JP2967421B2 - Method and apparatus for controlling argon sampling by air liquefaction separation - Google Patents

Method and apparatus for controlling argon sampling by air liquefaction separation

Info

Publication number
JP2967421B2
JP2967421B2 JP2084425A JP8442590A JP2967421B2 JP 2967421 B2 JP2967421 B2 JP 2967421B2 JP 2084425 A JP2084425 A JP 2084425A JP 8442590 A JP8442590 A JP 8442590A JP 2967421 B2 JP2967421 B2 JP 2967421B2
Authority
JP
Japan
Prior art keywords
oxygen
amount
flow rate
argon
crude argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2084425A
Other languages
Japanese (ja)
Other versions
JPH03282183A (en
Inventor
潮 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP2084425A priority Critical patent/JP2967421B2/en
Publication of JPH03282183A publication Critical patent/JPH03282183A/en
Application granted granted Critical
Publication of JP2967421B2 publication Critical patent/JP2967421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離によるアルゴン採取の制御方
法及びその装置に関し、詳しくは、空気を原料として深
冷分離法により酸素,窒素,アルゴン等を気体及び/又
は液体で生産する装置において、生産量の増減,運転モ
ードの変更を効率よく短時間で行え、かつ最適な生産量
を得ることのできる空気液化分離によるアルゴン採取の
制御方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the collection of argon by air liquefaction separation, and more specifically, to oxygen, nitrogen, argon, etc. by cryogenic separation using air as a raw material. Control method of argon sampling by air liquefaction and separation which can increase or decrease the production amount and change the operation mode efficiently and in a short time, and obtain the optimal production amount Related to the device.

〔従来の技術〕[Conventional technology]

従来から、酸素と粗アルゴン、又は酸素と窒素と粗ア
ルゴンとを生産する場合、粗アルゴンを効率よく採取す
るためには、酸素生産量の制御が極めて重要であること
が知られている。
Conventionally, when producing oxygen and crude argon or oxygen and nitrogen and crude argon, it is known that control of the amount of oxygen production is extremely important in order to efficiently collect crude argon.

そこで、従来は、酸素は、該酸素の純度が一定になる
ようにその採取量を制御するとともに、粗アルゴンは、
該粗アルゴン中の酸素濃度が規定値以下になるようにそ
の生産量を制御する方法が多く用いられている。
Therefore, conventionally, while controlling the amount of oxygen to be collected so that the purity of the oxygen is constant, crude argon is
A method of controlling the production amount so that the oxygen concentration in the crude argon becomes equal to or lower than a specified value is often used.

また、特開昭64−90982号公報には、粗アルゴン塔に
導入するガス中の窒素濃度をリアルタイムで分析し、そ
の結果に応じて各部の流量を制御する方法が記載されて
いる。
JP-A-64-90982 discloses a method in which the nitrogen concentration in a gas introduced into a crude argon column is analyzed in real time, and the flow rate of each part is controlled in accordance with the result.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述の前者の方法では、複精留塔下部
塔(高圧塔)から膨張タービン流体として、あるいは液
製品として取り出される窒素量が多い場合には有効であ
るが、この窒素量が少ない場合には、酸素及び/又は粗
アルゴンの生産量増加により粗アルゴン中の窒素濃度が
増加してしまうという不都合がある。
However, the former method is effective when a large amount of nitrogen is taken out as an expansion turbine fluid or as a liquid product from the lower tower (high-pressure column) of the double rectification column, but is effective when the amount of nitrogen is small. However, there is a disadvantage that the nitrogen concentration in the crude argon increases due to an increase in the production amount of oxygen and / or crude argon.

また、後者の方法では、複精留塔上部塔(低圧塔)の
操作線を、下部塔から供給する液化窒素の還流液量を制
御して固定しているが、高収率でアルゴンを採取する装
置では、粗アルゴンの生産量が、酸素生産量の僅かな変
化にも影響を受けることに対する対策が不十分である。
さらにこの方法では、粗アルゴン塔に導入するガス中の
窒素ガスの分析器を必要とする。
In the latter method, the operation line of the upper column (low-pressure column) of the double rectification column is fixed by controlling the reflux amount of liquefied nitrogen supplied from the lower column, but argon is collected in high yield. In such devices, the measures against the fact that the crude argon production is also affected by slight changes in the oxygen production are insufficient.
Further, this method requires an analyzer for nitrogen gas in the gas introduced into the crude argon column.

第4図は下部塔から上部塔に供給する還流液量が比較
的多く、酸素生産量が高い運転状態下において上部塔か
ら導出される排ガス中の酸素濃度と、粗アルゴン中の
酸素濃度と、同じく粗アルゴン中の窒素濃度との関
係を示すもので、実線はそれぞれある酸素生産量の時の
粗アルゴン生産量に対する上記各濃度を示しており、破
線(′,′,′)は、それぞれ酸素生産量が増大
した時の排ガス中の酸素濃度′と、粗アルゴン中の酸
素濃度′と、粗アルゴン中の窒素濃度′を示してい
る。即ち、このような条件下では、粗アルゴン中の窒素
濃度,′は、酸素,粗アルゴンの生産量により影響
を受け、その変化は、排ガス中の酸素濃度,′に現
れることがわかる。
FIG. 4 shows that the amount of reflux liquid supplied from the lower tower to the upper tower is relatively large, and the oxygen concentration in the exhaust gas discharged from the upper tower and the oxygen concentration in the crude argon under an operating condition where the oxygen production is high, Similarly, the relationship with the nitrogen concentration in the crude argon is shown. The solid lines show the respective concentrations with respect to the crude argon production at a certain oxygen production, and the broken lines (',', ') show the oxygen concentration respectively. The graph shows the oxygen concentration in the exhaust gas, the oxygen concentration in the crude argon, and the nitrogen concentration in the crude argon when the production amount increases. That is, under such conditions, the nitrogen concentration in crude argon is affected by the production of oxygen and crude argon, and the change appears in the oxygen concentration in exhaust gas.

この排ガス中の酸素濃度の限界値は、下部塔から導出
されて上部塔に供給される窒素量あるいは外部から上部
塔に導入される還流用の液化窒素の量により異なるが、
下部塔から導出されて上部塔に導入される窒素の量が少
ない場合には、上記排ガス中の酸素濃度の監視がより重
要となる。
The limit value of the oxygen concentration in the exhaust gas depends on the amount of nitrogen derived from the lower tower and supplied to the upper tower or the amount of liquefied nitrogen for reflux introduced from the outside into the upper tower,
When the amount of nitrogen derived from the lower tower and introduced into the upper tower is small, monitoring the oxygen concentration in the exhaust gas becomes more important.

