JP2967422B2 - Air liquefaction separation device and control method thereof - Google Patents

Air liquefaction separation device and control method thereof

Info

Publication number
JP2967422B2
JP2967422B2 JP8442690A JP8442690A JP2967422B2 JP 2967422 B2 JP2967422 B2 JP 2967422B2 JP 8442690 A JP8442690 A JP 8442690A JP 8442690 A JP8442690 A JP 8442690A JP 2967422 B2 JP2967422 B2 JP 2967422B2
Authority
JP
Japan
Prior art keywords
product
air
gas
flow rate
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8442690A
Other languages
Japanese (ja)
Other versions
JPH03282182A (en
Inventor
潮 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP8442690A priority Critical patent/JP2967422B2/en
Publication of JPH03282182A publication Critical patent/JPH03282182A/en
Application granted granted Critical
Publication of JP2967422B2 publication Critical patent/JP2967422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離装置の制御方法に関し、詳し
くは、空気を原料として深冷分離法により酸素,窒素等
の製品を気体及び/又は液体で生産する装置において、
生産量の増減,運転モードの変更等を効率よく短時間で
行え、かつ最適な生産量を得ることのできる空気液化分
離装置の制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for controlling an air liquefaction / separation apparatus. More specifically, the present invention relates to a method in which products such as oxygen and nitrogen are converted to gas and / or gas by cryogenic separation using air as a raw material. In a device that produces liquid,
The present invention relates to a method for controlling an air liquefaction / separation apparatus capable of efficiently increasing / decreasing a production amount, changing an operation mode and the like in a short time and obtaining an optimal production amount.

〔従来の技術〕[Conventional technology]

従来から、空気液化分離装置の各部の流量等を製品の
産出量に応じて所定の値に制御する手段として、分散型
制御装置(DCS)が多く用いられている。
2. Description of the Related Art Conventionally, a distributed control device (DCS) has been widely used as a means for controlling a flow rate or the like of each part of an air liquefaction / separation device to a predetermined value according to a product output.

従来のDCSを用いた制御においては、需要変動に伴い
製品産出目標量が増減した場合、例えば、酸素ガスの採
取量を増減する場合、変更後の酸素ガス採取量をDCSに
入力すると、原料空気量,タービン流体量,窒素採取
量,その他の各部の流量が変更後の酸素量に見合う所定
の値にセットされ、各部の弁が所定の時定数に従ってセ
ット値に到達するように制御される。さらにセット値に
到達した後に、製品の純度や熱バランスのズレがフィー
ドバック方式で修正される。
In the control using the conventional DCS, when the product output target amount increases or decreases due to demand fluctuation, for example, when the oxygen gas collection amount is increased or decreased, when the changed oxygen gas collection amount is input to the DCS, the raw material air The amount, turbine fluid amount, nitrogen sampling amount, and other flow rates of each part are set to predetermined values corresponding to the changed oxygen amount, and the valves of each part are controlled to reach the set values according to a predetermined time constant. After further reaching the set value, the deviation of the purity or heat balance of the product is corrected in a feedback manner.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述のごとく製品採取量のみを変更す
る制御方法では、運転の変更を自動的に行うことはでき
るが、運転モードが極めて限定されたものとなり、また
修正後に生じる製品純度や熱バランスのズレに基づいて
何回も修正を繰返さなければならなくなるおそれがあ
り、最適な運転状態を得るために長時間を要したり、収
率を犠牲にした運転を行わなければならないことがあっ
た。
However, in the control method in which only the product sampling amount is changed as described above, the operation can be changed automatically, but the operation mode is extremely limited, and the product purity and the heat balance that are changed after the correction are changed. There is a possibility that the correction must be repeated many times based on the above, and it may take a long time to obtain the optimum operation state or may have to perform the operation at the expense of the yield.

従って、運転モードの変更にあたっては、現状の運転
状態を把握し、装置の減量限界,液生産の要否等の条件
を考慮し、変更目標を満足しつつ、かつ変更後の運転が
最適になるように運転条件を設定し、しかも最短の時間
で運転を移行するといったきめ細かな判断及びこれに基
づく操作を行うことが望ましい。しかしながら、現状で
はこれらの判断や操作は、熟練した操作員の手腕に頼る
ところが大きく、後継者の不足も問題となってきてい
る。
Therefore, when changing the operation mode, the current operation state is grasped, the conditions such as the limit of reduction of the apparatus and the necessity of liquid production are considered, and the operation after the change is optimized while satisfying the change target. It is desirable to set the operating conditions as described above, and to perform a detailed judgment such as shifting the operation in the shortest time and perform an operation based on this. However, at present, these judgments and operations largely depend on the skill of a skilled operator, and the shortage of successors has become a problem.

本発明は、上記実情に鑑みて成されたもので、従来操
作員の経験による判断を要する部分を自動化して運転精
度の向上を図り、運転モードの変更を効率よく行うこと
のできる空気液化分離装置及びその制御方法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and air liquefaction separation that can improve the operation accuracy by automating parts that need to be determined based on the experience of the conventional operator and can efficiently change the operation mode. It is an object to provide an apparatus and a control method thereof.

