経験豊富な熟練オ
ペレータから得た増減操作または調整操作に関する専門
知識をi f ” t h e n形式のルールと数式
で表現した知識ベースとから構成されている。そして、
推論機構により得られた値は計測制御装置2に与えられ
ると同時に、推論を実行する毎に推論によって得られた
値および操作量がオペレータに通知され、プリンタ5に
よって印字される。
In Figure 1, ■ is a computer system, 2 is a measurement control device, 3 is an air liquefaction separation device (also called # elementary plant),
4 is a CRT display, and 5 is a printer. In addition,
A computer system 1 that operates an oxygen plant 3 controlled via a measurement control device 2 has at least an expert system, and this expert system has a reasoning mechanism and a skilled operator with extensive experience in oxygen plant operation. It consists of a knowledge base that expresses specialized knowledge regarding increase/decrease operations or adjustment operations in the form of if'' then rules and mathematical formulas.
The value obtained by the inference mechanism is given to the measurement control device 2, and at the same time, the value obtained by the inference and the amount of operation are notified to the operator each time the inference is executed, and are printed by the printer 5.

エキスパートシステムはオペレータが運用監視画面4か
ら製品酸素、製品窒素、粗アルゴン(Ar)の発生量の
いずれか1つまたは複数同時に発生量目標値を入力する
ことによって起動され、現在の流量(原料空気量、製品
酸素量、粗アルゴン(Ar)量)や純度(製品酸素純度
、製品窒素純度、粗アルゴン中酸素濃度)、上塔底部の
液体酸素(LO)液位(レベル)、下塔から上塔への液
体窒素(還流液)流量を調節する弁開度などのプロセス
データと、上記知識ベースとから増減操作を行なう。
The expert system is started by the operator inputting the generation amount target value for one or more of the generation amounts of product oxygen, product nitrogen, and crude argon (Ar) from the operation monitoring screen 4, and inputs the current flow rate (raw air amount, product oxygen amount, crude argon (Ar) amount), purity (product oxygen purity, product nitrogen purity, oxygen concentration in crude argon), liquid oxygen (LO) level at the bottom of the upper column, from the lower column to the upper column. Increase/decrease operations are performed based on process data such as the valve opening degree that adjusts the flow rate of liquid nitrogen (reflux liquid) to the column and the above knowledge base.

ここで、オペレータが運用監視画面4を用いて発生量目
標値を入力すると、これに誤りがないかどうかを調べる
。入力目標値に誤りがなければ、現在量と比較して目標
値の方が大きければ増量操作、目標値の方が小さければ
減量操作の如く各操作変更パターンを自動的に判断する
。操作変更パターンの種類を以下に示す。
Here, when the operator inputs the generation amount target value using the operation monitoring screen 4, it is checked to see if there are any errors. If there is no error in the input target value, each operation change pattern is automatically determined, such as an increase operation if the target value is larger than the current amount and a decrease operation if the target value is smaller. The types of operation change patterns are shown below.

イ)酸素単独増量 口)酸素単独減量 ハ)窒素単独増量 1 2 ニ)窒素単独減量 ホ)粗Ar単独増量 へ)粗Ar単独減量 ト)酸素増量、窒素増量 チ)!2素減量、窒素減量 ワ)酸素増量、窒素減量 ヌ)酸素減量、窒素増量 単一製品または複数製品の発生目標値が与えられれば、
最終的に必要な空気(A i r) Jiは次式より求
められる。
B) Increase the amount of oxygen alone C) Increase the amount of nitrogen alone C) Increase the amount of nitrogen alone 1 2 d) Reduce the amount of nitrogen alone e) Increase the amount of crude Ar alone) G) Increase the amount of oxygen, increase the amount of nitrogen CH)! 2 elemental weight loss, nitrogen weight loss W) Oxygen weight loss, nitrogen weight loss N) Oxygen weight loss, nitrogen weight loss If the generation target value for a single product or multiple products is given,
The finally required air (A i r) Ji is calculated from the following equation.

Air量−AI’02量+Bl     ・ (1)A
ir量=A2・ (Ch量十N2量十粗Ar量十B2)
     ・・・(2) Air量−A3−粗Ar量十B3  −(3)ここに、
A1−A3およびB1〜B3は定数であり、02量、N
2量、粗Ar量としては目標値を、また変更しないもの
は現在値をそれぞれ用い、(1)〜(3)式で最も値の
大きいものを必要空気量とする。
Air amount - AI'02 amount + Bl ・ (1) A
ir amount = A2 (Ch amount 10 N2 amount 10 coarse Ar amount 10 B2)
...(2) Air amount - A3 - Crude Ar amount + B3 - (3) Here,
A1-A3 and B1-B3 are constants, 02 amount, N
The target value is used as the 2 amount and the coarse Ar amount, and the current value is used if the amount is not changed, and the largest value in equations (1) to (3) is taken as the required air amount.

また、上記のような増減指示が与えられたときは、その
操作が可能か否かを第5図に示す如きテーブルを用いて
判断する。例えば、酸素単独増量の場合、製品酸素純度
が安定あるいは良化傾向であれば、その操作を受は付け
る。なお、判定の結果指定の操作が不可と判定されたら
、その旨をオペレータに通知するとともに、操作の取り
消しを行なう。
Further, when the above-mentioned increase/decrease instruction is given, it is determined whether the operation is possible or not using a table as shown in FIG. For example, in the case of increasing the amount of oxygen alone, if the product oxygen purity is stable or improving, the operation will be accepted. If it is determined that the specified operation is not possible, the operator is notified of this and the operation is canceled.

このようにして必要空気量が求まれば、各製品の増減単
位量(1ステツプ量)とそれに見合う空気量(変更空気
量)の増減を成る時間間隔で複数回行ないながら、所定
の製品発生量およびそれに見合う必要空気量まで増減操
作を行なう。
Once the required amount of air is determined in this way, the unit amount of increase/decrease (one step amount) for each product and the corresponding amount of air (changed air amount) are increased/decreased multiple times at the same time intervals until the specified amount of product is generated. Then, increase or decrease the amount of air to the required amount.

変更空気量の計算式を以下に示す。The formula for calculating the changed air amount is shown below.

(a)変更空気量=現在空気量SV+AI・酸素増減単
位 (b)変更空気量=AI・酸素設定値十B1(C)変更
空気量−A2・ (酸素設定値十窒素設定値+現在粗A
r量sv+B2) (d)変更空気量−現在空気量SV+A3・粗Ar増減
単位 3 4 (e)変更空気量−A3・粗Ar量設定値十B3ここに
、設定値は各製品発生量の現在値に増減単位量を加算し
た値、SVは各製品発生量の現在値、また増減単位は各
製品発生量の1ステツプにおける増減単位量をそれぞれ
示す。
(a) Changed air amount = Current air amount SV + AI / Oxygen increase/decrease unit (b) Changed air amount = AI / Oxygen set value 1 B1 (C) Changed air amount - A2 (Oxygen set value 10 Nitrogen set value + Current crude A
r amount sv + B2) (d) Changed air amount - current air amount SV + A3・Rough Ar increase/decrease unit 3 4 (e) Changed air amount - A3・Rough Ar amount set value 10 B3 Here, the set value is the current amount of each product generated. The value obtained by adding the unit amount of increase or decrease to the value, SV, indicates the current value of the amount of each product produced, and the unit of increase or decrease indicates the unit amount of increase or decrease in the amount of each product produced in one step.

上記式の使い方は、第6図のとおりである。すなわち、
同図からも明らかなように、上記(1)〜(3)式につ
いて、各製品発生量の現在値を用いて計算した結果、ど
の式の値が最大となるかによって大別し、次に上記(1
)〜(3)式について目標値を用いて計算した結果、ど
の式の値が最大となるかによって(a)〜(e)のいず
れかを選択するものである。
The usage of the above formula is as shown in FIG. That is,
As is clear from the figure, the equations (1) to (3) above are roughly classified based on which equation has the largest value as a result of calculation using the current value of each product generation amount, and then Above (1
) to (3) are calculated using target values, and one of (a) to (e) is selected depending on which formula has the largest value.

次に、各製品発生量と還流液調節弁V1の開度との関係
につき、第7図を参照して説明する。
Next, the relationship between the amount of each product generated and the opening degree of the reflux liquid regulating valve V1 will be explained with reference to FIG.

すなわち、第7図の如き02量の範囲と、そのときのA
ir量、02量、N2量と定数に11〜に13、に21
〜に23.に31〜に33とから次式により弁開度を算
出する。なお、K11−Kl3は同図の範囲(I)、に
21〜に23は範囲(11) 、 K31−に33は範
囲(1)における多量の定数を示す。
In other words, the range of 02 amount as shown in Fig. 7 and the A at that time.
ir amount, 02 amount, N2 amount and constant 11~13, 21
to 23. The valve opening degree is calculated from 31 to 33 using the following equation. In addition, K11-Kl3 shows a large constant in the range (I), 21 to 23 in the range (11), and K31-33 in the range (1).

V1弁開度=に11*Air量十に12’kOz量+に
13’)’N2量+定数 V1弁開度=に21*Air量+に22*02量+に2
3*NZ量+定数 v1弁開度=に31*Air量十に32’l’Oz量+
に33*N2量十定数 その後は目標発生値になるまで単位操作を繰り返し、目
標値に達したら処理を終了し、その旨をオペレータに知
らせる。以上の如き動作を増減操作として第2図に示す
。ここでは02量の増減操作のみを示し、他の増減操作
は省略している。
V1 valve opening = 11*Air amount 12' kOz amount + 13')'N2 amount + constant V1 valve opening = 21*Air amount + 22*02 amount + 2
3 * NZ amount + constant v1 valve opening = 31 * Air amount 10 + 32'l'Oz amount +
33*N2 amount 10 constant Thereafter, unit operations are repeated until the target generation value is reached, and when the target value is reached, the process is terminated and the operator is notified of this fact. The above operation is shown in FIG. 2 as an increase/decrease operation. Here, only the increasing/decreasing operations of the 02 amount are shown, and other increasing/decreasing operations are omitted.

このような増減操作中に後述の如き異常が発生したとき
は、異常を回復させるための調整操作を実施しつつ操業
を′m続する。このときの動作を第2図に増減操作中の
純度調整・監視として示し、その内容の一部を第3図に
示す。
If an abnormality as described below occurs during such an increase/decrease operation, the operation is continued while carrying out adjustment operations to recover from the abnormality. The operation at this time is shown in FIG. 2 as purity adjustment and monitoring during the increase/decrease operation, and a part of its contents is shown in FIG.

すなわち、酸素純度、窒素純度、粗Ar純度およびLo
レベル等を監視し、異常が発生したらそ5 6 れぞれの監視項目に対応する調整操作を行なうもので、
第3図は02減量中の純度監視動作の一部としての一1
〜■−4までのステップを実行することを示している。
That is, oxygen purity, nitrogen purity, crude Ar purity, and Lo
It monitors the level, etc., and if an abnormality occurs, it performs adjustment operations corresponding to each monitoring item.
Figure 3 shows 11 as part of the purity monitoring operation during 02 reduction.
This indicates that the steps from ~■-4 are to be executed.

つまり、ozM量中の純度監視動作でありながら、他の
項目の監視とその有効性を考慮しつつ、かつ02減量ロ
ツク(■−2参照〉を含む異常回復のための調整操作を
実行しながら、増減操作を継続するようにしている。
In other words, while monitoring the purity of the ozM amount, while considering the monitoring of other items and their effectiveness, and while performing adjustment operations for abnormality recovery including the 02 weight loss lock (see ■-2). , the increase/decrease operation continues.

一方、エキスパートシステムは以上の如き操作変更処理
と並行して、所定のプログラムによりプラント状況を常
時監視する。このときの動作を、第2図に増減操作をし
ていないときの純度監視・調整として示す。
On the other hand, the expert system constantly monitors the plant status using a predetermined program in parallel with the above-described operation change processing. The operation at this time is shown in FIG. 2 as purity monitoring/adjustment when no increase/decrease operation is being performed.

この監視に当たっては、純度や液面レベル等のプロセス
データを逐次収集し、これらを最小二乗法によって直線
近似してその変化傾向を予測するに当たり、まず第8図
のような範囲を設定して判断する。同図のPH,PLは
許容範囲の上限、下限を、PHH,PLLは上上限、下
下限をそれぞれ示している。そして、平常時監視中に異
常と判断するパターンを以下の3つとし、これ以外は正
常とする。
For this monitoring, process data such as purity and liquid level are collected sequentially, and the process data is linearly approximated using the least squares method to predict the change trend. First, a range as shown in Figure 8 is set and judgment is made. do. In the figure, PH and PL indicate the upper and lower limits of the allowable range, and PHH and PLL indicate the upper and lower limits, respectively. The following three patterns are determined to be abnormal during normal monitoring, and the others are considered normal.

i〉現在値が範囲1または5にある場合。i〉If the current value is in range 1 or 5.

ii )現在値が範囲2にあり、且つ■の場合。ii) If the current value is in range 2 and ■.

(■:許容時間内にPHHに到達する)iii )現在
値が範囲4にあり、且つ■の場合。
(■: PHH is reached within the allowable time) iii) When the current value is in range 4 and ■.

(■:許容時間内にPLLに到達する)これに対し、異
常時回復判断中に回復と判断するパターンを以下の3つ
とし、これ以外は異常状態(回復していない)と見なす
(■: PLL is reached within the allowable time) On the other hand, the following three patterns are determined to be recovery during abnormality recovery determination, and the rest are considered to be abnormal (not recovered).

i)′現在値が範囲3にある場合。i) 'Current value is in range 3.

ii)現在値が範囲2にあり、且つ[相]の場合。ii) When the current value is in range 2 and [phase].

([相]:許容時間内にPHに到達する〉iii )現
在値が範囲4にあり、且つ@の場合。
([Phase]: PH is reached within the allowable time>iii) When the current value is in range 4 and @.

(0:許容時間内にPLに到達する) つまり、範囲3(■、■参照〉は許容範囲、範囲1.5
は無条件で異常と判断する領域であり、範囲2.4にあ
るときにのみPHHまたはPLLに到達する時間を考慮
し、到達すると予測されるとき(■または■参照)に異
常と判断する。した7 8 かって、同図の■や■の場合は異常とは判断しない。こ
れは、異常時回復判断中に回復と判断する場合も同様で
、[相]や0の場合は回復とみなし、■や@の場合は回
復していないものとみなす。
(0: PL is reached within the allowable time) In other words, range 3 (see ■, ■) is the allowable range, range 1.5
is an area that is unconditionally determined to be abnormal, and the time to reach PHH or PLL is considered only when it is in range 2.4, and it is determined to be abnormal when it is predicted to reach PHH or PLL (see ■ or ■). 7 8 In the past, cases marked ■ and ■ in the same figure are not judged to be abnormal. This is also the case when determining recovery during abnormality recovery determination; [phase] or 0 is considered to be recovery, and ■ or @ is considered not to be recovery.

そして、異常と判定されたら調整操作が必要か否かを判
断し、必要なければ特に何もせずに監視を継続し、必要
ならば調整操作に移行する。このとき、検知した異常の
度合に応じて操作量を決定し操作端を操作するために、
操作量を例えば3段階(ランク)に分割し、T1〜T2
時間(分)でPLLに到達する場合を異常■、T1時間
以内にPLLに到達する場合を異常■、既にPLLに突
入している場合を異常■とし、この異常1〜異常■ごと
に操作量を個別に決めておくことにより、異常の度合に
応した調整操作をすることができるようにしている。
Then, if it is determined that there is an abnormality, it is determined whether or not an adjustment operation is necessary, and if it is not necessary, monitoring is continued without doing anything in particular, and if necessary, the adjustment operation is performed. At this time, in order to determine the amount of operation and operate the operating end according to the degree of the detected abnormality,
For example, the operation amount is divided into three stages (ranks), and T1 to T2 are
If the PLL is reached in time (minutes), it is considered an abnormality ■, if it reaches the PLL within T1 hours, it is an abnormality ■, and if it has already entered the PLL, it is an abnormality ■, and the manipulated variable for each abnormality 1 to abnormal By determining the values individually, it is possible to perform adjustment operations according to the degree of abnormality.

また、異常時調整中に増減操作指示が入った場合は、こ
の増減操作指示を有効とするか無効とするかを先のテー
ブルによって判断する。決定方法は、この増減操作指示
により現在の異常が回復する方向の場合は有効とし、現
在の異常が悪化(拡大)する方向のときは無効とする。
Further, if an increase/decrease operation instruction is received during abnormal adjustment, it is determined whether the increase/decrease operation instruction is to be valid or invalid based on the above table. The determination method is valid if the current abnormality will be recovered by this increase/decrease operation instruction, and invalid if the current abnormality is in the direction of worsening (expansion).

さらに、酸素純度と窒素純度または酸素純度と粗LO(
液体酸素)レベルの如く、異常が同時に発生した場合は
、成る操作により他の異常を増幅させるようなことがあ
るため、各監視項目に対応する操作を実施して良いのか
否かを判断する。
Furthermore, oxygen purity and nitrogen purity or oxygen purity and crude LO (
When abnormalities occur at the same time, such as in liquid oxygen (liquid oxygen) levels, it is determined whether or not it is okay to carry out the operations corresponding to each monitoring item, since certain operations may amplify other abnormalities.

例えば、酸素純度と他の監視項目のうちの1つとが同時
に異常になった場合の、02純度調整の例につき、第4
図を参照して説明する。まず、02純度が復帰したかど
うかを判断しく■−1参照)、否(N)ならば純度下降
か否かを判断する(■2参照)。その結果イエス(Y)
ならばAir量を増加させる余裕があるかどうかを判断
しく■3参照)、ノーならば02量を減量する余裕があ
るか否かを判断する(■−4参照)。余裕がなければL
o下降かどうかを判断しく■−5参照)、ノーならば膨
張タービン(E x p T)減に余裕有りか否かを判
断しく■−6参照)、イエスならばランク操作を行なう
(■−7参照)。ランク操作9 0 は例えば第9図のように、異常■〜異常■のランクに応
じて操作量を個別に決めて行なわれる。このとき、「余
裕有りか?」の判断は、操作I以上の操作量があれば、
「余裕有り」にすることとする。
For example, in the example of 02 purity adjustment when oxygen purity and one of the other monitoring items become abnormal at the same time,
This will be explained with reference to the figures. First, it is determined whether the 02 purity has returned (see ■-1), and if not (N), it is determined whether the purity has decreased (see ■2). The result is yes (Y)
If so, determine whether there is room to increase the amount of Air (see ■3); if no, determine whether there is room to reduce the amount of 02 (see ■-4). L if you can't afford it
If no, determine whether there is room to reduce the expansion turbine (E x p T) (see ■-6); if yes, perform rank operation (■- (see 7). The rank operation 9 0 is performed by individually determining the operation amount according to the rank of abnormality (1) to abnormality (2), as shown in FIG. 9, for example. At this time, the judgment of "Is there enough margin?" is, if the amount of operation is greater than operation I,
We will set it to ``with some leeway''.

また、ステップ■−2でノーの場合は、Nz純度が下降
したかどうかを判断しく■−8参照)、ノーならばAi
r減に余裕があるか否かを判断しく■−9参照)、余裕
があればAirを1ステップ分減量しく■−10参照)
、還流液調節弁Vl。
In addition, if No in step ■-2, determine whether the Nz purity has decreased (see ■-8), and if No, Ai
Determine whether there is enough room to reduce Air (see ■-9), and if there is room, reduce Air by one step (see ■-10).
, reflux liquid control valve Vl.

V2を操作量に応じて調整する(■−11参照)。Adjust V2 according to the operation amount (see ■-11).

さらに、ステップ■−3でイエスの場合はランク操作(
Air増)を行なった後(■−12参照)、N2純度が
下降したかどろかを判断しく■−13参照〉、ノーなら
ば還流液調節弁Vl、V2を操作量に応じて調整する(
■−14参照)。
Furthermore, if YES in step ■-3, rank operation (
After increasing the air flow (see ■-12), determine whether the N2 purity has decreased (see ■-13). If no, adjust the reflux liquid control valves Vl and V2 according to the operating amount (see ■-13).
(See ■-14).

なお、図示は省略したが、以上の如き調整操作は窒素純
度だけでなく、窒素純度および粗し○レベルについても
同様に行なわれる。
Although not shown, the above adjustment operation is performed not only for the nitrogen purity but also for the nitrogen purity and roughness level.

このように、02純度の調整操作でありながら、LO下
隆かどうか(■−5参照)、N2純度が下降したかどう
か(■−8,13参照)等、他の項目をも考慮しながら
調整操作を実行するようにしているので、他の監視項目
(プロセス量)に対して悪影響を及ぼすことなく安定か
つ最適な運転が可能となる。
In this way, while adjusting the 02 purity, we also take into account other items such as whether the LO is low (see ■-5) and whether the N2 purity has decreased (see ■-8, 13). Since the adjustment operation is executed, stable and optimal operation is possible without adversely affecting other monitoring items (process quantities).

以上では主として空気液化分離装置を運転する場合につ
いて説明したが、この発明はこれと同様のプラント一般
の場合にも適用し得ることは云うまでもない。
Although the above description has mainly been given to the case where an air liquefaction separation device is operated, it goes without saying that the present invention can also be applied to similar plants in general.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、操作が標準化されて誤操作が回避さ
れるだけでなく、オペレータの習熟度に左右されること
なく製品の増減操作が可能となり、その結果製品を安定
かつ経済的に供給し得る利点が得られる。また、オペレ
ータが従来実施していた製品酸素純度、製品窒素純度、
粗Ar中酸素濃度等の監視調整操作と、製品酸素、製品
窒素、粗Arの各発生量増減可否等の複雑かつ高度な判
断、および製品酸素、製品窒素、粗Arの同時増減操1 2 作等が自動的に行なわれるため、大幅な省力化が可能と
なる利点もある。
According to this invention, not only operations are standardized and erroneous operations are avoided, but it is also possible to increase or decrease the number of products regardless of the operator's proficiency, and as a result, products can be supplied stably and economically. Benefits can be obtained. In addition, it is possible to improve product oxygen purity, product nitrogen purity, and
Monitoring and adjusting operations such as the oxygen concentration in crude Ar, complex and advanced judgments such as whether to increase or decrease the amounts of product oxygen, product nitrogen, and crude Ar generated, and simultaneous increase/decrease operations of product oxygen, product nitrogen, and crude Ar. etc. are performed automatically, which has the advantage of making it possible to significantly save labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が適用されるシステム構成例を示す概
要図、第2図は計算機システムの全体動作を説明するた
めの概略フローチャート、第3図は第2図に■で示す動
作の一例を説明するための概略フローチャート、第4図
は第2図に■で示す動作の一例を説明するためのフロー
チャート、第5図は判定テーブルを示す構成図、第6図
は変更空気量を求める式と求め方を説明するための説明
図、第7図は弁開度の求め方を説明するための説明図、
第8図は平常時と異常時の監視方法を説明するための説
明図、第9図はランク操作を説明するためのフローチャ
ート、第10図は酸素プラントの概略を示すブロック図
である。 符号説明 l・・・計算機システム、2・・・計測制御装置、3・
・・空気液化分離装置(酸素プラント)4・・・CRT
。 5・・・プリンタ。 3 第2 図 特開平3−199882 (8)
Fig. 1 is a schematic diagram showing an example of a system configuration to which the present invention is applied, Fig. 2 is a schematic flowchart for explaining the overall operation of the computer system, and Fig. 3 is an example of the operation indicated by ■ in Fig. 2. FIG. 4 is a flowchart for explaining an example of the operation indicated by ■ in FIG. 2, FIG. 5 is a configuration diagram showing a determination table, and FIG. An explanatory diagram for explaining how to determine the valve opening degree, FIG. 7 is an explanatory diagram for explaining how to determine the valve opening degree,
FIG. 8 is an explanatory diagram for explaining the monitoring method during normal and abnormal times, FIG. 9 is a flowchart for explaining rank operation, and FIG. 10 is a block diagram schematically showing the oxygen plant. Code explanation 1... Computer system, 2... Measurement control device, 3.
・・Air liquefaction separation device (oxygen plant) 4・・CRT
. 5...Printer. 3 Figure 2 JP-A-3-199882 (8)

Claims (1)

【特許請求の範囲】 1)計算機により制御されて酸素、窒素または酸素、窒
素およびアルゴンを製造する空気液化分離装置の操業を
変更するに当たり、 前記各製品の単独増減操作および複数製品の同時増減操
作のための操業変更パターンを、別途入力される前記各
製品の設定値にもとづき選択して操業変更操作を行なう
ことを特徴とする空気液化分離装置の運転方法。 2)異常時調整中に増減操作指示が与えられたときに、
この増減操作指示によって現在の異常が回復する方向の
場合は増減操作指示を有効とし、現在の異常が悪化(拡
大)する方向の場合は無効とする一方、操業変更中に異
常が発生したときは、その異常を回復させるための調整
を実行しつつ操業変更を継続することを特徴とする請求
項1)に記載の空気液化分離装置の運転方法。 3)計算機を用いてプロセス量を制御するに当たり、 各プロセス量の各々に上限値、上上限値、下限値および
下下限値を設定しておき、上上限値または下下限値を越
えたときは無条件に異常と判断して異常復旧のための調
整を開始するとともに、各プロセスの状態値が上限値と
上上限値または下限値と下下限値との間にあるときは過
去所定時間の実績状態値から傾きと上上限値または下下
限値に到達するまでの時間とを予測し、この時間が所定
値以内の場合に異常と判断して異常復旧のための調整を
開始する一方、調整の結果前記算出された傾きが変化(
上昇→下降、下降→上昇)したときは上限値または下限
値に到達するまでの時間を求め、これが所定値以内の場
合は正常復帰と判断して調整操作を終了することを特徴
とするプラントの運転方法。 4)酸素、窒素または酸素、窒素およびアルゴンを製造
する空気液化分離装置を操作するに当たり、 酸素純度と窒素純度または酸素純度と精留塔液体酸素レ
ベルを含むプロセス量が同時に異常になった場合は、互
いに干渉して悪影響を及ぼすことなく最適な操作端およ
び操作量を選択して操作を行なうことを特徴とする空気
液化分離装置の運転方法。
[Claims] 1) In changing the operation of an air liquefaction separation device that is controlled by a computer to produce oxygen, nitrogen, or oxygen, nitrogen, and argon, an individual increase/decrease operation of each product and a simultaneous increase/decrease operation of multiple products are performed. 1. A method for operating an air liquefaction separation apparatus, comprising selecting an operation change pattern for the above-mentioned products based on separately input set values for each product and performing an operation change operation. 2) When an instruction to increase or decrease is given during abnormal adjustment,
If this increase/decrease operation instruction causes the current abnormality to recover, the increase/decrease operation instruction is valid; if the current abnormality worsens (expands), it is invalidated; however, if an abnormality occurs during operational changes, 2. The method of operating an air liquefaction separation apparatus according to claim 1, wherein the operation change is continued while making adjustments to recover from the abnormality. 3) When controlling process quantities using a computer, set an upper limit value, an upper upper limit value, a lower limit value, and a lower lower limit value for each process quantity, and when the upper upper limit value or the lower lower limit value is exceeded, If the state value of each process is between the upper limit value and the upper limit value or the lower limit value and the lower limit value, it will unconditionally determine that it is abnormal and start adjustment for abnormality recovery. The slope and the time to reach the upper upper limit or lower lower limit are predicted from the state value, and if this time is within a predetermined value, it is determined that there is an abnormality and adjustment is started to recover from the abnormality. As a result, the slope calculated above changes (
(rise → fall, fall → rise), the time required to reach the upper limit value or lower limit value is determined, and if this is within a predetermined value, it is determined that normality has returned and the adjustment operation is terminated. how to drive. 4) When operating an air liquefaction separation device that produces oxygen, nitrogen, or oxygen, nitrogen, and argon, if the process amount including oxygen purity and nitrogen purity or oxygen purity and rectification tower liquid oxygen level becomes abnormal at the same time. , a method of operating an air liquefaction separation device characterized by selecting and operating an optimal operating end and operating amount without interfering with each other and having adverse effects.
JP1336237A 1989-12-27 1989-12-27 Operating method of air liquefaction separation device Expired - Lifetime JPH0794954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336237A JPH0794954B2 (en) 1989-12-27 1989-12-27 Operating method of air liquefaction separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336237A JPH0794954B2 (en) 1989-12-27 1989-12-27 Operating method of air liquefaction separation device

Publications (2)

Publication Number Publication Date
JPH03199882A true JPH03199882A (en) 1991-08-30
JPH0794954B2 JPH0794954B2 (en) 1995-10-11

Family

ID=18297058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336237A Expired - Lifetime JPH0794954B2 (en) 1989-12-27 1989-12-27 Operating method of air liquefaction separation device

Country Status (1)

Country Link
JP (1) JPH0794954B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276258A (en) * 2009-05-28 2010-12-09 Jfe Steel Corp Failure detection method within heat insulating tank
CN115406180A (en) * 2022-03-30 2022-11-29 鞍钢股份有限公司 Method for quickly starting oxygen generator in cold state

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668777A (en) * 1979-11-06 1981-06-09 Nippon Oxygen Co Ltd Automatic operation changing method of liquifying air separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668777A (en) * 1979-11-06 1981-06-09 Nippon Oxygen Co Ltd Automatic operation changing method of liquifying air separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276258A (en) * 2009-05-28 2010-12-09 Jfe Steel Corp Failure detection method within heat insulating tank
CN115406180A (en) * 2022-03-30 2022-11-29 鞍钢股份有限公司 Method for quickly starting oxygen generator in cold state
CN115406180B (en) * 2022-03-30 2023-09-26 鞍钢股份有限公司 Method for quickly starting oxygen generator in cold state

Also Published As

Publication number Publication date
JPH0794954B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
KR100282788B1 (en) Method and apparatus for controlling yield and temperature in mixed refrigerant liquefied natural gas plant
US5260865A (en) Nonlinear model based distillation control
KR970702516A (en) MAXIMIZING PROCESS PRODUCTION RATES USING PERMANENT CONSTRAINTS
US3912476A (en) Air separating apparatus
BRPI0614404A2 (en) methods for controlling a distillation column and a system having variables manipulated to control system process parameters
Meidanshahi et al. Subspace model identification and model predictive control based cost analysis of a semicontinuous distillation process
JPH06182192A (en) Method of chemical process optimization
US3781533A (en) Constraint control system for optimizing performance of process units
JPS6335612A (en) Control polymerization of stereospecific alpha-olefin having preliminarily selected isotacticity
OA11125A (en) Method and apparatus for controlling condensation of gaseous hydrocarbon stream
JP3451453B2 (en) Air liquefaction separation device and control method thereof
US7204101B2 (en) Methods and systems for optimizing argon recovery in an air separation unit
JPH03199882A (en) Operation of plant including air liquefying and separating device
NZ520939A (en) Advanced control strategies for chlorine dioxide generating processes
US5343407A (en) Nonlinear model based distillation control
JP2005536344A (en) A method for optimizing the operation of a xylene separator using simulated countercurrent.
Espun et al. An efficient and simplified solution to the predesign problem of multiproduct plants
Barolo et al. On-line startup of a distillation column using generic model control
US4623968A (en) Structured design and decentralized control of production installations
Doma et al. Closed loop identification of MPC models for MIMO processes using genetic algorithms and dithering one variable at a time: application to an industrial distillation tower
JP2568284B2 (en) Automatic operation method of air liquefaction separation device
Bildea et al. Interaction between design and control of a heat-integrated distillation system with prefractionator
JP2967422B2 (en) Air liquefaction separation device and control method thereof
JP2002340477A (en) Control method for apparatus for liquefying and separating air
Mather et al. Successful multivariable control without plant tests