また、製品の需要変動にともない製品採取量が増減し
た場合には、これに合せて各部の流量を調整し、さらに
流量変更に伴う純度の変動により流量を微調整しなけれ
ばならず、最適な運転状態を得るためには長時間を要
し、あるいは収率を犠牲にした運転を行っている。
In addition, if the amount of product collected increases or decreases due to fluctuations in product demand, the flow rate of each part must be adjusted accordingly, and the flow rate must be fine-tuned by the change in purity due to the flow rate change. It takes a long time to obtain an operation state, or operation is performed at the expense of yield.

例えば、酸素ガスの採取量を増減する場合、従来は、
変更後の酸素ガス採取量を制御器に入力すると、原料空
気量,タービン流体量,窒素採取量,その他の各部の流
量が変更後の酸素量に見合った量にセットされ、各部の
弁が所定の時定数に従ってセット値に到達するように制
御される。そしてセット値に到達後に、製品の純度や熱
バランスのズレをフィードバック方式で修正する。従っ
て、修正後に生じる製品純度や熱バランスのズレに基づ
いて何回も修正を繰返さなければならなくなるおそれが
あり、規定の運転状態に移行するのに長時間を必要とし
ていた。
For example, when increasing or decreasing the amount of oxygen gas collected,
When the changed amount of oxygen gas is input to the controller, the amount of raw material air, the amount of turbine fluid, the amount of nitrogen collected, and the flow rates of other parts are set to amounts corresponding to the changed amount of oxygen. Is controlled to reach the set value according to the time constant of Then, after reaching the set value, the deviation of the purity or heat balance of the product is corrected by a feedback method. Therefore, there is a possibility that the correction must be repeated many times based on the product purity and the heat balance deviation occurring after the correction, and it takes a long time to shift to the specified operation state.

本発明は、上記実情に鑑みて成されたもので、製品酸
素は、その濃度が規定値以上に維持されるように採取
し、粗アルゴンは、該粗アルゴン中の酸素濃度が規定値
以下になるようにその生産量を制御するとともに、上部
塔から粗アルゴン塔に導入されるガス中の窒素濃度が規
定値以上になることを防止し、アルゴンを高収率で得る
ことのできる空気液化分離によるアルゴン採取の制御方
法及びその装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and product oxygen is collected so that its concentration is maintained at or above a specified value, and crude argon is obtained when the oxygen concentration in the crude argon becomes equal to or less than a specified value. Air liquefaction separation that can control the production amount so as to prevent the nitrogen concentration in the gas introduced from the upper tower into the crude argon tower from exceeding a specified value and obtain argon in high yield. It is an object of the present invention to provide a method and a device for controlling the collection of argon by the method.

〔課題を解決するための手段〕 上記した目的を達成するために、本発明の空気液化分
離によるアルゴン採取の制御方法は、原料空気を圧縮,
精製,冷却して精留塔に導入し、液化精留分離により酸
素,窒素,粗アルゴン,排ガス等に分離する空気液化分
離によるアルゴン採取の制御方法において、装置各部の
流量に基づいて現状の運転パターンを認識し、前回の運
転指令と最新の運転指令及び装置を構成する機器の能力
等の運転条件と、前記排ガス中の酸素濃度の測定値に基
づいて、最適な運転パターンを推論し、該運転パターン
及び前記酸素濃度に応じて粗アルゴン採取量及び/又は
製品酸素量を算出するとともに、前記推論と該算出値に
基づいて上記以外の装置各部の最適流量を算出して制御
することを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, a method for controlling the collection of argon by air liquefaction separation according to the present invention comprises compressing raw air,
Purification, cooling, introduction into a rectification column, separation of oxygen, nitrogen, crude argon, exhaust gas, etc. by liquefaction and separation In the method of controlling argon sampling by air liquefaction, the current operation based on the flow rate of each part of the device Recognize the pattern, infer the optimal operation pattern based on the previous operation command, the latest operation command, operating conditions such as the capability of the equipment constituting the device, and the measured value of the oxygen concentration in the exhaust gas. The crude argon collection amount and / or the product oxygen amount are calculated in accordance with the operation pattern and the oxygen concentration, and the optimum flow rates of the respective parts of the apparatus other than the above are calculated and controlled based on the inference and the calculated value. And

また、本発明の空気液化分離によるアルゴン採取の制
御装置は、圧縮,精製,冷却した原料空気を液化精留分
離して酸素,窒素,排ガス等を導出する空気液化分離装
置において、前記排ガス中の酸素濃度を測定する測定手
段と、装置各部の流量に基づいて現状の運転パターンを
認識し、運転指令及び装置構成各機器の能力等の運転条
件と前記測定手段による測定値に基づいて最適運転パタ
ーンを推論し、最適な物質収支となる粗アルゴン量,製
品酸素量,製品窒素量,還流液量,膨張タービン流量等
の各部の流量を算出し、該算出値に基づいて各部の流量
を制御する制御手段とを備えたことを特徴としている。
Further, the control device for collecting argon by air liquefaction separation of the present invention is an air liquefaction separation device which liquefies and separates compressed, purified and cooled raw material air to derive oxygen, nitrogen, exhaust gas and the like. Measuring means for measuring the oxygen concentration, recognizes the current operation pattern based on the flow rate of each part of the device, the optimal operation pattern based on the operation command and the operating conditions such as the capabilities of each device constituting the device and the measurement value by the measuring means , And calculate the flow rate of each part such as the amount of crude argon, the amount of product oxygen, the amount of product nitrogen, the amount of reflux liquid, the flow rate of the expansion turbine, etc., which are the optimal material balances, and control the flow rate of each part based on the calculated value. Control means.

〔実施例〕〔Example〕

以下、本発明を第1図に示す空気液化分離装置の一例
に基づいて、さらに詳細に説明する。
Hereinafter, the present invention will be described in more detail based on an example of the air liquefaction / separation apparatus shown in FIG.

この空気液化分離装置1は、圧縮機2,精製設備3,主熱
交換器4を経て液化点付近まで冷却された原料空気Aを
精留する複精留塔5と、該複精留塔5の上部塔5aに接続
されたアルゴン塔6と、上部塔5a底部に配置された主凝
縮蒸発器7と、下部塔5b上部に分離する窒素ガスを作動
流体とする膨張タービン8とを備えている。
The air liquefaction / separation apparatus 1 includes a double rectification column 5 for rectifying raw material air A cooled to near a liquefaction point via a compressor 2, a purification facility 3, and a main heat exchanger 4, and a double rectification column 5 An upper column 5a is connected to an argon column 6, a main condensing evaporator 7 disposed at the bottom of the upper column 5a, and an expansion turbine 8 using a nitrogen gas as a working fluid to be separated above the lower column 5b. .