〔課題を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために、本発明の空気液化分
離装置は、圧縮,精製,冷却した原料空気を液化精留分
離して酸素,窒素等の製品ガス,製品液化ガス及び排ガ
スを導出する空気液化分離装置において、 (a)装置のリアルタイムの運転状態を検知するための
空気量,製品量,タービン量,還流液量等の各部の流量
及び/又はそれらの純度,液面を計測する手段と、該空
気液化分離装置に付属する製品貯槽及び/又は該空気液
化分離装置から製品の供給を受ける製品貯槽の貯ガス量
及び/又は貯液量を検知計測する手段と、 (b)上記計測手段からの情報により装置の運転状態を
認識し、かつ運転指令に基づき最適運転条件及び最短時
間での運転移行操作方法の推論を行う計算手段と、 (c)上記計算結果により上記各部の制御を指令する制
御手段と該制御手段からの信号により上記装置各部の流
量等の運転諸元を制御する制御器と、 を備えたことを特徴としている。
In order to achieve the above-mentioned object, an air liquefaction / separation apparatus of the present invention is an air liquefaction / separation apparatus that liquefies and separates compressed, purified, and cooled raw material air to derive product gas such as oxygen and nitrogen, product liquefied gas, and exhaust gas. In the liquefaction / separation apparatus, (a) means for measuring the flow rate of each part such as an air amount, a product amount, a turbine amount, a reflux liquid amount, and / or their purity and a liquid level for detecting a real-time operation state of the device; Means for detecting and measuring the amount of stored gas and / or the amount of stored liquid in a product storage tank attached to the air liquefaction separation device and / or a product storage tank supplied with a product from the air liquefaction separation device; and (b) the measurement means. Calculating means for recognizing the operating state of the apparatus from the information from the apparatus and inferring the optimal operating conditions and the operation transition operation method in the shortest time based on the operating command; and (c) instructing the control of each unit based on the above calculation results. It is characterized by and a control unit for controlling the operation specifications of the flow rate, etc. of the various units by a signal from the control means and the control means that.

また、本発明の空気液化分離装置の制御方法は、原料
空気を圧縮,精製,冷却して精留塔に導入し、液化精留
分離により酸素,窒素等の製品ガス,製品液化ガス及び
排ガスを導出する空気液化分離装置の制御方法におい
て、前記原料空気,製品ガス,製品液化ガス,排ガス等
の各部の流量及び前記空気液化分離装置に付属する製品
貯槽及び/又は該空気液化分離装置から製品の供給を受
ける製品貯槽の貯ガス量及び/又は貯液量等の運転諸元
に基づいて現状の運転パターンを認識するとともに、前
回の運転指令と最新の運転指令及び装置を構成する機器
の運転能力等の運転条件から最適な運転パターンを推論
し、該推論に基づく最適な製品採取量,還流液量,膨張
タービン流量等の各部の運転諸元を計算し、制御するこ
とを特徴としている。
Further, the control method of the air liquefaction / separation apparatus of the present invention comprises compressing, purifying and cooling the raw material air, introducing the compressed air into a rectification column, and separating product gas such as oxygen and nitrogen, product liquefied gas and exhaust gas by liquefaction rectification. In the control method of the air liquefaction / separation device to be derived, the flow rate of each part such as the raw air, product gas, product liquefaction gas, and exhaust gas and the product storage tank attached to the air liquefaction / separation device and / or the product The current operation pattern is recognized based on the operation parameters such as the gas storage amount and / or liquid storage amount of the product storage tank to be supplied, and the previous operation command and the latest operation command and the operation capability of the equipment constituting the device It is characterized in that an optimal operation pattern is inferred from operating conditions such as the above, and the operation parameters of each part such as an optimum product sampling amount, a recirculation liquid amount, and an expansion turbine flow rate are calculated and controlled based on the inference.

〔実施例〕〔Example〕

以下、本発明を図に示す一実施例に基づいて、さらに
詳細に説明する。
Hereinafter, the present invention will be described in more detail based on one embodiment shown in the drawings.

この空気液化分離装置1は、圧縮機2,精製設備3,主熱
交換器4を経て液化点付近まで冷却された原料空気Aを
精留する複精留塔5と、該複精留塔5の上部塔5aに接続
されたアルゴン塔6と、上部塔5a底部に配置された主凝
縮蒸発器7と、下部塔5b上部に分離する窒素ガスを作動
流体とする膨張タービン8とを備えている。
The air liquefaction / separation apparatus 1 includes a double rectification column 5 for rectifying raw material air A cooled to near a liquefaction point via a compressor 2, a purification facility 3, and a main heat exchanger 4, and a double rectification column 5 An upper column 5a is connected to an argon column 6, a main condensing evaporator 7 disposed at the bottom of the upper column 5a, and an expansion turbine 8 using a nitrogen gas as a working fluid to be separated above the lower column 5b. .

上記空気液化分離装置1は、周知のごとく空気を原料
として液化精留分離を行い、製品として上部塔下部の酸
素ガスGO,上部塔頂部の窒素ガスGN,上部塔底部の液化酸
素LO,主凝縮蒸発器7で液化した液化窒素LN,アルゴン塔
上部の粗アルゴンARをそれぞれ産出しており、また上部
塔上部からは排ガスWが、下部塔上部からは、膨張ター
ビン8を経て窒素ガスNが排出されている。
As is well known, the air liquefaction / separation apparatus 1 performs liquefaction rectification and separation using air as a raw material, and as products, oxygen gas GO at the lower part of the upper tower, nitrogen gas GN at the top of the upper tower, liquefied oxygen LO at the bottom of the upper tower, and main condensate. The liquefied nitrogen LN liquefied in the evaporator 7 and the crude argon AR at the upper part of the argon tower are produced, respectively, and the exhaust gas W is discharged from the upper part of the upper tower, and the nitrogen gas N is discharged from the upper part of the lower tower via the expansion turbine 8. Have been.

本発明では、このように構成した空気液化分離装置1
を製品需要に応じた最適な運転状態に保持するために、
各部に各種の制御器,計測器,分析器等を配置するとと
もに、これらの各機器から得られる情報及びあらかじめ
定められた各設定値に基いて前記各計測制御器を作動さ
せて各部の流量を制御する制御手段9とを備えている。
この制御手段9には、制御用電算機及び/又はエキスパ
ートシステムが用いられる。尚、図中dはデータ(情
報)入出力を示す。
In the present invention, the air liquefaction / separation apparatus 1 thus configured
In order to maintain the optimal operating condition according to product demand,
Various controllers, measuring instruments, analyzers, etc. are arranged in each part, and the measurement controllers are operated based on the information obtained from these devices and each predetermined set value to control the flow rate of each part. And control means 9 for controlling.
The control means 9 uses a control computer and / or an expert system. In the figure, d indicates data (information) input / output.

まず原料空気Aを供給する管路10には、原料空気Aの
流量を計測する流量計30aとガイドベーン30bとからなる
計測制御器30が設けられている。この計測制御器30は、
原料空気Aの流量と共にガイドベーン30bの開度を制御
手段9に出力し、該制御手段9からの指示によりガイド
ベーン30bを開閉して原料空気Aの供給量を制御するも
ので、製品酸素ガスGOの生産量に応じて算定される値が
設定値となる。尚、流量の制御手段としては、上記ガイ
ドベーン30bに代えて管路に自動弁を設けることによっ
ても同様に行うことができる。
First, a measurement controller 30 including a flow meter 30a for measuring the flow rate of the raw material air A and a guide vane 30b is provided in the pipeline 10 for supplying the raw material air A. This measurement controller 30
The control unit 9 outputs the opening degree of the guide vanes 30b together with the flow rate of the raw material air A to the control means 9, and controls the supply amount of the raw material air A by opening and closing the guide vanes 30b according to an instruction from the control means 9. The value calculated according to the GO production is the set value. The flow rate can be controlled by providing an automatic valve in the pipeline instead of the guide vane 30b.

製品酸素ガスGOを導出する管路11には、製品酸素ガス
GOの流量を計測する流量計31aと自動弁31bとからなる計
測制御器31が設けられている。この計測制御器41は、製
品酸素ガスGOの流量と共に自動弁31bの開度を制御手段
9に出力し、該制御手段9からの指示により自動弁31b
を開閉して製品酸素ガスGOの産出量を制御するもので、
製品酸素ガスGOの需要量に応じて算定される値が設定値
となり、かつ酸素純度が規定の値を維持するように微調
整される。この製品酸素ガス用計測制御器31に関連して
上部塔5aの製品酸素ガス導出部近傍には、製品酸素ガス
GOの純度を計測する分析計31cが設けられており、該純
度を制御手段9に出力している。
The product oxygen gas GO
A measurement controller 31 including a flow meter 31a for measuring the GO flow rate and an automatic valve 31b is provided. The measurement controller 41 outputs the opening degree of the automatic valve 31b together with the flow rate of the product oxygen gas GO to the control means 9, and in accordance with an instruction from the control means 9, the automatic valve 31b
To open and close to control the output of product oxygen gas GO.
The value calculated according to the demand amount of the product oxygen gas GO becomes the set value, and the oxygen purity is finely adjusted to maintain the specified value. In connection with this product oxygen gas measurement controller 31, the product oxygen gas
An analyzer 31c for measuring the purity of GO is provided, and outputs the purity to the control means 9.

製品窒素ガスGNを導出する管路12には、製品窒素ガス
GNの流量を計測する流量計32aと自動弁32bとからなる計
測制御器32が設けられている。この計測制御器32は、製
品窒素ガスGNの流量と共に自動弁32bの開度を制御手段
9に出力し、該制御手段9からの指示により自動弁32b
を開閉して製品窒素ガスGNの産出量を制御するもので、
原料空気Aの供給量に応じて算定される値が設定値とな
る。
The product nitrogen gas GN
A measurement controller 32 including a flow meter 32a for measuring the flow rate of GN and an automatic valve 32b is provided. The measurement controller 32 outputs the opening degree of the automatic valve 32b together with the flow rate of the product nitrogen gas GN to the control means 9, and in accordance with an instruction from the control means 9, the automatic valve 32b
To open and close to control the output of product nitrogen gas GN.
The value calculated according to the supply amount of the raw material air A is the set value.

粗アルゴンARを導出する管路13には、粗アルゴンARの
流量を計測する流量計33aと自動弁33bとからなる計測制
御器33及び該粗アルゴン中の酸素濃度を測定する分析器
33cが設けられている。この計測制御器33は、粗アルゴ
ンARの流量と共に自動弁33bの開度を制御手段9に出力
し、該制御手段9からの指示により自動弁33bを開閉し
て粗アルゴンARの産出量を制御するもので、原料空気A
の供給量に応じて算定される値が設定値となり、かつ分
析器33cから得られる粗アルゴン中の酸素濃度が規定の
値以下という条件を満たしつつ、粗アルゴンARの生産量
が最大になるように微調整される。
The conduit 13 for leading the crude argon AR has a measurement controller 33 including a flow meter 33a for measuring the flow rate of the crude argon AR and an automatic valve 33b and an analyzer for measuring the oxygen concentration in the crude argon.
33c is provided. The measurement controller 33 outputs the opening of the automatic valve 33b together with the flow rate of the crude argon AR to the control means 9, and controls the output of the crude argon AR by opening and closing the automatic valve 33b according to an instruction from the control means 9. The raw material air A
The value calculated according to the supply amount of the crude argon AR is set to a set value, and the production amount of the crude argon AR is maximized while satisfying the condition that the oxygen concentration in the crude argon obtained from the analyzer 33c is equal to or less than a specified value. Is fine-tuned.

また、この空気液化分離装置1に付属設備として液化
粗アルゴンタンク(LAT1)50aが設けられている場合及
び/又は該装置から液化粗アルゴンが供給される液化粗
アルゴンタンク(LAT2)50bが設けられている場合は、
これらの貯槽50A,50bの粗アルゴンARの量を検知計測す
る手段、例えば液面計,圧力計等を設けて、該計測手段
で得られたデータも前記制御手段9に伝え、前記各デー
タと関連させて装置各部を制御するように構成すること
ができる。
When the liquefied crude argon tank (LAT 1 ) 50 a is provided as an accessory to the air liquefaction / separation apparatus 1 and / or the liquefied crude argon tank (LAT 2 ) 50 b to which the liquefied crude argon is supplied from the apparatus is provided. If provided,
Means for detecting and measuring the amount of crude argon AR in these storage tanks 50A and 50b, such as a liquid level gauge and a pressure gauge, are provided, and the data obtained by the measuring means is also transmitted to the control means 9, and the respective data and It can be configured to control each part of the device in association with it.

液化酸素LOを導出する管路14には、液化酸素LOの流量
を計測する流量計34aと自動弁34bとからなる計測制御器
34が設けられている。この計測制御器34は、液化酸素LO
の流量と共に自動弁34bの開度を制御手段9に出力し、
該制御手段9からの指示により自動弁34bを開閉して液
化酸素LOの産出量を制御するもので、あらかじめ設定さ
れた値、又は寒冷上のバランスを維持するように制御さ
れる。
A line 14 for deriving the liquefied oxygen LO has a measurement controller including a flow meter 34a for measuring the flow rate of the liquefied oxygen LO and an automatic valve 34b.
34 are provided. The measurement controller 34 controls the liquefied oxygen LO
The opening degree of the automatic valve 34b is output to the control means 9 together with the flow rate of
The automatic valve 34b is opened and closed in accordance with an instruction from the control means 9 to control the output of liquefied oxygen LO, and is controlled so as to maintain a preset value or a balance in cold weather.

また、上記液化粗アルゴンと同様に、この空気液化分
離装置1に付属設備として液化酸素タンク(LOT1)51a
が設けられている場合及び/又は該装置から液化酸素LO
を供給される液化酸素タンク(LOT2)51bが設けられて
いる場合は、これらの貯槽51a,51bの液化酸素LOの量を
検知計測する手段、例えば液面計,圧力計等を設けて、
該計測手段で得られたデータも前記制御手段9に伝え、
前記各データと関連させて装置各部を制御するように構
成することができる。
Similarly to the liquefied crude argon, a liquefied oxygen tank (LOT 1 ) 51 a
And / or liquefied oxygen LO from the device
If a liquefied oxygen tank (LOT 2 ) 51b is provided, a means for detecting and measuring the amount of liquefied oxygen LO in these storage tanks 51a and 51b, such as a liquid level gauge and a pressure gauge, is provided.
The data obtained by the measuring means is also transmitted to the control means 9,
The apparatus may be configured to control each unit of the apparatus in association with each of the data.

液化窒素LNを導出する管路15には、液化窒素LNの流量
を計測する流量計35aと自動弁35bとからなる計測制御器
35が設けられている。この計測制御器35は、液化窒素LN
の流量と共に自動弁35bの開度を制御手段9に出力し、
該制御手段9からの命令により自動弁35bを開閉して液
化窒素LNの産出量を制御するもので、あらかじめ設定さ
れた値、又は寒冷上のバランス及び純度を維持するよう
に制御され、さらに下部塔5bの還流液化窒素の純度を維
持できるように、膨張タービン流体の流量との関連にお
いて制御される。
A measurement controller including a flow meter 35a for measuring the flow rate of the liquefied nitrogen LN and an automatic valve 35b is provided in a conduit 15 for leading the liquefied nitrogen LN.
35 are provided. This measurement controller 35 is a liquefied nitrogen LN
The opening degree of the automatic valve 35b is output to the control means 9 together with the flow rate of
The automatic valve 35b is opened and closed by a command from the control means 9 to control the production amount of liquefied nitrogen LN, and is controlled so as to maintain a preset value, or the balance and purity on cold, and It is controlled in relation to the flow rate of the expansion turbine fluid so that the purity of the reflux liquefied nitrogen in the column 5b can be maintained.

この液化窒素LNの場合も、空気液化分離装置1に付属
設備として液化窒素タンク(LNT1)52aが設けられてい
る場合及び/又は該装置から液化窒素LNの供給を受ける
液化窒素タンク(LNT2)52bが設けられている場合は、
これらの貯槽52a,52bの液化窒素LNの量を検知計測する
手段、例えば液面計,圧力計等を設けて、該計測手段で
得られたデータも前記制御手段9に伝え、前記各データ
と関連させて装置各部を制御するように構成することが
できる。
In the case of the liquefied nitrogen LN as well, a liquefied nitrogen tank (LNT 1 ) 52 a is provided as an accessory to the air liquefaction separation device 1 and / or a liquefied nitrogen tank (LNT 2) receiving the supply of the liquefied nitrogen LN from the device. ) If 52b is provided,
Means for detecting and measuring the amount of liquefied nitrogen LN in these storage tanks 52a and 52b, such as a liquid level gauge and a pressure gauge, are provided, and data obtained by the measuring means is also transmitted to the control means 9, and the respective data and It can be configured to control each part of the device in association with it.

また、液状製品だけでなく、ガス製品に対しても同様
の制御を行うことができる。尚、前述の各製品タンクに
おいて、装置に付属したタンクとは該装置と配管により
接続されているタンクを意味し、製品が供給されるタン
クは、ローリー等により製品の供給を受ける可能性の有
るタンクを意味するもので、該装置からのみ製品の供給
を受けるもののほか、複数の空気液化分離装置から製品
を供給されるものも含む。
Similar control can be performed not only for liquid products but also for gas products. In each of the above-mentioned product tanks, the tank attached to the apparatus means a tank connected to the apparatus by piping, and the tank to which the product is supplied may receive the supply of the product by a lorry or the like. It means a tank, which includes products supplied from a plurality of air liquefaction / separation devices in addition to products supplied only from the device.

膨張タービン8に窒素ガスNを導入する管路16には、
該窒素ガスNの流量を計測する流量計36aと自動弁36bと
からなる計測制御器36が設けられている。この計測制御
器36は、窒素ガスNの流量と共に自動弁36bの開度を制
御手段9に出力し、該制御手段9からの指示により自動
弁36bを開閉して膨張タービン導入流体量を制御するも
ので、原料空気量から算出された値が設定値となり制御
されるが、寒冷上のバランスや運転目的に応じた還流液
化窒素流量との関連において設定された値により調整さ
れる。
A pipe 16 for introducing nitrogen gas N into the expansion turbine 8 includes:
A measurement controller 36 including a flow meter 36a for measuring the flow rate of the nitrogen gas N and an automatic valve 36b is provided. The measurement controller 36 outputs the opening degree of the automatic valve 36b together with the flow rate of the nitrogen gas N to the control means 9, and opens and closes the automatic valve 36b according to an instruction from the control means 9 to control the amount of fluid introduced into the expansion turbine. The value calculated from the amount of the raw material air is set as a set value and is controlled. The value is adjusted by a value set in relation to the balance in the cold and the flow rate of the liquefied liquefied nitrogen according to the operation purpose.

上部塔5aに還流液を導入する管路17には、該管路17内
の液化窒素の流量を計測する流量計37aと自動弁37bとか
らなる計測制御器37が設けられている。この計測制御器
37は、液化窒素の流量と共に自動弁37bの開度を制御手
段9に出力し、該制御手段9からの指示により自動弁37
bを開閉して還流液量を制御するもので、原料空気量か
ら算出された値が設定値となり制御される。
The pipe 17 for introducing the reflux liquid into the upper tower 5a is provided with a measurement controller 37 comprising a flow meter 37a for measuring the flow rate of liquefied nitrogen in the pipe 17 and an automatic valve 37b. This measurement controller
37 outputs the opening degree of the automatic valve 37b together with the flow rate of the liquefied nitrogen to the control means 9, and in accordance with an instruction from the control means 9, the automatic valve 37b.
The amount of the reflux liquid is controlled by opening and closing b, and the value calculated from the amount of the raw material air becomes a set value and is controlled.

下部塔5bの底部の液化空気を上部塔5aに導入する管路
18には、液化空気の流量を制御する自動弁38bが設えら
れるとともに、下部塔底部には該底部の液面を計測する
液面計38cが設けられている。この自動弁38bと液面計38
aとからなる計測制御器38は、下部塔底部受の液化空気
の液面高さに応じて自動弁38の開度を制御し、下部塔底
部の液面が一定になるように制御される。
A pipe for introducing liquefied air at the bottom of the lower tower 5b into the upper tower 5a
An automatic valve 38b for controlling the flow rate of the liquefied air is provided at 18, and a liquid level gauge 38c for measuring the liquid level at the bottom is provided at the bottom of the lower tower. This automatic valve 38b and liquid level gauge 38
The measurement controller 38 consisting of a controls the opening degree of the automatic valve 38 according to the liquid level of the liquefied air at the lower tower bottom, and is controlled so that the liquid level at the lower tower bottom is constant. .

また、下部塔底部の液化空気を粗アルゴン塔6の凝縮
器6aに導入する管路19には、液化空気の流量を計測する
流量計39aと自動弁39bとからなる計測制御器39が設けら
れている。この計測制御器39は、凝縮器6aに導入する液
化空気の流量と共に自動弁39bの開度を制御手段9に出
力し、該制御手段9からの指示により自動弁39bを開閉
して液化空気量を制御するもので、原料空気量から算出
された値が設定値となり制御される。
A line 19 for introducing the liquefied air at the bottom of the lower tower into the condenser 6a of the crude argon column 6 is provided with a measurement controller 39 including a flow meter 39a for measuring the flow rate of the liquefied air and an automatic valve 39b. ing. The measurement controller 39 outputs the opening degree of the automatic valve 39b together with the flow rate of the liquefied air introduced into the condenser 6a to the control means 9, and opens and closes the automatic valve 39b according to an instruction from the control means 9 to open and close the liquefied air amount. The value calculated from the amount of raw material air becomes a set value and is controlled.

上部塔上部から排ガスWを排出する管路20には、排ガ
ス中の酸素濃度を計測する分析器40が設けられており、
該管路20内の排ガス中に含まれる酸素濃度を制御手段9
に出力する。さらに該管路20には、排ガスの流量を制御
する流量計41aと自動弁41bとからなる計測制御器41が設
けられている。
An analyzer 40 for measuring the oxygen concentration in the exhaust gas is provided in the pipeline 20 for discharging the exhaust gas W from the upper tower upper part,
The control means 9 controls the concentration of oxygen contained in the exhaust gas in the pipe 20.
Output to Further, the pipe 20 is provided with a measurement controller 41 including a flow meter 41a for controlling the flow rate of the exhaust gas and an automatic valve 41b.

そして前記制御手段9は、分散型制御装置9aとAIステ
ーション(エキスパートシステム)からなる推論計算手
段9bとにより構成されている。分散型制御装置9aは、前
述の各種機器から得られる流量や濃度,圧力,温度及び
製品採取目標値等の各種入力情報を推論手段9bに供給す
るとともに、該推論計算手段9bから出力される各部の流
量設定値に基づいて前記各制御器を作動させる。推論計
算手段9bは、分散型制御装置9aから受け取る各種情報を
元にして現状の運転パターンを認識するとともに、前回
の運転指令と最新の運転指令及び装置を構成する機器の
運転能力等の運転条件から最適な運転パターンを推論
し、該推論に基づいて最適な製品採取量,還流液量,膨
張タービン流量等の各部の運転諸元を算出し制御する。
即ち分散型制御装置9aは、推論計算手段9bの推論に必要
なデーターを推論計算手段9bに与え、推論計算手段9bか
ら受け取るデーターを元にして各部の制御を行うように
構成されている。
The control means 9 comprises a distributed control device 9a and an inference calculation means 9b composed of an AI station (expert system). The decentralized control device 9a supplies various input information such as flow rate, concentration, pressure, temperature, and product sampling target value obtained from the various devices described above to the inference means 9b, and also outputs various information from the inference calculation means 9b. Each of the controllers is operated based on the set value of the flow rate. The inference calculation means 9b recognizes the current operation pattern based on various information received from the distributed control device 9a, and also executes the last operation command and the latest operation command and the operation conditions such as the operation capability of the equipment constituting the device. From the optimum operating pattern, and based on the inference, calculate and control the operating parameters of each part such as the optimum product sampling amount, reflux liquid amount, and expansion turbine flow rate.
That is, the distributed control device 9a is configured to provide data necessary for inference by the inference calculation means 9b to the inference calculation means 9b, and to control each unit based on data received from the inference calculation means 9b.

ここで、運転モード変更時の上記推論計算手段9bの動
作を説明する。まず推論計算手段9bは、前記分散型制御
装置9aから受け取る各部の流量等の運転諸元と、あらか
じめ設定されている各運転パターンにおける最適流量と
を比較して現在の運転パターンを認識し、新しい指令に
よる運転に移行後、前回の指令による運転を続行できる
か否か、又は変更すべきか否かを推論する。この推論
は、優先すべき事項、例えば製品酸素の純度と生産量,
これに伴う原料空気量,各運転モードにおいて確保すべ
き各々の製品採取量等の最適物質収支と熱バランスの確
保等をベースにして、原料空気圧縮機の減量限界や液化
ガス製品の需要、さらに前回の運転指令等の情報から最
適な運転パターンを選択するものであり、また変化量に
応じて運転移行までの時定数を設定する。
Here, the operation of the inference calculating means 9b when the operation mode is changed will be described. First, the inference calculation means 9b recognizes the current operation pattern by comparing operation specifications such as the flow rate of each unit received from the distributed control device 9a with the optimal flow rate in each preset operation pattern, and recognizes a new operation pattern. After the shift to the operation according to the command, it is inferred whether the operation according to the previous command can be continued or should be changed. This inference is based on priorities such as product oxygen purity and production,
Based on this, based on securing the optimal material balance and heat balance, such as the amount of raw material air and the amount of each product to be secured in each operation mode, the reduction limit of the raw material air compressor, the demand for liquefied gas products, An optimum operation pattern is selected from information such as a previous operation command, and a time constant up to operation transition is set according to a change amount.

例えば酸素ガスの減量が指令され、前回の指令が液化
窒素採取運転であった場合、減量空気量を酸素ガス採取
量に応じて減らしたときに確保すべき窒素ガス量や空気
圧縮機の減量限界等から採取する液化窒素量及び還流液
量,膨張タービン流量等、各部の流量を推論する。この
結果、各部の流量がそれぞれの時定数でセットされた値
に到達するように制御される。そしてセット値に到達後
に、生じる製品純度や熱バランスのズレは、現状の運転
パターンからどの部分をどの程度修正すべきかを推論
し、その結果に基づいて制御を行う。例えば、液製品を
採取しない運転であれば、熱バランス調節用の系の流量
又は弁開度が所定の範囲に入るように、タービン流体量
設定値を各部の流量との関連において微調整する。
For example, if oxygen gas reduction is commanded and the previous command was a liquefied nitrogen sampling operation, the nitrogen gas amount or air compressor reduction limit to be secured when the reduced air amount was reduced according to the oxygen gas sampling amount Infer the flow rate of each part, such as the amount of liquefied nitrogen and recirculated liquid, the flow rate of the expansion turbine, etc. As a result, the flow rate of each part is controlled so as to reach a value set by each time constant. Then, after reaching the set value, the deviation of the product purity or the heat balance that occurs is inferred from the current operation pattern as to which part should be corrected and how much, and control is performed based on the result. For example, in the operation without sampling the liquid product, the turbine fluid amount set value is finely adjusted in relation to the flow rate of each part so that the flow rate or the valve opening of the system for heat balance adjustment falls within a predetermined range.

また、上記液化ガス製品の需要情報としては、該空気
液化分離装置に付設された貯槽だけに限らず、他の複数
の貯槽、例えば各地に設置された液化ガス供給拠点の多
数の貯槽の液保有量の情報をオンラインで取り入れるこ
とにより、これらの液保有量変動に基づく需要情報も含
めて液製品の採取量を設定することができる。
In addition, the demand information of the liquefied gas product is not limited to the storage tank attached to the air liquefaction separation device, but may include other plural storage tanks, for example, liquid storage in a large number of storage tanks at liquefied gas supply bases installed in various places. By taking the amount information online, it is possible to set the sampling amount of the liquid product including the demand information based on the fluctuation of the liquid holding amount.

このようにして各部の流量等の運転諸元を制御するこ
とにより、各種製品を効率よく採取することが可能とな
り、最適な運転状態への切り替えも短時間で行うことが
可能となる。また、装置運転時における運転モードの変
更だけでなく、装置起動時の各部の流量等の諸元の制御
も同様に行うことができ、起動時間の短縮を図れ、空気
液化分離装置の生産効率を大幅に向上させることができ
る。
By controlling the operation parameters such as the flow rate of each part in this manner, various products can be efficiently collected, and the switching to the optimum operation state can be performed in a short time. In addition to changing the operation mode during operation of the apparatus, it is also possible to control parameters such as the flow rate of each part at the time of starting the apparatus in the same manner, thereby shortening the start-up time and reducing the production efficiency of the air liquefaction / separation apparatus. It can be greatly improved.

尚、装置各部の気液の流れについては、一般の空気液
化分離装置と同様のため詳細な説明は省略する。また、
空気液化分離装置の構成は、上記実施例に限らず、従来
から用いられている各種能力向上設備を備えたものに
も、本発明を適用することが可能であり、実施例で挙げ
た製品を全て併産するものに限るものでもない。
The flow of gas and liquid in each part of the apparatus is the same as that of a general air liquefaction / separation apparatus, and therefore detailed description is omitted. Also,
The configuration of the air liquefaction / separation apparatus is not limited to the above-described embodiment, and the present invention can be applied to those equipped with various types of conventionally used capacity improvement equipment. It is not limited to those that are all born together.

また、運転諸元も流量,濃度(純度),液面のみなら
ず、温度,圧力をも対象として制御することも可能であ
ることは言う迄もない。
It goes without saying that the operating parameters can be controlled not only for the flow rate, concentration (purity) and liquid level but also for temperature and pressure.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の空気液化分離装置及び
その制御方法は、製品貯槽を含む装置各部の気液の流
量、純度や貯留量等を基にして現状の運転パターンを認
識し、これに基づいて各部の最適運転諸元を推論し計算
して制御するから、各運転パターンにおける最適な運転
状態で各製品を製出することができ、各製品の収率を向
上することができる。特に製品需要の変動や貯槽の製品
量変化による運転モードの移行を迅速に行え、従来操作
員の熟練度に頼っていた複雑な運転条件の設定を代行で
き、操作員の高齢化,後継者不足といった社会的要求に
も対応することができる。
As described above, the air liquefaction separation device and the control method of the present invention recognize the current operation pattern based on the gas-liquid flow rate, purity, storage amount, etc. of each part of the device including the product storage tank. Since the optimum operation parameters of each section are inferred, calculated and controlled based on the respective operations, each product can be produced in an optimum operation state in each operation pattern, and the yield of each product can be improved. In particular, the operating mode can be quickly changed due to fluctuations in product demand and changes in the amount of product in the storage tank, and complex operating conditions can be set on behalf of the operator's skill level. It can respond to such social demands.

【図面の簡単な説明】[Brief description of the drawings]

図は本発明の一実施例を示す空気液化分離装置の系統図
である。 1……空気液化分離装置、2……圧縮機、3……精製設
備、4……主熱交換器、5……複精留塔、6……アルゴ
ン塔、7……主凝縮蒸発器、8……膨張タービン、9…
…制御手段、9a……分散型制御装置、9b……推論計算手
段、30,31,32,33,34,35,36,37,38,39,41……計測制御
器、40……分析器、A……原料空気、AR……粗アルゴ
ン、GO……酸素ガス、GN……窒素ガス、LO……液化酸
素、LN……液化窒素、W……排ガス
FIG. 1 is a system diagram of an air liquefaction / separation apparatus showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Air liquefaction separation apparatus, 2 ... Compressor, 3 ... Purification equipment, 4 ... Main heat exchanger, 5 ... Double rectification column, 6 ... Argon column, 7 ... Main condensing evaporator, 8 ... Expansion turbine, 9 ...
... control means, 9a ... distributed control device, 9b ... inference calculation means, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41 ... measurement controller, 40 ... analysis A, raw air, AR: crude argon, GO: oxygen gas, GN: nitrogen gas, LO: liquefied oxygen, LN: liquefied nitrogen, W: exhaust gas

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮,精製,冷却した原料空気を液化精留
分離して酸素,窒素等の製品ガス,製品液化ガス及び排
ガスを導出する空気液化分離装置において、 (a)装置のリアルタイムの運転状態を検知するための
空気量,製品量,タービン量,還流液量等の各部の流量
及び/又はそれらの純度,液面を計測する手段と、該空
気液化分離装置に付属する製品貯槽及び/又は該空気液
化分離装置から製品の供給を受ける製品貯槽の貯ガス量
及び/又は貯液量を検知計測する手段と、 (b)上記計測手段からの情報により装置の運転状態を
認識し、かつ運転指令に基づき最適運転条件及び最短時
間での運転移行操作方法の推論を行う計算手段と、 (c)上記計算結果により上記各部の制御を指令する制
御手段と該制御手段からの信号により上記装置各部の流
量等の運転諸元を制御する制御器と、 を備えたことを特徴とする空気液化分離装置。
1. An air liquefaction apparatus for liquefying and separating compressed, purified and cooled raw material air to derive a product gas such as oxygen and nitrogen, a product liquefied gas and an exhaust gas. Means for measuring the flow rate of each part such as air quantity, product quantity, turbine quantity, recirculation liquid quantity and / or their purity and liquid level for detecting the condition, and a product storage tank and / or attached to the air liquefaction / separation apparatus Or means for detecting and measuring the amount of gas stored and / or the amount of liquid stored in the product storage tank to which the product is supplied from the air liquefaction / separation apparatus; and (b) recognizing the operation state of the apparatus based on information from the measuring means; (C) control means for instructing the optimal operation conditions and the operation transition operation method in the shortest time based on the operation command; (c) control means for instructing control of each section based on the calculation result; Cryogenic air separation apparatus characterized by comprising: a controller for controlling the operation specifications of the flow rate, etc. of each part, the.
【請求項2】前記計測手段が、原料空気流量の計測制御
器,製品酸素ガス流量の計測制御器,製品窒素ガス流量
の計測制御器,液化酸素流量の計測制御器,液化窒素流
量の計測制御器,膨張タービン流体流量の計測制御器,
上部塔還流液用液化窒素量の計測制御器,上部塔導入液
化空気流量の計測制御器,下部塔底部の液面の計測制御
器,排ガス中の酸素濃度の計測器及び製品ガス純度分析
計であることを特徴とする請求項1記載の空気液化分離
装置。
2. The apparatus according to claim 1, wherein said measuring means is a measuring controller for a raw air flow rate, a measuring controller for a product oxygen gas flow rate, a measuring controller for a product nitrogen gas flow rate, a measuring controller for a liquefied oxygen flow rate, and a measuring control for a liquefied nitrogen flow rate. Device, measurement controller for expansion turbine fluid flow,
Measuring controller for the amount of liquefied nitrogen for the reflux liquid in the upper tower, measuring controller for the liquefied air flow introduced into the upper tower, measuring controller for the liquid level at the bottom of the lower tower, measuring instrument for oxygen concentration in exhaust gas, and product gas purity analyzer The air liquefaction / separation apparatus according to claim 1, wherein:
【請求項3】原料空気を圧縮,精製,冷却して精留塔に
導入し、液化精留分離により酸素,窒素等の製品ガス,
製品液化ガス及び排ガスを導出する空気液化分離装置の
制御方法において、前記原料空気,製品ガス,製品液化
ガス,排ガス等の各部の流量及び前記空気液化分離装置
に付属する製品貯槽及び/又は該空気液化分離装置から
製品の供給を受ける製品貯槽の貯ガス量及び/又は貯液
量等の運転諸元に基づいて現状の運転パターンを認識す
るとともに、前回の運転指令と最新の運転指令及び装置
を構成する機器の運転能力等の運転条件から最適な運転
パターンを推論し、該推論に基づく最適な製品採取量,
還流液量,膨張タービン流量等の各部の運転諸元を計算
し、制御することを特徴とする空気液化分離装置の制御
方法。
3. A raw material air is compressed, purified, cooled and introduced into a rectification column, and product gas such as oxygen and nitrogen is obtained by liquefied rectification separation.
In the method for controlling an air liquefaction / separation device for deriving product liquefied gas and exhaust gas, the method includes controlling the flow rate of each part of the raw material air, product gas, product liquefied gas, exhaust gas, etc., and a product storage tank attached to the air liquefaction / separation device and / or the air. Recognize the current operation pattern based on the operation specifications such as the gas storage amount and / or liquid storage amount of the product storage tank that receives product supply from the liquefaction / separation device, and recognizes the previous operation command and the latest operation command and device. The optimum operation pattern is inferred from the operation conditions such as the operation capability of the constituent devices, and the optimum product sampling amount,
A method for controlling an air liquefaction / separation apparatus, comprising calculating and controlling operating parameters of each part such as a recirculating liquid amount and an expansion turbine flow rate.
JP8442690A 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof Expired - Fee Related JP2967422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8442690A JP2967422B2 (en) 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8442690A JP2967422B2 (en) 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof

Publications (2)

Publication Number Publication Date
JPH03282182A JPH03282182A (en) 1991-12-12
JP2967422B2 true JP2967422B2 (en) 1999-10-25

Family

ID=13830259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8442690A Expired - Fee Related JP2967422B2 (en) 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof

Country Status (1)

Country Link
JP (1) JP2967422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445909B1 (en) * 2011-12-30 2014-10-01 주식회사 포스코아이씨티 System of managing Gas separating Plant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699643B2 (en) * 2001-06-26 2011-06-15 大陽日酸株式会社 Air liquefaction separation method and apparatus
US6666049B1 (en) * 2003-03-20 2003-12-23 Praxair Technology, Inc. Method for operating a cryogenic plant
US10533795B2 (en) 2013-04-25 2020-01-14 Linde Aktiengesellschaft Method for obtaining an air product in an air separating system with temporary storage, and air separating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445909B1 (en) * 2011-12-30 2014-10-01 주식회사 포스코아이씨티 System of managing Gas separating Plant

Also Published As

Publication number Publication date
JPH03282182A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
EP1036293B1 (en) Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US7266975B2 (en) Process of Liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US5669238A (en) Heat exchanger controls for low temperature fluids
US3912476A (en) Air separating apparatus
RU2188370C2 (en) Method and device for control of condensation of hydrocarbon gas flow
JP3451453B2 (en) Air liquefaction separation device and control method thereof
CN107490245B (en) Automatic load-variable control method for air separation device
JP2967422B2 (en) Air liquefaction separation device and control method thereof
CN211782274U (en) Advanced control system of air separation and air separation production system
JP4279540B2 (en) Control method of air separation device
JP2967421B2 (en) Method and apparatus for controlling argon sampling by air liquefaction separation
EP1921406A1 (en) A process of liquefying a gaseous methane-rich feed for obtaining liquid natural gas
US4261719A (en) Method of and apparatus for controlling rate of material air supply to air separation plant
US4251248A (en) Method and apparatus for automatic change of operations in air separation plant
JP4450503B2 (en) Product gas backup device
JPS6155034B2 (en)
JP4803897B2 (en) Control method of air liquefaction separation device
JP3710252B2 (en) Control method of air liquefaction separation device
JP3213848B2 (en) Nitrogen production apparatus and control method thereof
US11913720B2 (en) Product gas supply quantity adjustment device and air separation apparatus comprising same
JP2726970B2 (en) Control method of air liquefaction / separation equipment corresponding to demand fluctuation
JP2967427B2 (en) Air separation method and apparatus suitable for demand fluctuation
RU1809268C (en) Method and device for automatic control of air separation process in cryogenic complex
RU1809269C (en) Method and device for automatic control of air separation process in cryogenic complex
JPS6314074A (en) Method of controlling operation of fractionating column in air separator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees