JPS6314074A - Method of controlling operation of fractionating column in air separator - Google Patents

Method of controlling operation of fractionating column in air separator

Info

Publication number
JPS6314074A
JPS6314074A JP15458586A JP15458586A JPS6314074A JP S6314074 A JPS6314074 A JP S6314074A JP 15458586 A JP15458586 A JP 15458586A JP 15458586 A JP15458586 A JP 15458586A JP S6314074 A JPS6314074 A JP S6314074A
Authority
JP
Japan
Prior art keywords
column
flow rate
nitrogen
argon
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15458586A
Other languages
Japanese (ja)
Inventor
薫 藤田
中藤 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP15458586A priority Critical patent/JPS6314074A/en
Publication of JPS6314074A publication Critical patent/JPS6314074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気分離装置における精留塔の運転制御方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the operation of a rectification column in an air separation apparatus.

〔従来技術〕[Prior art]

空気を深冷分離して酸素および窒素を採取すると同時に
アルゴンを採取する空気分離装置においては複式精留塔
の上塔の頂部より窒素を採取し、上塔の底部より液体酸
素を採取すると共に上塔の側流よりアルゴン含有ガスを
抜出し、粗アルゴン塔へ供給してアルゴンを採取するこ
とが行なわれている。
In air separation equipment that collects oxygen and nitrogen at the same time as air by cryogenic separation, nitrogen is collected from the top of the upper column of the double rectification column, liquid oxygen is collected from the bottom of the upper column, and argon is collected at the same time. Argon-containing gas is extracted from a side stream of the column and supplied to a crude argon column to collect argon.

アルゴンを採取する場合には精留塔の上塔から粗アルゴ
ン塔に供給されるガスの組成はアルゴン濃度が高く、窒
素含有量の少ないものが望ましいが、空気中のアルゴン
含有量が僅かであること及びアルゴンの沸点が窒素と酸
素の中間にある上にこれらとの比揮発度が小さいのでそ
の分離が比較的困難とされている。その上、比較的高い
アルゴン収率を保ちなから精留塔を運転する場合には、
該上塔の運転を精密に行うことが必要である。すなわち
運転調節方法のいかんによっては、上塔内における各成
分の濃度分布が変化して運転状態が乱れ、その結果、上
塔の側流よシ抜出すアルゴン含有ガスの組成が変動し、
粗アルゴン塔の運転状態の乱れにつながシ粗アルゴンの
純度に悪影響を及ぼすことがある。従来、この精留塔の
運転状態を調節する方法としては、 (1)精留塔上塔の塔頂部よシ抜出される窒素流量を調
節して窒素を発生させる。
When collecting argon, it is desirable that the composition of the gas supplied from the upper column of the rectification column to the crude argon column has a high argon concentration and a low nitrogen content, but the argon content in the air is small. In addition, argon's boiling point is between that of nitrogen and oxygen, and its relative volatility is low, making it relatively difficult to separate. Moreover, when operating a rectification column to maintain a relatively high argon yield,
It is necessary to operate the upper tower precisely. In other words, depending on the operation adjustment method, the concentration distribution of each component in the upper column changes and the operating state is disturbed, and as a result, the composition of the argon-containing gas extracted from the side stream of the upper column changes.
This may lead to disturbances in the operating conditions of the crude argon column and adversely affect the purity of the crude argon. Conventionally, methods for adjusting the operating conditions of the rectification column include (1) generating nitrogen by adjusting the flow rate of nitrogen extracted from the top of the upper column of the rectification column;

(11)空気分離装置に導入される原料空気量、寒冷発
生機関である膨張タービンの処理量、精留塔上塔の底部
より抜出される酸素量等を個別に調節して精留塔上塔液
面を所定値内に調節する。
(11) The amount of feed air introduced into the air separation equipment, the throughput of the expansion turbine which is a cold generation engine, the amount of oxygen extracted from the bottom of the upper column of the rectification column, etc. are individually adjusted. Adjust the liquid level within the specified value.

等によシ行なわれている。It is carried out by etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、先に述べた(i)の方法によると、窒素
流量を調節するために精留塔上塔の圧力が変動し、上塔
の精留状態を乱しその側流より抜出すアルゴン含有ガス
の組成に変動を与えたシ、また(11)の方法によって
も、原料空気流量、膨張タービン流量、酸素流量を個別
に調節するために、精留塔のバランスを乱し、製品の濃
度とくにアルゴン含有ガスの組成に変動を与えていた。
However, according to method (i) mentioned above, the pressure in the upper column of the rectification column fluctuates in order to adjust the nitrogen flow rate, which disturbs the rectification state of the upper column and causes the argon-containing gas to be extracted from the side stream. In addition, in the method (11), the balance of the rectification column is disturbed and the concentration of the product, especially argon This caused fluctuations in the composition of the contained gas.

すなわち、本発明は空気分離装置の精留塔における従来
の運転調節法の欠点を解消し、精留塔を安定に運転する
ことを目的とするものである。
That is, an object of the present invention is to eliminate the drawbacks of the conventional operation control method in a rectification column of an air separation apparatus, and to operate the rectification column stably.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はかかる目的を達成すべく鋭意検討を重ねた
結果、上部塔の上部から抜出される不純窒素ガスの抜出
量を調節することによって上塔内の圧力な一定圧に保持
することによシ精留塔を安定な状態に保持したまま需要
に対応した窒素を抜出し、一方上部塔底部の液面位の変
化に対応して、膨張タービン流量、原料空気流量、及び
ラツハマン流量を所定の制御則に従い調節することによ
シ精留塔のバランスを保持したまま該上部塔の液面の調
節ができることを見出し、本発明を完成した。
As a result of intensive studies to achieve this objective, the present inventors have found that the pressure inside the upper column can be maintained at a constant pressure by adjusting the amount of impure nitrogen gas extracted from the upper part of the upper column. Nitrogen is extracted in response to demand while maintaining the rectification column in a stable state, and at the same time, the expansion turbine flow rate, feed air flow rate, and Ratschman flow rate are set as specified in response to changes in the liquid level at the bottom of the upper column. The present invention was completed based on the discovery that the liquid level in the upper column can be adjusted while maintaining the balance of the rectification column by adjusting it according to the control law.

すなわち、本発明の要旨は、原料空気を圧縮冷却し、複
式精留塔で精留して酸素、窒素及びアルゴンを採取する
空気分離装置において、複式精留塔の上部塔の頂部よシ
製品窒素を所定量抜出すと共に上部塔の圧力を検出し、
該圧力を一定に保持するように上部塔の上部からの不純
窒素ガスの抜出量を自動調節する一方、精留塔の上部塔
底部の液体酸素液面位を検出し該液面位を所定値内に保
つように、所定の制御則に従い自動的に膨張タービン流
量、原料空気流量、ラツハマン流量を調節することを特
徴とする空気分離装置における精留塔の運転制御方法に
存する。
That is, the gist of the present invention is to provide an air separation apparatus in which feed air is compressed and cooled and then rectified in a double rectification column to extract oxygen, nitrogen, and argon. The pressure in the upper column is detected while extracting a predetermined amount of
The amount of impure nitrogen gas extracted from the top of the upper column is automatically adjusted to maintain the pressure constant, while the liquid oxygen level at the bottom of the upper column of the rectification column is detected and the liquid level is set at a predetermined level. The present invention relates to a method for controlling the operation of a rectification column in an air separation apparatus, characterized in that the flow rate of an expansion turbine, the flow rate of feed air, and the flow rate of Ratzmann are automatically adjusted according to a predetermined control law so as to maintain the flow rate within a certain value.

以下、本発明を図面を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明を実施するための空気分離装置の一例を
示すものである。第1図において、空気分離装置は空気
圧縮機A、可逆式熱交換器B、精留塔の下部塔C1精留
塔の上部塔D、膨張タービンE、粗アルゴン塔F等から
構成されている。原料空気は導管lより空気圧縮機A及
び可逆式熱交換器Bを経てそれぞれ圧縮および冷却・精
製されて導管コより精留塔Cの底部に導入される。下部
塔C内では、塔頂に設けられた凝縮器にて精留塔の上部
塔りの底部の液体酸素と熱交換して凝縮した液体空気が
下降し、下部塔の底部に供給され塔内を上昇する原料空
気と棚段上で気液接触して精留が行なわれる。下部塔C
の頂部よシ液体窒素が取出され、導管3を経て上部塔り
の頂部に還流液として導入される。また下部塔Cの中央
部からは空気が取出され、導管S、膨張タービンE及び
導管6を経て一部が上部塔りの中央よシ上部の位置に導
入される。導管6よシ精留塔に導入される流体はラツハ
マンと呼ばれている。さらに下部塔Cの塔底部からは酸
素濃度の高い液体空気(酸素濃度約lIo%の液体空気
)が抜出され、導管ダを経て上部塔りの中央よシやや上
部の位置に導入される。上部塔り内では、下部塔頂部の
凝縮器と熱交換して発生した気体酸素が上昇ガスとじて
塔内を上昇し、下部塔Cより導入された液体空気、さら
に還流液として導入された液体窒素の流下によシ棚段上
で上記上昇気体と向流接触しで精留が行なわれる。しか
して上部塔りの頂部より高純度の窒素が得られ、導管り
より取出され、頂部よりやや低い位置より不純窒素が導
管lOよシ抜出される。また底部からは高純度の酸素が
得られ導管ざより取出される。さらに、上部塔りの中央
部の適切な位置のサイドカット段よシアルボン含有ガス
が抜出され、導管デを経て粗アルゴン塔Fに導入される
FIG. 1 shows an example of an air separation device for carrying out the present invention. In Fig. 1, the air separation device is composed of an air compressor A, a reversible heat exchanger B, a lower column C1 of a rectification column, an upper column D of the rectification column, an expansion turbine E, a crude argon column F, etc. . Raw air is compressed, cooled and purified through conduit 1 through air compressor A and reversible heat exchanger B, and then introduced into the bottom of rectification column C through conduit 1. In the lower column C, the condensed liquid air exchanges heat with the liquid oxygen at the bottom of the upper column of the rectification column in the condenser installed at the top of the column, descends, is supplied to the bottom of the lower column, and is fed into the column. Rectification is carried out by contacting the rising raw material air with gas-liquid on the tray. Lower tower C
Liquid nitrogen is removed from the top of the column and introduced as reflux via conduit 3 into the top of the upper column. Also, air is taken out from the center of the lower column C, and a part of it is introduced into the upper column from the center through the conduit S, the expansion turbine E, and the conduit 6. The fluid introduced into the rectification column through conduit 6 is called a Raschmann. Further, liquid air with a high oxygen concentration (liquid air with an oxygen concentration of about 10%) is extracted from the bottom of the lower column C and introduced into the upper column at a position slightly above the center through a conduit. In the upper column, gaseous oxygen generated by heat exchange with the condenser at the top of the lower column rises in the column together with rising gas, liquid air introduced from the lower column C, and liquid introduced as reflux liquid. Rectification is carried out in countercurrent contact with the rising gas on the tray due to the flow of nitrogen. Highly purified nitrogen is thus obtained from the top of the upper column and taken out through the conduit, and impure nitrogen is taken out through the conduit lO from a position slightly lower than the top. Also, high purity oxygen is obtained from the bottom and taken out through a conduit. Further, the sialbone-containing gas is withdrawn from a side cut stage at an appropriate position in the center of the upper column and introduced into the crude argon column F via conduit D.

本発明はかかる空気分離装置において、上部料空気流量
計I、ラツハマン流量計I#を設は夫々の信号を計算機
に取込み、該計算機にて第1図に示す制御系を構成した
。すなわち、上塔圧力を所定値に制御する圧力制御系(
pctot )。
In the air separation apparatus of the present invention, an upper air flow meter I and a Ratzmann flow meter I# are provided, and their respective signals are input into a computer, which constitutes a control system as shown in FIG. In other words, the pressure control system (
pctot).

膨張タービン流量、原料空気流量、ラツハマン流量に対
応する各流量制御系(FCIOJ、FCIOJ、FCI
OJ )、プロセスの運転状態から物質収支および熱収
支を考慮して決定される運転条件設定系、さらに上塔液
面制御系CLC201)から成り、それぞれの制御系は
次の様に働く。
Each flow control system (FCIOJ, FCIOJ, FCI
OJ), an operating condition setting system which is determined by taking into account material balance and heat balance from the operating state of the process, and an upper tower liquid level control system CLC201), and each control system works as follows.

上塔圧力制御系は上塔の圧力を所定値にする様に不純窒
素ガスが抜出される導管ioに設けられた調節弁rの弁
開度をPID制御により調節する。流量制御系は与えら
れた設定値のもとで、PID制御によシ調節弁H,H’
、H“の弁開度を操作し流量の調節を行う。運転条件設
定系は製品要求量及び空気分離装置の熱収支より得られ
る適正な運転条件を与えるいわゆるフィードフォワード
演算を行う。例えば寒冷発生機関である膨張タービンの
流量への適正な設定値Xは熱収支より得られ(1)式で
あられされる。
The upper column pressure control system uses PID control to adjust the opening degree of a control valve r provided in a conduit io from which impure nitrogen gas is extracted so as to maintain the pressure in the upper column at a predetermined value. The flow rate control system operates the control valves H and H' using PID control under the given set value.
, H'' to adjust the flow rate.The operating condition setting system performs a so-called feedforward calculation that provides appropriate operating conditions obtained from the product demand and the heat balance of the air separation device.For example, when cold generation occurs, An appropriate setting value X for the flow rate of the expansion turbine, which is the engine, is obtained from the heat balance and is expressed by equation (1).

X−A、XAIR十A、XLO+A3XLA+A、XL
N   ・・・(1)ただし、AIR:原料空気流量 LO:液体酸素発生量 LA:液体アルゴン発生量 LN:液体窒素発生量 AI * A1 t A3 e A4 :係数しかしな
がら、(1)式に基づいて算出された膨張タービン流量
は必ずしも正確に空気分離装置で の熱収支を保持するものlはなく、その誤差は上塔底部
の液体酸素の液位の変動となってあられれる。そこで、
液面制御系においては液面調節計(ギヤツブ付PID調
節計)が液面をある範囲内に保持する様に前述のフィー
ドフォワード演算の誤差を補償するフィードバック要素
として動作する。つまり、液面調節計の出力は。
X-A, XAIR1A, XLO+A3XLA+A, XL
N... (1) However, AIR: Raw material air flow rate LO: Liquid oxygen generation amount LA: Liquid argon generation amount LN: Liquid nitrogen generation amount AI * A1 t A3 e A4: Coefficient However, based on equation (1) The calculated expansion turbine flow rate does not necessarily accurately maintain the heat balance in the air separation device, and the error appears as a fluctuation in the liquid level of liquid oxygen at the bottom of the upper column. Therefore,
In the liquid level control system, a liquid level controller (a geared PID controller) operates as a feedback element to compensate for errors in the feedforward calculation described above so as to maintain the liquid level within a certain range. In other words, the output of the liquid level controller is.

膨張タービン流量に対し運転条件設定系より計算された
値と加算され膨張タービン流量の設定値を与える。((
2)式) また、該液面調節計の出力は原料空気流量。
The value calculated from the operating condition setting system is added to the expansion turbine flow rate to provide a set value for the expansion turbine flow rate. ((
(2) formula) Also, the output of the liquid level controller is the raw material air flow rate.

ラツハマン流量に対しては運転条件設定系と液面調節計
の出力にある係数に、 、 K、を掛けたものを加算し
たものがそれぞれの設定値となる。
For the Ratschmann flow rate, the respective set values are the sum of the coefficients in the output of the operating condition setting system and liquid level controller multiplied by , K, and the like.

((3)、(4)式) %式%(2) ただし、Sv:設定値 Mv:出力値 X :運転条件設定系より与えちれる膨張タービン流量
Y :              原料空気流量2 
:                ラツハマン流量こ
こで、K1、K、は液面調節計の出力の原料空気流量、
ラツハマン流量に対する加重ゲインである。
(Formula (3), (4)) % formula % (2) However, Sv: Set value Mv: Output value X: Expansion turbine flow rate given by the operating condition setting system Y: Raw material air flow rate 2
: Ratschmann flow rate Here, K1, K are the raw material air flow rates at the output of the liquid level controller,
It is a weighted gain for the Rathman flow rate.

すなわち、該液面が変化した結果、液面制御によシ、膨
張タービン流量がΔEだけ変化した時、原料空気流量及
びラツハマン流量の変化量はそれぞれ(5)、(6)式
で与えられる。
That is, when the expansion turbine flow rate changes by ΔE due to the liquid level control as a result of the liquid level change, the amount of change in the feed air flow rate and the Ratzmann flow rate are given by equations (5) and (6), respectively.

ΔA −ΔB X K、       −・−−−−−
・・(51△R−ΔE X K、      ・・・・
曲・(6)ここで、精留塔を安定に運転するためには。
ΔA −ΔB X K, −・−−−−
...(51△R-ΔEXK, ...
Song・(6) Here, in order to operate the rectification tower stably.

ゲインに、 、 K2は、 0.6≦に1≦八〇、0.0≦に2≦O,グの範囲内の
所定値に設定すると良い。
For the gain, K2 is preferably set to a predetermined value within the range of 0.6≦1≦80, 0.0≦2≦O, and so on.

〔実施例〕〔Example〕

本発明空気分離装置の制御の態様を第3〜7図を用いて
説明する。第3〜!図における記号aは精留塔上塔の液
面、bは精留塔上塔中間段より導管9により粗アルゴン
塔へ供給されるアルゴン含有ガス中の酸素濃度、Cは膨
張タービン流量、dは原料空気流量、eはラツハマン流
量を意味する。液面調節計Gは液面の目標値に対して所
定のギャップ幅を設定しておき、液面が該所定値を越え
るとPID制御を実施するギヤツブ付PID調節計を採
用している。第3図は、上塔液面変動に対して膨張ター
ビン流量のみを操作量とした時、すなわち本発明におい
てに1=0、K、=0とした時のトレンド図である。
The mode of control of the air separation apparatus of the present invention will be explained using FIGS. 3 to 7. 3rd~! In the figure, the symbol a is the liquid level in the upper column of the rectification column, b is the oxygen concentration in the argon-containing gas supplied from the intermediate stage of the upper column of the rectification column to the crude argon column via conduit 9, C is the flow rate of the expansion turbine, and d is the flow rate of the expansion turbine. The raw air flow rate, e, means the Ratschmann flow rate. The liquid level controller G employs a geared PID controller that sets a predetermined gap width to a target value of the liquid level and performs PID control when the liquid level exceeds the predetermined value. FIG. 3 is a trend diagram when only the expansion turbine flow rate is used as the manipulated variable with respect to upper tower liquid level fluctuations, that is, when 1=0 and K=0 in the present invention.

上塔液面が下限を越えるとそれに伴い膨張タービン流量
が増加するが、原料空気流量及びラツハマン流量は一定
のままである。この時、上塔の精留状態が乱れアルゴン
含有ガス中の酸素濃度が低下傾向となる。また上塔液面
の回復も遅い。第q図は、膨張タービン流量と原料空気
流量を操作量とし両操作量の変化量を等しくした時、す
なわち本発明においてに、= / 、 K2= 0とし
た時のトレンド図である。液面が設定値の下限を越える
とそれに伴い膨張タービン流量及び原料空気流量が同量
増加するがラッハマン流量は一定のままである。この時
、アルゴン含有ガス中の酸素濃度は上昇傾向となる。第
5図は、本発明を適用した時、すなわち膨張タービン流
量とともに原料空気流量及びラッハマン流量をある割合
(K、= 0.9 、に2−0.コ)で調節した時のト
レンド図である。アルゴン含有ガス中の酸素濃度を乱さ
ずに上塔液面を応答よく所定値内に保持している。
When the upper tower liquid level exceeds the lower limit, the expansion turbine flow rate increases accordingly, but the feed air flow rate and the Ratzmann flow rate remain constant. At this time, the rectification state in the upper column is disturbed and the oxygen concentration in the argon-containing gas tends to decrease. Recovery of the upper tower liquid level is also slow. FIG. q is a trend diagram when the expansion turbine flow rate and the raw material air flow rate are the manipulated variables and the amount of change in both manipulated variables is equal, that is, when = / and K2 = 0 in the present invention. When the liquid level exceeds the lower limit of the set value, the expansion turbine flow rate and feed air flow rate increase by the same amount, but the Lachman flow rate remains constant. At this time, the oxygen concentration in the argon-containing gas tends to increase. FIG. 5 is a trend diagram when the present invention is applied, that is, when the expansion turbine flow rate, the feed air flow rate, and the Lachman flow rate are adjusted at a certain ratio (K = 0.9, 2-0.k). . The upper tower liquid level is maintained within a predetermined value in a responsive manner without disturbing the oxygen concentration in the argon-containing gas.

第6、り図における記号fは窒素の需要量を示す指標、
gは精留塔より発生する窒素の流量、hは不純窒素抜出
量、1は上塔圧力、Jはアルゴン含有ガス中の窒素濃度
を意味する。第6図は、不純窒素の抜出量を調節しない
場合のトレンド図である。すなわち、窒素需要が増加し
た時、不純窒素抜出し量が一定であるため、上塔の圧力
は低下するため、アルゴン含有ガス中の窒素濃度が増加
する。第7図は、本発明を適用した場合すなわち上塔の
圧力を所定値に保持するように不純窒素の抜出し量を調
節した場合のトレンド図である。窒素需要が増加した時
、上塔圧力を所定値に保持するように不純窒素抜出し量
が減少し、窒素発生量は需要量の増加に伴い増加するた
め、アルゴン含有ガス中の窒素濃度はあまシ変化しない
6. The symbol f in the diagram is an indicator of nitrogen demand,
g is the flow rate of nitrogen generated from the rectification column, h is the amount of impure nitrogen extracted, 1 is the upper column pressure, and J is the nitrogen concentration in the argon-containing gas. FIG. 6 is a trend diagram when the amount of extracted impure nitrogen is not adjusted. That is, when the demand for nitrogen increases, since the amount of impure nitrogen extracted is constant, the pressure in the upper tower decreases, and therefore the nitrogen concentration in the argon-containing gas increases. FIG. 7 is a trend diagram when the present invention is applied, that is, when the amount of extracted impure nitrogen is adjusted so as to maintain the pressure in the upper column at a predetermined value. When nitrogen demand increases, the amount of impure nitrogen removed decreases to maintain the upper tower pressure at a predetermined value, and the amount of nitrogen generated increases as the demand increases, so the nitrogen concentration in the argon-containing gas remains constant. It does not change.

〔発明の効果〕〔Effect of the invention〕

本発明により、原料空気を深冷分離して、酸素、窒素及
びアルゴンを採取する空気分離装置において、精留塔の
バランスをくずすことなく。
According to the present invention, in an air separation device that extracts oxygen, nitrogen, and argon by cryogenically separating feed air, the balance of the rectification column is not disturbed.

すなわち製品の純度とくに精留塔上塔から抜出され粗ア
ルゴン塔へ供給されるアルゴン含有ガスの濃度に悪影響
を与えることなく自動的に上部塔の圧力を所定値に保持
し所定量の窒素を発生させ、上部塔の液体酸素液面位を
所定値内に保つことが可能となる。
In other words, the pressure in the upper column is automatically maintained at a predetermined value and a predetermined amount of nitrogen is supplied without adversely affecting the purity of the product, especially the concentration of the argon-containing gas extracted from the upper column of the rectification column and supplied to the crude argon column. This makes it possible to maintain the liquid oxygen level in the upper column within a predetermined value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気分離装置の概略図、第2図は本発明の制御
機構の系統図、第3図〜第7図は制御例を示す図である
。 A:空気圧縮機    B:可逆式熱交換器C:精留塔
下部塔   D:精留塔上部塔!=流量検出器    
J:圧力検出器a:精留塔上塔の液面 b:粗アルゴン塔フィードガス中の酸素濃度C:膨張タ
ービン流量 d:原料空気流量 eニラツバマン流量 f:窒素の需要量を示す指標 g:精留塔よシ発生する窒素の流量 h:不純窒素の抜出し量 l:上塔圧力 j:粗アルゴン塔フィードガス中の窒素濃度票旧、懸屑
、枢− 粟咽・桝屑・候− ■に・解弼・候− 票一・mB−繋粥
FIG. 1 is a schematic diagram of an air separation device, FIG. 2 is a system diagram of a control mechanism of the present invention, and FIGS. 3 to 7 are diagrams showing control examples. A: Air compressor B: Reversible heat exchanger C: Lower column of rectification column D: Upper column of rectification column! =Flow rate detector
J: Pressure detector a: Liquid level in the upper column of the rectification column b: Oxygen concentration in the crude argon column feed gas C: Expansion turbine flow rate d: Raw material air flow rate e Niratubaman flow rate f: Index indicating the amount of nitrogen demanded g: Flow rate of nitrogen generated from the rectification tower h: Amount of impure nitrogen extracted l: Upper tower pressure j: Nitrogen concentration chart in the feed gas of the crude argon tower ni・reconciliation・so- vote 1・mB-connection porridge

Claims (1)

【特許請求の範囲】[Claims] 原料空気を圧縮冷却し、複式精留塔で精留して酸素、窒
素及びアルゴンを採取する空気分離装置において、複式
精留塔の上部塔の頂部より製品窒素を所定量抜出すと共
に上部塔の圧力を検出し、該圧力を一定に保持するよう
に上部塔上部からの不純窒素ガスの抜出量を自動調節す
る一方、精留塔の上部塔底部の液体酸素液面位を検出し
、該液面位を所定値内に保つように、所定の制御則に従
い膨張タービン流量、原料空気流量、ラツハマン流量を
自動調節することを特徴とする空気分離装置における精
留塔の運転制御方法
In an air separation device that compresses and cools feed air and rectifies it in a double rectification column to extract oxygen, nitrogen, and argon, a predetermined amount of product nitrogen is extracted from the top of the upper column of the double rectification column, and The pressure is detected and the amount of impure nitrogen gas extracted from the top of the upper column is automatically adjusted to maintain the pressure constant, while the liquid oxygen level at the bottom of the upper column of the rectification column is detected and the A method for controlling the operation of a rectification column in an air separation device, characterized in that the flow rate of an expansion turbine, the flow rate of feed air, and the flow rate of Ratschman are automatically adjusted according to a predetermined control law so as to maintain the liquid level within a predetermined value.
JP15458586A 1986-07-01 1986-07-01 Method of controlling operation of fractionating column in air separator Pending JPS6314074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15458586A JPS6314074A (en) 1986-07-01 1986-07-01 Method of controlling operation of fractionating column in air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15458586A JPS6314074A (en) 1986-07-01 1986-07-01 Method of controlling operation of fractionating column in air separator

Publications (1)

Publication Number Publication Date
JPS6314074A true JPS6314074A (en) 1988-01-21

Family

ID=15587416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15458586A Pending JPS6314074A (en) 1986-07-01 1986-07-01 Method of controlling operation of fractionating column in air separator

Country Status (1)

Country Link
JP (1) JPS6314074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842792A (en) * 1981-09-04 1983-03-12 Nippon Steel Weld Prod & Eng Co Ltd Electrochemical treatment for horizontally laid loop- like wire rod
JP2003004372A (en) * 2001-06-26 2003-01-08 Nippon Sanso Corp Method and system for liquefying/separating air

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842792A (en) * 1981-09-04 1983-03-12 Nippon Steel Weld Prod & Eng Co Ltd Electrochemical treatment for horizontally laid loop- like wire rod
JP2003004372A (en) * 2001-06-26 2003-01-08 Nippon Sanso Corp Method and system for liquefying/separating air
JP4699643B2 (en) * 2001-06-26 2011-06-15 大陽日酸株式会社 Air liquefaction separation method and apparatus

Similar Documents

Publication Publication Date Title
CA2015458C (en) Low temperature air fractionation accommodating variable oxygen demand
US5313800A (en) Process for maximizing the recovery of argon from an air separation system at high argon recovery rates
US7204101B2 (en) Methods and systems for optimizing argon recovery in an air separation unit
JPS6314074A (en) Method of controlling operation of fractionating column in air separator
JP7378695B2 (en) air separation system
US4734114A (en) Controlling method of air separator
US3985864A (en) Control system for sulfur process
JP3027368B1 (en) Air liquefaction separation device and control method thereof
US20030213688A1 (en) Process control of a distillation column
JPH03282183A (en) Method and apparatus for controlling of argon collection by air liquefying separation
JPS636375A (en) Level control method of fractionating-tower upper tower in air separator
JPH0412391B2 (en)
JP3710252B2 (en) Control method of air liquefaction separation device
JP3300897B2 (en) Method and apparatus for producing high purity argon by cryogenic liquefaction separation method
JPS6155034B2 (en)
JPS62299688A (en) Method of controlling air separator sampling argon
JPS62142986A (en) Method of controlling air separator
JP4803897B2 (en) Control method of air liquefaction separation device
JPH0552469A (en) Operating method of high purity argon tower for air liquefying and separating device and the same device equipped with argon tower
JPH07103645A (en) Manufacture of argon
JP3282040B2 (en) Ultra high purity oxygen sampling method and apparatus
JPH0615947B2 (en) Air liquefaction separation method and device
JPH0114509B2 (en)
JPS6155035B2 (en)
JPS62238977A (en) Method of controlling air separator