上記空気液化分離装置1は、周知のごとく空気を原料
として液化精留分離を行い、製品として上部塔下部の酸
素ガスGO,上部塔頂部の窒素ガスGN,上部塔底部の液化酸
素LO,主凝縮蒸発器7で液化した液化窒素LN,アルゴン塔
上部の粗アルゴンARをそれぞれ産出しており、また上部
塔上部からは排ガスWが、下部塔上部からは、膨張ター
ビン8を経て窒素ガスNが排出されている。
As is well known, the air liquefaction / separation apparatus 1 performs liquefaction rectification and separation using air as a raw material, and as products, oxygen gas GO at the lower part of the upper tower, nitrogen gas GN at the top of the upper tower, liquefied oxygen LO at the bottom of the upper tower, and main condensate. The liquefied nitrogen LN liquefied in the evaporator 7 and the crude argon AR at the upper part of the argon tower are produced, respectively, and the exhaust gas W is discharged from the upper part of the upper tower, and the nitrogen gas N is discharged from the upper part of the lower tower via the expansion turbine 8. Have been.

本発明では、このように構成した空気液化分離装置1
を製品需要に応じた最適な運転状態に保持するために、
各部に各種の制御器,計測器,分析器等を配置するとと
もに、これらの各機器から得られる情報及びあらかじめ
定められた各設定値に基いて前記各計測制御器を作動さ
せて各部の流量を制御する制御手段9とを備えている。
この制御手段9には、制御要電算機及び/又はエキスパ
ートシステムが用いられる。尚、図中dはデータ入出力
を示す。
In the present invention, the air liquefaction / separation apparatus 1 thus configured
In order to maintain the optimal operating condition according to product demand,
Various controllers, measuring instruments, analyzers, etc. are arranged in each part, and the measurement controllers are operated based on the information obtained from these devices and each predetermined set value to control the flow rate of each part. And control means 9 for controlling.
As the control means 9, a control computer and / or an expert system are used. In the figure, d indicates data input / output.

まず原料空気Aを供給する管路10には、原料空気Aの
流量を計測する流量計30aとガイドベーン30bとからなる
計測制御器30が設けられている。この計測制御器30は、
原料空気Aの流量と共にガイドベーン30bの開度を制御
手段9に出力し、該制御手段9からの指示によりガイド
ベーン30bを開閉して原料空気Aの供給量を制御するも
ので、製品酸素ガスGOの生産量に応じて算定される値が
設定値となる。尚、上記ガイドベーンに代えて管路に自
動弁を設けることによっても同様に行うことができる。
First, a measurement controller 30 including a flow meter 30a for measuring the flow rate of the raw material air A and a guide vane 30b is provided in the pipeline 10 for supplying the raw material air A. This measurement controller 30
The control unit 9 outputs the opening degree of the guide vanes 30b together with the flow rate of the raw material air A to the control means 9, and controls the supply amount of the raw material air A by opening and closing the guide vanes 30b according to an instruction from the control means 9. The value calculated according to the GO production is the set value. The same can be done by providing an automatic valve in the pipeline instead of the guide vane.

製品酸素ガスGOを導出する管路11には、製品酸素ガス
GOの流量を計測する流量計31aと自動弁31bとからなる計
測制御器31が設けられている。この計測制御器31は、製
品酸素ガスGOの流量と共に自動弁31bの開度を制御手段
9に出力し、該制御手段9からの指示により自動弁31b
を開閉して製品酸素ガスGOの産出量を制御するもので、
製品酸素ガスGOの需要量に応じて算定される値が設定値
となり、かつ酸素純度が規定の値を維持するように微調
整される。この製品酸素ガス用計測制御器31に関連して
上部塔5aの製品酸素ガス導出部近傍には、製品酸素ガス
GOの純度を計測する分析計31cが設けられており、該純
度を制御手段9に出力している。
The product oxygen gas GO
A measurement controller 31 including a flow meter 31a for measuring the GO flow rate and an automatic valve 31b is provided. The measurement controller 31 outputs the opening degree of the automatic valve 31b together with the flow rate of the product oxygen gas GO to the control means 9, and the automatic valve 31b is instructed by the control means 9.
To open and close to control the output of product oxygen gas GO.
The value calculated according to the demand amount of the product oxygen gas GO becomes the set value, and the oxygen purity is finely adjusted to maintain the specified value. In connection with this product oxygen gas measurement controller 31, the product oxygen gas
An analyzer 31c for measuring the purity of GO is provided, and outputs the purity to the control means 9.

製品窒素ガスGNを導出する管路12には、製品窒素ガス
GNの流量を計測する流量計32aと自動弁32bとからなる計
測制御器32が設けられている。この計測制御器32は、製
品窒素ガスGNの流量と共に自動弁32bの開度を制御手段
9に出力し、該制御手段9からの指示により自動弁32b
を開閉して製品窒素ガスGNの産出量を制御するもので、
原料空気Aの供給量に応じて算定される値が設定値とな
る。
The product nitrogen gas GN
A measurement controller 32 including a flow meter 32a for measuring the flow rate of GN and an automatic valve 32b is provided. The measurement controller 32 outputs the opening degree of the automatic valve 32b together with the flow rate of the product nitrogen gas GN to the control means 9, and in accordance with an instruction from the control means 9, the automatic valve 32b
To open and close to control the output of product nitrogen gas GN.
The value calculated according to the supply amount of the raw material air A is the set value.

粗アルゴンARを導出する管路13には、粗アルゴンARの
流量を計測する流量計33aと自動弁33bとからなる計測制
御器33及び該粗アルゴン中の酸素濃度を測定する分析器
33cが設けられている。この計測制御器33は、粗アルゴ
ンARの流量と共に自動弁33bの開度を制御手段9に出力
し、該制御手段9からの指示により自動弁33bを開閉し
て粗アルゴンARの産出量を制御するもので、原料空気A
の供給量に応じて算定される値が設定値となり、かつ分
析器33cから得られる粗アルゴン中の酸素濃度が規定の
値以下という条件を満たしつつ、粗アルゴンARの生産量
が最大になるように微調整される。
The conduit 13 for leading the crude argon AR has a measurement controller 33 including a flow meter 33a for measuring the flow rate of the crude argon AR and an automatic valve 33b and an analyzer for measuring the oxygen concentration in the crude argon.
33c is provided. The measurement controller 33 outputs the opening of the automatic valve 33b together with the flow rate of the crude argon AR to the control means 9, and controls the output of the crude argon AR by opening and closing the automatic valve 33b according to an instruction from the control means 9. The raw material air A
The value calculated according to the supply amount of the crude argon AR is set to a set value, and the production amount of the crude argon AR is maximized while satisfying the condition that the oxygen concentration in the crude argon obtained from the analyzer 33c is equal to or less than a specified value. Is fine-tuned.

液化酸素LOを導出する管路14には、液化酸素LOの流量
を計測する流量計34aと自動弁34bとからなる計測制御器
34が設けられている。この計測制御器34は、液化酸素LO
の流量と共に自動弁34bの開度を制御手段9に出力し、
該制御手段9からの指示により自動弁34bを開閉して液
化酸素LOの産出量を制御するもので、あらかじめ設定さ
れた値、又は寒冷上のバランスを維持するように制御さ
れる。
A line 14 for deriving the liquefied oxygen LO has a measurement controller including a flow meter 34a for measuring the flow rate of the liquefied oxygen LO and an automatic valve 34b.
34 are provided. The measurement controller 34 controls the liquefied oxygen LO
The opening degree of the automatic valve 34b is output to the control means 9 together with the flow rate of
The automatic valve 34b is opened and closed in accordance with an instruction from the control means 9 to control the output of liquefied oxygen LO, and is controlled so as to maintain a preset value or a balance in cold weather.

液化窒素LNを導出する管路15には、液化窒素LNの流量
を計測する流量計35aと自動弁35bとからなる計測制御器
35が設けられている。この計測制御器35は、液化窒素LN
の流量と共に自動弁35bの開度を制御手段9に出力し、
該制御手段9からの命令により自動弁35bを開閉して液
化窒素LNの産出量を制御するもので、あらかじめ設定さ
れた値、又は寒冷上のバランス及び純度を維持するよう
に制御され、さらに下部塔5bの還流液化窒素の純度を維
持できるように、膨張タービン流体の流量との関連にお
いて制御される。
A measurement controller including a flow meter 35a for measuring the flow rate of the liquefied nitrogen LN and an automatic valve 35b is provided in a conduit 15 for leading the liquefied nitrogen LN.
35 are provided. This measurement controller 35 is a liquefied nitrogen LN
The opening degree of the automatic valve 35b is output to the control means 9 together with the flow rate of
The automatic valve 35b is opened and closed by a command from the control means 9 to control the production amount of liquefied nitrogen LN, and is controlled so as to maintain a preset value, or the balance and purity on cold, and It is controlled in relation to the flow rate of the expansion turbine fluid so that the purity of the reflux liquefied nitrogen in the column 5b can be maintained.

膨張タービン8に窒素ガスNを導入する管路16には、
該窒素ガスNの流量を計測する流量計36aと自動弁36bと
からなる計測制御器36が設けられている。この計測制御
器36は、窒素ガスNの流量と共に自動弁36bの開度を制
御手段9に出力し、該制御手段9からの指示により自動
弁36bを開閉して膨張タービン導入流体量を制御するも
ので、原料空気量から算出された値が設定値となり制御
されるが、寒冷上のバランスや運転目的に応じた還流液
化窒素流量との関連において設定された値により調整さ
れる。
A pipe 16 for introducing nitrogen gas N into the expansion turbine 8 includes:
A measurement controller 36 including a flow meter 36a for measuring the flow rate of the nitrogen gas N and an automatic valve 36b is provided. The measurement controller 36 outputs the opening degree of the automatic valve 36b together with the flow rate of the nitrogen gas N to the control means 9, and opens and closes the automatic valve 36b according to an instruction from the control means 9 to control the amount of fluid introduced into the expansion turbine. The value calculated from the amount of the raw material air is set as a set value and is controlled. The value is adjusted by a value set in relation to the balance in the cold and the flow rate of the liquefied liquefied nitrogen according to the operation purpose.

上部塔5aに還流液を導入する管路17には、該管路17内
の液化窒素の流量を計測する流量計37aと自動弁37bとか
らなる計測制御器37が設けられている。この計測制御器
37は、液化窒素の流量と共に自動弁37bの開度を制御手
段9に出力し、該制御手段9からの指示により自動弁37
bを開閉して還流液量を制御するもので、原料空気量か
ら算出された値が設定値となり制御される。
The pipe 17 for introducing the reflux liquid into the upper tower 5a is provided with a measurement controller 37 comprising a flow meter 37a for measuring the flow rate of liquefied nitrogen in the pipe 17 and an automatic valve 37b. This measurement controller
37 outputs the opening degree of the automatic valve 37b together with the flow rate of the liquefied nitrogen to the control means 9, and in accordance with an instruction from the control means 9, the automatic valve 37b.
The amount of the reflux liquid is controlled by opening and closing b, and the value calculated from the amount of the raw material air becomes a set value and is controlled.

下部塔5bの底部の液化空気を上部塔5aに導入する管路
18には、液化空気の流量を制御する自動弁38bが設けら
れるとともに、下部塔底部には該底部の液面を計測する
液面計38cが設けられている。この自動弁38bと液面計38
aとからなる計測制御器38は、下部塔底部の液化空気の
液面高さに応じて自動弁38bの開度を制御し、下部塔底
部の液面が一定になるように制御される。
A pipe for introducing liquefied air at the bottom of the lower tower 5b into the upper tower 5a
An automatic valve 38b for controlling the flow rate of the liquefied air is provided at 18, and a liquid level gauge 38c for measuring the liquid level at the bottom is provided at the bottom of the lower tower. This automatic valve 38b and liquid level gauge 38
The measurement controller 38 comprising a controls the opening of the automatic valve 38b in accordance with the liquid level of the liquefied air at the bottom of the lower tower, and controls the liquid level at the bottom of the lower tower to be constant.

また、下部塔底部の液化空気を粗アルゴン塔6の凝縮
器6aに導入する管路19には、液化空気の流量を計測する
流量計39aと自動弁39bとからなる計測制御器39が設けら
れている。この計測制御器39は、凝縮器6aに導入する液
化空気の流量と共に自動弁39bの開度を制御手段9に出
力し、該制御手段9からの指示により自動弁39bを開閉
して液化空気量を制御するもので、原料空気量から算出
された値が設定値となり制御される。
A line 19 for introducing the liquefied air at the bottom of the lower tower into the condenser 6a of the crude argon column 6 is provided with a measurement controller 39 including a flow meter 39a for measuring the flow rate of the liquefied air and an automatic valve 39b. ing. The measurement controller 39 outputs the opening degree of the automatic valve 39b together with the flow rate of the liquefied air introduced into the condenser 6a to the control means 9, and opens and closes the automatic valve 39b according to an instruction from the control means 9 to open and close the liquefied air amount. The value calculated from the amount of raw material air becomes a set value and is controlled.

上部塔上部から排ガスWを排出する管路20には、排ガ
ス中の酸素濃度を計測する分析器40が設けられており、
該管路20内の排ガス中に含まれる酸素濃度を制御手段9
に出力する。さらに該管路20には、排ガスの流量を制御
する流量計41aと自動弁41bとからなる計測制御器41が設
けられている。
An analyzer 40 for measuring the oxygen concentration in the exhaust gas is provided in the pipeline 20 for discharging the exhaust gas W from the upper tower upper part,
The control means 9 controls the concentration of oxygen contained in the exhaust gas in the pipe 20.
Output to Further, the pipe 20 is provided with a measurement controller 41 including a flow meter 41a for controlling the flow rate of the exhaust gas and an automatic valve 41b.

そして前記制御手段9は、例えば分散型制御装置9aと
AIステーション(エキスパートシステム)からなる推論
計算手段9bにより構成されており、前述のごとく、各機
器から得られる情報と、あらかじめ定められた各運転パ
ターンにおける適正流量設定値に基いて前記各計測制御
器を作動させて各部の流量を制御する。即ち、空気液化
分離装置1では、物質収支の変化が排ガスW中の酸素濃
度の変化に現れるという特性を生かして、該排ガスW中
の酸素濃度の変化をとらえ、その変化がいかなる物質収
支上もしくは熱収支上の変化によるものかを、前記各部
の流量や濃度等をもとにした運転パターンを認識に基い
て、最適な運転状態となるように各部の流量を調整す
る。
The control means 9 includes, for example, a distributed control device 9a.
The inference calculation means 9b composed of an AI station (expert system). As described above, each measurement controller is based on information obtained from each device and an appropriate flow rate set value in each predetermined operation pattern. Is operated to control the flow rate of each part. That is, the air liquefaction / separation apparatus 1 captures the change in the oxygen concentration in the exhaust gas W by taking advantage of the characteristic that the change in the material balance appears in the change in the oxygen concentration in the exhaust gas W. Whether the change is due to a change in the heat balance or not is adjusted based on the recognition of the operation pattern based on the flow rate, the concentration, and the like of each section so that the optimum operation state is obtained.

また、酸素ガスGO及び粗アルゴンARの生産量の変動に
より排ガスW中の酸素濃度が変化し、該酸素濃度が規定
値以下になると粗アルゴンAR中の窒素濃度が増加すると
いう特性から、該排ガスW中の酸素濃度が、運転モード
により定まる下限値以下にならないように、酸素ガスGO
及び粗アルゴンARの生産量を制御する。
Further, the oxygen concentration in the exhaust gas W changes due to fluctuations in the production amount of the oxygen gas GO and the crude argon AR, and the nitrogen concentration in the crude argon AR increases when the oxygen concentration falls below a specified value. Oxygen gas GO so that the oxygen concentration in W does not fall below the lower limit determined by the operation mode.
And control the production of crude argon AR.

さらに前記各部の流量と、あらかじめ設定されている
各運転パターンにおける最適設定値とを比較して現在の
運転パターンを認識し、前記排ガスW中の酸素濃度の下
限値の設定を行うとともに、例えば製品酸素ガス需要量
の変化による酸素ガス流量の変化により、酸素の増減産
に対応する各部の流量を設定し、各自動弁の開度変更を
行い、各分析器の出力に応じてこれを微調整し、装置を
最適な運転状態に速やかに移行させる。
Further, the flow rate of each section and a preset optimal setting value in each operation pattern are compared to recognize the current operation pattern, and a lower limit value of the oxygen concentration in the exhaust gas W is set, and, for example, a product By changing the oxygen gas flow rate due to the change in oxygen gas demand, set the flow rate of each part corresponding to the increase or decrease of oxygen production, change the opening of each automatic valve, and fine-tune this according to the output of each analyzer Then, the device is promptly shifted to the optimal operation state.

例えば、空気液化分離装置の制御を上記のごとく構成
したエミスパートシステムにより行い、酸素ガスの採取
量を増減する場合、変更後の酸素ガス採取量を制御器に
入力すると、まず前記各部の流量や濃度から現状の運転
パターン及び前回の運転指令を認識する。次いで今回の
運転指令による製品採取量に応じてあらかじめ定められ
た各部の適正流量設定値に基いて前記各部の最適流量を
算出し、該算出値に基づいて各部の流量を制御するが、
これに先だって、新しい指令による運転に移行後、前回
の指令による運転を続行できるか否か、又は変更すべき
か否かを推論する。この推論は、優先すべき事項、例え
ば製品の純度,各運転モードにおいて確保すべき各々の
製品量,熱バランスの確保等をベースにして、原料空気
圧縮機の減量限界や液化ガス製品の需要情報(貯槽内保
有量の情報)、さらに前回の運転指令等の情報から最適
な運転パターンを選択するものであり、また変化量に応
じて運転移行までの時定数を設定する。例えば酸素ガス
の減量が指令され、前回の指令が液化窒素採取運転であ
った場合、原料空気量を酸素ガス採取量に応じて減らし
たときに確保すべき窒素ガス量や空気圧縮機の減量限界
等から採取する液化窒素量及び各部の流量を推論する。
この結果、各部の流量がそれぞれの時定数でセットされ
た値に到達するように制御される。そしてセット値に到
達後に、生じる製品純度や熱バランスのズレは、現状の
運転パターンからどの部分をどの程度修正すべきかを推
論し、その結果に基づいて制御を行う。例えば、液製品
を採取しない運転であれば、熱バランス調節用の系の流
量又は弁開度が所定の範囲に入るように、タービン流体
量設定値を各部の流量との関連において微調整する。
For example, when the control of the air liquefaction / separation apparatus is performed by the emmispart system configured as described above, and the amount of oxygen gas to be collected is increased or decreased, the changed amount of oxygen gas to be collected is input to the controller. The current operation pattern and the previous operation command are recognized from the density. Next, the optimum flow rate of each section is calculated based on the appropriate flow rate set value of each section predetermined according to the product sampling amount according to the current operation command, and the flow rate of each section is controlled based on the calculated value.
Prior to this, it is inferred whether or not the operation according to the previous command can be continued or changed after the shift to the operation according to the new command. This inference is based on priority items, such as product purity, the amount of each product to be ensured in each operation mode, and the securing of heat balance, etc., based on the reduction limit of the raw air compressor and the demand information of the liquefied gas product. (Information on the storage amount in the storage tank), and further, an optimal operation pattern is selected from information such as the previous operation command, and a time constant until operation transition is set according to the change amount. For example, if oxygen gas reduction is commanded and the previous command was liquefied nitrogen sampling operation, the nitrogen gas amount and air compressor reduction limit to be secured when the raw material air amount was reduced according to the oxygen gas sampling amount Infer the amount of liquefied nitrogen and the flow rate of each part.
As a result, the flow rate of each part is controlled so as to reach a value set by each time constant. Then, after reaching the set value, the deviation of the product purity or the heat balance that occurs is inferred from the current operation pattern as to which part should be corrected and how much, and control is performed based on the result. For example, in the operation without sampling the liquid product, the turbine fluid amount set value is finely adjusted in relation to the flow rate of each part so that the flow rate or the valve opening of the system for heat balance adjustment falls within a predetermined range.

また、アルゴンを採取する空気液化分離装置における
粗アルゴンの採取量は、上部塔に導入される還流液量及
び酸素の採取量の微妙な変化により大きく変化を受け
る。そのためアルゴン運転は、上部塔へと還流液量に応
じた制御、即ち各部の流量管理が必要であり、酸素採取
量の微妙な調節が求められる。ここで、下部塔から上部
塔へ導入する液化空気と液化窒素との最適な比率は計算
により容易に決定することが可能であるが、酸素及び粗
アルゴンの採取量の管理指標は上部塔から導出される排
ガス中の酸素濃度であり、この酸素濃度は酸素及び粗ア
ルゴンの採取量を減らすことにより増加し、採取量を増
すことにより減少する。
In addition, the amount of crude argon collected in the air liquefaction separator for collecting argon greatly changes due to subtle changes in the amount of reflux liquid introduced into the upper tower and the amount of oxygen collected. Therefore, the argon operation requires control according to the amount of the reflux liquid to the upper column, that is, control of the flow rate of each part, and delicate adjustment of the oxygen collection amount is required. Here, the optimal ratio of liquefied air and liquefied nitrogen introduced from the lower tower to the upper tower can be easily determined by calculation, but the management index for the amount of oxygen and crude argon collected is derived from the upper tower. The oxygen concentration in the exhaust gas to be discharged, which is increased by reducing the amount of oxygen and crude argon collected, and is decreased by increasing the amount of collected oxygen and crude argon.

従って、酸素及び粗アルゴンの採取量の調節は、第2
図示す手順により行うことができる。即ち、ステップ10
1で排ガス中の酸素濃度の変化を検出した時、まず上述
のごとく各部の流量等から現状の運転パターンを認識
し、該パターンに応じた排ガス中の酸素濃度の下限値を
求める(ステップ102)。排ガス中の酸素濃度と前記下
限値とを比較し(ステップ103)、下限値よりも酸素濃
度が低い場合には、粗アルゴン採取量を減量し、及び/
又は製品酸素の採取量を減量する(ステップ104)。前
記下限値よりも酸素濃度が高い場合は、粗アルゴン採取
量を増量し、及び/又は製品酸素の採取量を増量する
(ステップ105)。上記各ステップの制御のみで所定の
製品酸素濃度及び粗アルゴン濃度を維持しつつ運転指令
通りの各製品採取量が保持されれば、本発明の制御シス
テムにおける粗アルゴン採取系統の制御はこれで十分で
ある。
Therefore, the adjustment of the amount of oxygen and crude argon collected is the second
It can be performed by the procedure shown in the figure. That is, step 10
When the change in the oxygen concentration in the exhaust gas is detected in step 1, the current operation pattern is first recognized from the flow rates of the respective parts as described above, and the lower limit value of the oxygen concentration in the exhaust gas is determined according to the pattern (step 102). . The oxygen concentration in the exhaust gas is compared with the lower limit (step 103). If the oxygen concentration is lower than the lower limit, the crude argon collection amount is reduced, and / or
Alternatively, the amount of product oxygen collected is reduced (step 104). If the oxygen concentration is higher than the lower limit, the crude argon collection amount is increased and / or the product oxygen collection amount is increased (step 105). If only the control of each step described above maintains the predetermined product oxygen concentration and the crude argon concentration, and the respective product sampling amounts are maintained according to the operation command, the control of the crude argon sampling system in the control system of the present invention is sufficient. It is.

しかし上記ステップの制御では、流量計の指示,多様
な運転パターンに対応する各部の流量設定等から多少の
誤差を生じるため、酸素及び粗アルゴンの生産量の微調
整を行うことが望ましい。
However, in the control of the above-described steps, a slight error occurs due to the indication of the flow meter, the flow rate setting of each part corresponding to various operation patterns, and the like. Therefore, it is desirable to finely adjust the production amounts of oxygen and crude argon.

この場合は、酸素及び粗アルゴンの採取量の調節は、
第3図示す手順により行うことができる。即ち、前記同
様に、ステップ101で排ガス中の酸素濃度の変化を検出
した時、まず上述のごとく各部の流量等から現状の運転
パターンを認識し、該パターンに応じた排ガス中の酸素
濃度の下限値を求める(ステップ102)。排ガス中の酸
素濃度と前記下限値とを比較し(ステップ103)、下限
値よりも酸素濃度が低い場合には通過回数上限を設定し
たカウンター(ステップ106)を経た後に、酸素採取量
を減量する方向の制御が行われる(ステップ107)。こ
のステップ107における制御は、前回の調節量の半量分
の調節が行われ、ステップ103に戻る。このステップ10
3,106,107のループは、カウンターにより制御回数がカ
ウントされ、制御回数が設定回数を超えた場合には、そ
れ以上の制御を行わないようにする(ステップ108)。
In this case, the adjustment of the amount of oxygen and crude argon collected is
This can be performed according to the procedure shown in FIG. That is, similarly to the above, when the change in the oxygen concentration in the exhaust gas is detected in step 101, first, as described above, the current operation pattern is recognized from the flow rate of each part and the like, and the lower limit of the oxygen concentration in the exhaust gas according to the pattern is determined. A value is obtained (step 102). The oxygen concentration in the exhaust gas is compared with the lower limit value (step 103). If the oxygen concentration is lower than the lower limit value, the oxygen collection amount is reduced after passing through a counter (step 106) in which the upper limit of the number of passages is set. Control of the direction is performed (step 107). In the control in step 107, adjustment is performed for a half amount of the previous adjustment amount, and the process returns to step 103. This step 10
In the loop of 3, 106, 107, the number of times of control is counted by the counter, and if the number of times of control exceeds the set number of times, no further control is performed (step 108).

前記ステップ103において酸素濃度が下限値よりも高
い場合には、ステップ109で、酸素ガス純度と製品とし
て要求される純度の下限値とが比較される。この純度が
下限値と等しく、かつ粗アルゴン中の酸素濃度が上限に
ある場合(ステップ110)には、排ガス中の酸素濃度が
高くても、このループ内での設定の変更を行わない(ス
テップ108)。
If the oxygen concentration is higher than the lower limit in step 103, in step 109, the oxygen gas purity is compared with the lower limit of the purity required for the product. When the purity is equal to the lower limit and the oxygen concentration in the crude argon is at the upper limit (step 110), even if the oxygen concentration in the exhaust gas is high, the setting is not changed in this loop (step 110). 108).

また、ステップ109で、酸素ガス純度が下限値より高
い場合には、粗アルゴン中の酸素濃度が上限値と比較さ
れ(ステップ111)、これが等しい時には酸素ガス採取
量を微量増加し(ステップ112)、ステップ103に戻る。
また、ステップ111で粗アルゴン中の酸素濃度が上限値
より低い時には、粗アルゴンの採取量を僅かに増量し
(ステップ113)、ステップ103に戻る。
In step 109, if the oxygen gas purity is higher than the lower limit, the oxygen concentration in the crude argon is compared with the upper limit (step 111). Return to step 103.
When the oxygen concentration in the crude argon is lower than the upper limit in step 111, the amount of crude argon is slightly increased (step 113), and the process returns to step 103.

尚、このループ内で適当な制御が行なえない場合に
は、さらに他の部分の流量を見直して最適な制御を行
う。
If appropriate control cannot be performed in this loop, the flow rate of another part is further reviewed to perform optimal control.

このようにして各部の流量を制御することにより、各
種製品を効率よく採取することが可能となり、運転モー
ドの切り替えも短時間で行うことが可能となる。特にア
ルゴンを採取する空気液化分離装置では、粗アルゴンAR
中の窒素濃度を高めずに粗アルゴンARを高い収率で生産
することが可能となり、他の酸素や窒素の収率も向上さ
せることができ、空気液化分離装置の生産効率を大幅に
向上させることができる。
By controlling the flow rate of each part in this manner, various products can be efficiently collected, and the operation mode can be switched in a short time. In particular, in the air liquefaction separator that collects argon, the crude argon AR
Crude argon AR can be produced at a high yield without increasing the nitrogen concentration in the air, and the yield of other oxygen and nitrogen can also be improved, greatly improving the production efficiency of air liquefaction and separation equipment. be able to.

尚、装置各部の気液の流れについては、一般の空気液
化分離装置と同様のため詳細な説明は、これを省略す
る。また、空気液化分離装置の構成は、上記実施例に限
らず、従来から用いられている各種能力向上設備を備え
たものにも、本発明を適用することが可能であり、実施
例で挙げた製品を全て併産するものに限るものでもな
い。
The flow of the gas and liquid in each part of the apparatus is the same as that of a general air liquefaction / separation apparatus, and a detailed description thereof will be omitted. Further, the configuration of the air liquefaction / separation apparatus is not limited to the above-described embodiment, and the present invention can be applied to a device equipped with various types of conventionally used capacity improvement equipment, and is described in the embodiment. It is not limited to those that produce all products together.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の空気液化分離装置の制
御方法及び装置は、装置各部の気液の流量や精留塔から
の排ガス中の酸素濃度、あるいはこれと採取する粗アル
ゴン中及び製品酸素中の酸素濃度とを基にして現状の運
転パターンを認識し、これに基いて各部の流量を制御す
るから、各運転パターンにおける最適な運転状態で各製
品を製出することができ、粗アルゴンとともに各製品の
収率を向上することができる。特に製品需要の変動によ
る運転モードの移行を迅速に行え、特に粗アルゴン中の
窒素濃度を規定値以下に保ちながら最大限の収率を得る
ことが可能となる。
As described above, the control method and apparatus of the air liquefaction / separation apparatus of the present invention can be applied to the gas / liquid flow rate of each part of the apparatus, the oxygen concentration in the exhaust gas from the rectification column, or the crude argon and the product oxygen collected therefrom. Recognizing the current operation pattern based on the oxygen concentration inside, and controlling the flow rate of each part based on this, each product can be produced in the optimal operation state in each operation pattern, and crude argon In addition, the yield of each product can be improved. In particular, the operation mode can be quickly shifted due to fluctuations in product demand, and it is possible to obtain the maximum yield while keeping the nitrogen concentration in the crude argon below a specified value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す空気液化分離装置の系
統図、第2図及び第3図は制御の一例を示すフローチャ
ート、第4図は粗アルゴンの採取量に対する排ガス中の
酸素濃度、粗アルゴン中の酸素濃度、及び粗アルゴン中
の窒素濃度の関係を示す図である。 1……空気液化分離装置、2……圧縮機、3……精製設
備、4……主熱交換器、5……複精留塔、6……アルゴ
ン塔、7……主凝縮蒸発器、8……膨張タービン、9…
…制御手段、30,31,32,33,34,35,36,37,38,39,41……計
測制御器、40……分析器、A……原料空気、AR……粗ア
ルゴン、GO……酸素ガス、GN……窒素ガス、LO……液化
酸素、LN……液化窒素、W……排ガス
FIG. 1 is a system diagram of an air liquefaction / separation apparatus showing one embodiment of the present invention, FIGS. 2 and 3 are flowcharts showing an example of control, and FIG. 4 is oxygen concentration in exhaust gas with respect to the amount of crude argon collected. FIG. 3 is a diagram showing a relationship between oxygen concentration in crude argon and nitrogen concentration in crude argon. DESCRIPTION OF SYMBOLS 1 ... Air liquefaction separation apparatus, 2 ... Compressor, 3 ... Purification equipment, 4 ... Main heat exchanger, 5 ... Double rectification column, 6 ... Argon column, 7 ... Main condensing evaporator, 8 ... Expansion turbine, 9 ...
... Control means, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41 ... Measurement controller, 40 ... Analyzer, A ... Raw material air, AR ... Crude argon, GO …… Oxygen gas, GN… Nitrogen gas, LO …… Liquid oxygen, LN …… Liquid nitrogen, W …… Exhaust gas

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料空気を圧縮,精製,冷却して精留塔に
導入し、液化精留分離により酸素,窒素,粗アルゴン,
排ガス等に分離する空気液化分離によるアルゴン採取の
制御方法において、装置各部の流量に基づいて現状の運
転パターンを認識し、前回の運転指令と最新の運転指令
及び装置を構成する機器の能力等の運転条件と、前記排
ガス中の酸素濃度の測定値に基づいて、最適な運転パタ
ーンを推論し、該運転パターン及び前記酸素濃度に応じ
て粗アルゴン採取量及び/又は製品酸素量を算出すると
ともに、前記推論と該算出値に基づいて上記以外の装置
各部の最適流量を算出して制御することを特徴とする空
気液化分離によるアルゴン採取の制御方法。
1. A raw material air is compressed, purified, cooled, introduced into a rectification column, and subjected to liquefaction rectification to separate oxygen, nitrogen, crude argon,
In the control method of argon sampling by air liquefaction separation to separate into exhaust gas, etc., the current operation pattern is recognized based on the flow rate of each part of the device, and the previous operation command and the latest operation command and the capability of the equipment constituting the device are recognized. Based on the operating conditions and the measured value of the oxygen concentration in the exhaust gas, an optimal operation pattern is inferred, and a crude argon collection amount and / or a product oxygen amount are calculated in accordance with the operation pattern and the oxygen concentration, A method for controlling the collection of argon by air liquefaction and separation, wherein an optimum flow rate of each part of the apparatus other than the above is calculated and controlled based on the inference and the calculated value.
【請求項2】前記測定値は、前記排ガス中の酸素濃度測
定値に加えて、採取する粗アルゴン中の酸素濃度測定値
及び製品酸素中の酸素濃度測定値であり、これら3つの
測定値に応じて粗アルゴンの採取量及び/又は酸素採取
量を算出し制御することを特徴とする請求項1記載の空
気液化分離によるアルゴン採取の制御方法。
2. The measured values are, in addition to the measured oxygen concentration in the exhaust gas, the measured oxygen concentration in the sampled crude argon and the measured oxygen concentration in the product oxygen. The method for controlling argon collection by air liquefaction separation according to claim 1, wherein the amount of crude argon and / or the amount of oxygen collected are calculated and controlled accordingly.
【請求項3】前記各部の最適流量の算出は、あらかじめ
定められた所定の優先順位に基づいて行うとともに、前
記各部の流量の制御は、あらかじめ定められた所定の時
定数に基づいて行うことを特徴とする請求項1又は2記
載の空気液化分離によるアルゴン採取の制御方法。
3. The method according to claim 1, wherein the calculation of the optimum flow rate of each section is performed based on a predetermined predetermined priority, and the control of the flow rate of each section is performed based on a predetermined time constant. 3. The method for controlling argon collection by air liquefaction separation according to claim 1 or 2.
【請求項4】前記制御は、制御用電子計算機又はエキス
パートシステムにより行うことを特徴とする請求項1乃
至3いずれかに記載の空気液化分離によるアルゴン採取
の制御方法。
4. The method according to claim 1, wherein the control is performed by a control computer or an expert system.
【請求項5】圧縮,精製,冷却した原料空気を液化精留
分離して酸素,窒素,排ガス等を導出する空気液化分離
装置において、前記排ガス中の酸素濃度を測定する測定
手段と、装置各部の流量に基づいての現状の運転パター
ンを認識し、運転指令及び装置構成各機器の能力等の運
転条件と前記測定手段による測定値に基づいて最適運転
パターンを推論し、最適な物質収支となる粗アルゴン
量,製品酸素量,製品窒素量,還流液量,膨張タービン
流量等の各部の流量を算出し、該算出値に基づいて各部
の流量を制御する制御手段とを備えたことを特徴とする
空気液化分離によるアルゴン採取の制御装置。
5. An air liquefaction and separation apparatus for liquefying and separating compressed, purified and cooled raw material air to derive oxygen, nitrogen, exhaust gas and the like. Recognize the current operation pattern based on the flow rate, infer the optimal operation pattern based on the operation conditions such as the operation command and the performance of the equipment components and the measurement values by the measuring means, and obtain an optimal material balance. Control means for calculating a flow rate of each part such as a crude argon amount, a product oxygen amount, a product nitrogen amount, a reflux liquid amount, and an expansion turbine flow rate, and controlling the flow rate of each part based on the calculated value. Control device for argon sampling by air liquefaction separation.
【請求項6】前記測定手段は、前記排ガス中の酸素濃度
測定手段に加えて、採取する粗アルゴン中の酸素濃度測
定手段及び製品酸素中の酸素濃度測定手段を設け、前記
制御手段は、これら3つの測定手段にて測定された酸素
濃度に応じて粗アルゴン及び/又は製品酸素の採取量を
制御することを特徴とする請求項5記載の空気液化分離
によるアルゴン採取の制御装置。
6. The measuring means further comprises an oxygen concentration measuring means in the crude argon sampled and an oxygen concentration measuring means in the product oxygen in addition to the oxygen concentration measuring means in the exhaust gas. 6. The control device for collecting argon by air liquefaction separation according to claim 5, wherein the amount of crude argon and / or product oxygen collected is controlled in accordance with the oxygen concentrations measured by the three measuring means.
【請求項7】前記制御は、制御用電子計算機及び/又は
エキスパートシステムにより行うことを特徴とする請求
項5又は6記載の空気液化分離によるアルゴン採取の制
御装置。
7. The control apparatus according to claim 5, wherein said control is performed by a control computer and / or an expert system.
JP2084425A 1990-03-30 1990-03-30 Method and apparatus for controlling argon sampling by air liquefaction separation Expired - Fee Related JP2967421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084425A JP2967421B2 (en) 1990-03-30 1990-03-30 Method and apparatus for controlling argon sampling by air liquefaction separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084425A JP2967421B2 (en) 1990-03-30 1990-03-30 Method and apparatus for controlling argon sampling by air liquefaction separation

Publications (2)

Publication Number Publication Date
JPH03282183A JPH03282183A (en) 1991-12-12
JP2967421B2 true JP2967421B2 (en) 1999-10-25

Family

ID=13830230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084425A Expired - Fee Related JP2967421B2 (en) 1990-03-30 1990-03-30 Method and apparatus for controlling argon sampling by air liquefaction separation

Country Status (1)

Country Link
JP (1) JP2967421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135817A1 (en) * 2018-01-02 2019-07-11 Praxair Technology, Inc. System and method for flexible recovery of argon from a cryogenic air separation unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803897B2 (en) * 2001-05-14 2011-10-26 大陽日酸株式会社 Control method of air liquefaction separation device
US7204101B2 (en) * 2003-10-06 2007-04-17 Air Liquide Large Industries U.S. Lp Methods and systems for optimizing argon recovery in an air separation unit
FR2916039B1 (en) * 2007-05-11 2013-11-01 Air Liquide METHOD FOR CONTROLLING A CRYOGENIC DISTILLATION UNIT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135817A1 (en) * 2018-01-02 2019-07-11 Praxair Technology, Inc. System and method for flexible recovery of argon from a cryogenic air separation unit
US11262125B2 (en) 2018-01-02 2022-03-01 Praxair Technology, Inc. System and method for flexible recovery of argon from a cryogenic air separation unit

Also Published As

Publication number Publication date
JPH03282183A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
EP1281033B1 (en) Controlling the production of a liquefied natural gas product stream
US7266975B2 (en) Process of Liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
AU699073B1 (en) Method and apparatus for regulatory control of production and temperature in a mixed refrigerant liquefied natural gas facility
JP4484360B2 (en) Method of liquefying gaseous methane-rich feed to obtain liquefied natural gas
US7946127B2 (en) Apparatus and method for optimizing a liquefied natural gas facility
AU2001254816A1 (en) Controlling the production of a liquefied natural gas product stream
JP2967421B2 (en) Method and apparatus for controlling argon sampling by air liquefaction separation
JP3451453B2 (en) Air liquefaction separation device and control method thereof
US7204101B2 (en) Methods and systems for optimizing argon recovery in an air separation unit
CN211782274U (en) Advanced control system of air separation and air separation production system
JP2967422B2 (en) Air liquefaction separation device and control method thereof
US4261719A (en) Method of and apparatus for controlling rate of material air supply to air separation plant
JP4450503B2 (en) Product gas backup device
JP3213848B2 (en) Nitrogen production apparatus and control method thereof
JPS6314074A (en) Method of controlling operation of fractionating column in air separator
EP3889529B1 (en) Product gas supply quantity adjustment device and air separation apparatus comprising same
JP3026098B2 (en) Air liquefaction separation method and apparatus suitable for fluctuations in demand
JP2726970B2 (en) Control method of air liquefaction / separation equipment corresponding to demand fluctuation
JPH10325673A (en) Control method for air liquefying and separating device
KR100226933B1 (en) Oxygen purity control system of air separating apparatus
JPH029279B2 (en)
JPH11316079A (en) Operating method for nitrogen generator
JPH0114509B2 (en)
JPH07103645A (en) Manufacture of argon
JPH0552469A (en) Operating method of high purity argon tower for air liquefying and separating device and the same device equipped with argon tower

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees