JPH03282182A - Air liquefying separator and controlling method therefor - Google Patents

Air liquefying separator and controlling method therefor

Info

Publication number
JPH03282182A
JPH03282182A JP8442690A JP8442690A JPH03282182A JP H03282182 A JPH03282182 A JP H03282182A JP 8442690 A JP8442690 A JP 8442690A JP 8442690 A JP8442690 A JP 8442690A JP H03282182 A JPH03282182 A JP H03282182A
Authority
JP
Japan
Prior art keywords
product
flow rate
air
separation device
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8442690A
Other languages
Japanese (ja)
Other versions
JP2967422B2 (en
Inventor
Ushio Maeda
前田 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP8442690A priority Critical patent/JP2967422B2/en
Publication of JPH03282182A publication Critical patent/JPH03282182A/en
Application granted granted Critical
Publication of JP2967422B2 publication Critical patent/JP2967422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Abstract

PURPOSE:To automate a part requiring an operator's judgement and to efficiently alter an operation mode by recognizing a present operation pattern based on the flow rate, concentration, etc., of air and liquid of respective sections of an apparatus, inferring, calculating and controlling optimum operation data of the sections based on it. CONSTITUTION:Control means 9 is composed of a distributed controller 9a and inferring and calculating means 9b made of an expert system. The controller 9a supplies various input information such as flow rate, concentration, pressure, temperature and product collecting target value, etc., to be obtained from various devices and operates control units based on the flow rate set values of the sections output from the means 9b. The means 9b recognizes a present operation pattern based on various information received from the controller 9a, infers an optimum operation pattern from operating conditions such as a previous operation command, latest operation command and operating capacity of devices for forming an apparatus, calculates and controls operation data of the sections such as optimum product collecting amount, circulating liquid amount, expansion turbine flow rate, etc., based on the inference.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気液化分離装置の制御方法に関し、詳しく
は、空気を原料として深冷分離法により酸素、窒素等の
製品を気体及び/又は液体で生産する装置において、生
産量の増減、運転モードの変更等を効率よく短時間で行
え、かつ最適な生産量を得ることのできる空気液化分離
装置の制御方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for controlling an air liquefaction separation device, and more specifically, the present invention relates to a method for controlling an air liquefaction separation device, and more specifically, to convert products such as oxygen and nitrogen into gaseous and/or The present invention relates to a control method for an air liquefaction separation device that can increase or decrease the production amount, change the operating mode, etc. efficiently in a short time in a device that produces liquid, and can obtain the optimum production amount.

〔従来の技術〕[Conventional technology]

従来から、空気液化分離装置の各部の流量等を製品の産
出量に応じて所定の値に制御する手段として、分散型制
御装置(DCS)が多く用いられている。
BACKGROUND ART Conventionally, a distributed control system (DCS) has been widely used as a means for controlling the flow rate of each part of an air liquefaction separation apparatus to a predetermined value depending on the output amount of a product.

従来のDCSを用いた制御においては、需要変動に伴い
製品産出目標量が増減した場合、例えば、酸素ガスの採
取量を増減する場合、変更後の酸素ガス採取量をDCS
に入力すると、原料空気量。
In conventional control using DCS, when the target product output amount increases or decreases due to demand fluctuations, for example, when increasing or decreasing the amount of oxygen gas to be extracted, the DCS uses the changed amount of oxygen gas to be extracted.
Enter the feed air amount.

タービン流体量、窒素採取量、その他の各部の流量が変
更後の酸素量に見合う所定の値にセットされ、各部の弁
が所定の時定数に従ってセ・ソト値に到達するように制
御される。さらにセ・ソト値に到達した後に、製品の純
度や熱バランスのズレがフィードバック方式で修正され
る。
The amount of turbine fluid, the amount of nitrogen extracted, and the flow rates of other parts are set to predetermined values commensurate with the changed oxygen amount, and the valves of each part are controlled according to a predetermined time constant so that they reach the set value. Furthermore, after reaching the Se Soto value, any deviations in product purity or heat balance are corrected using a feedback method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のごとく製品採取量のみを変更する
制御方法では、運転の変更を自動的に行うことはできる
が、運転モードが極めて限定されたものとなり、また修
正後に生じる製品純度や熱バランスのズレに基づいて何
回も修正を繰返さなければならなくなるおそれがあり、
最適な運転状態を得るために長時間を要したり、収率を
犠牲にした運転を行わなければならないことがあった。
However, with the control method that only changes the amount of product sampled as described above, although it is possible to automatically change the operation, the operation mode is extremely limited, and the deviations in product purity and heat balance that occur after correction. You may have to make multiple revisions based on
In order to obtain the optimum operating conditions, it may take a long time or it may be necessary to perform operations at the expense of yield.

従って、運転モードの変更にあたっては、現状の運転状
態を把握し、装置の減量限界、液生産の要否等の条件を
考慮し、変更目標を満足しつつ、かつ変更後の運転が最
適になるように運転条件を設定し、しかも最短の時間で
運転を移行するといったきめ細かな判断及びこれに基づ
く操作を行うことが望ましい。しかしながら、現状では
これらの判断や操作は、熟練した操作員の手腕に頼ると
ころが大きく、後継者の不足も問題となってきている。
Therefore, when changing the operating mode, understand the current operating state, consider conditions such as the equipment's weight loss limit and the necessity of liquid production, and ensure that the change target is met and the operation after the change is optimal. It is desirable to set operating conditions in such a way as to make detailed judgments and to perform operations based on these judgments, such as setting operating conditions in the shortest possible time. However, at present, these judgments and operations largely depend on the skills of skilled operators, and the lack of successors has become a problem.

本発明は、上記実情に鑑みて成されたもので、従来操作
員の経験による判断を要する部分を自動化して運転精度
の向上を図り、運転モードの変更を効率よく行うことの
できる空気液化分離装置及びその制御方法を提供するこ
とを目的としている。
The present invention has been developed in view of the above-mentioned circumstances.The present invention aims to improve operational accuracy by automating parts that conventionally require judgment based on the operator's experience. The purpose of this invention is to provide a device and a method for controlling the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明の空気液化分離
装置は、圧縮、精製、冷却した原料空気を液化精留分離
して酸素、窒素等の製品ガス、製品液化ガス及び排ガス
を導出する空気液化分離装置において、 (a)装置のリアルタイムの運転状態を検知するための
空気量、製品量、タービン量、還流液量等の各部の流量
及び/又はそれらの純度。
In order to achieve the above object, the air liquefaction separation device of the present invention separates compressed, purified, and cooled raw material air by liquefaction rectification to derive product gases such as oxygen and nitrogen, product liquefied gases, and exhaust gases. In the liquefaction separation equipment, (a) flow rate and/or purity of each part such as air volume, product volume, turbine volume, reflux liquid volume, etc. for detecting the real-time operating state of the equipment;

液面を計測する手段、 (b)上記計測手段からの情報により装置の運転状態を
認識し、かつ運転指令に基づき最適運転条件及び最短時
間での運転移行操作方法の推論を行う計算手段、及び (c)上記計算結果により上記各部の制御を指令する制
御手段と該制御手段からの信号により上記装置各部の流
量等の運転諸元を制御する制御器、 を備えていることを特徴としている。
means for measuring the liquid level; (b) calculation means for recognizing the operating state of the device based on the information from the measuring means and inferring optimal operating conditions and operation transition operation method in the shortest time based on the operating command; (c) The apparatus is characterized by comprising: a control means for commanding the control of each part of the apparatus according to the calculation result; and a controller for controlling operating specifications such as flow rate of each part of the apparatus according to signals from the control means.

また、本発明の空気液化分離装置の制御方法は、原料空
気を圧縮、精製、冷却して精留塔に導入し、液化精留分
離により酸素、窒素等の製品ガス、製品液化ガス及び排
ガスを導出する空気液化分離装置の制御方法において、
前記原料空気、製品ガス。
In addition, in the control method of the air liquefaction separation device of the present invention, raw air is compressed, purified, cooled, and introduced into a rectification column, and product gases such as oxygen and nitrogen, product liquefied gas, and exhaust gas are produced by liquefaction rectification separation. In a method of controlling an air liquefaction separation device to extract
The raw material air and product gas.

製品液化ガス、排ガス等の各部の流量等の運転諸元に基
づいて現状の運転パターンを認識するとともに、前回の
運転指令と最新の運転指令及び装置を構成する機器の運
転能力等の運転条件から最適な運転パターンを推論し、
該推論に基づく最適な製品採取量、還流液量、膨張ター
ビン流量等の各部の運転諸元を計算し、制御すること製
品液化ガス、排ガス等の各部の流量に基づいて現状の運
転パターンを認識するとともに、最新の運転指令と該指
令時の運転パターン、製品採取目標量及び装置を構成す
る機器の運転能力等の運転条件から最適な運転パターン
を推論し、該推論に基づく最適な製品採取量、還流液量
、膨張タービン流量等の各部の流量を算出することを特
徴としている。
In addition to recognizing the current operating pattern based on the operating specifications such as the flow rate of each part of the product liquefied gas and exhaust gas, it also recognizes the operating conditions such as the previous operating command, the latest operating command, and the operating capacity of the equipment that makes up the equipment. Infer optimal driving patterns,
Calculate and control the operating specifications of each part, such as the optimal product collection amount, reflux liquid volume, expansion turbine flow rate, etc. based on this inference. Recognize the current operating pattern based on the flow rate of each part, such as product liquefied gas and exhaust gas. At the same time, the optimal operation pattern is inferred from the latest operation command, the operation pattern at the time of the command, the target amount of product to be collected, and the operating conditions such as the operating capacity of the equipment that makes up the device, and the optimal amount of product to be collected is determined based on the inference. , the flow rate of each part, such as the amount of reflux liquid and the flow rate of the expansion turbine, is calculated.

さらに本発明装置及び方法においては、該空気液化分離
装置に付属する製品貯槽及び/又は該装置から製品の供
給を受ける製品貯槽内の製品量も含めて制御可能とした
ことを特徴としている。
Furthermore, the apparatus and method of the present invention are characterized in that the amount of product in the product storage tank attached to the air liquefaction separation apparatus and/or the product storage tank supplied with the product from the apparatus can also be controlled.

〔実施例〕〔Example〕

以下、本発明を図に示す一実施例に基づいて、さらに詳
細に説明する。
Hereinafter, the present invention will be explained in more detail based on an embodiment shown in the drawings.

この空気液化分離装置1は、圧縮機2.精製段#3.主
熱交換器4を経て液化点付近まで冷却された原料空気A
を精留する複精留塔5と、該複精留塔5の上部塔5aに
接続されたアルゴン塔6と、上部塔5a底部に配置され
た主凝縮蒸発器7と、下部塔5b上部に分離する窒素ガ
スを作動流体とする膨張タービン8とを備えている。
This air liquefaction separation device 1 includes a compressor 2. Purification stage #3. Feed air A cooled to near the liquefaction point via the main heat exchanger 4
an argon column 6 connected to the upper column 5a of the double rectification column 5, a main condenser-evaporator 7 disposed at the bottom of the upper column 5a, and an upper column 5b of the double rectification column 5. The expansion turbine 8 uses nitrogen gas to be separated as a working fluid.

上記空気液化分離装置1は、周知のごとく空気を原料と
して液化精留分離を行い、製品として上部塔下部の酸素
ガスGO,上部塔頂部の窒素ガスGN、上部塔底部の液
化酸素LO,主凝主凝縮器発器液化した液化窒素LN、
アルゴン塔上部の粗アルゴンARをそれぞれ産出してお
り、また上部塔上部からは排ガスWが、下部塔上部から
は、膨張タービン8を経て窒素ガスNが排出されている
As is well known, the air liquefaction separator 1 performs liquefaction rectification separation using air as a raw material, and the products are oxygen gas GO at the bottom of the upper column, nitrogen gas GN at the top of the upper column, liquefied oxygen LO at the bottom of the upper column, and main condensate. Main condenser generator liquefied liquefied nitrogen LN,
Crude argon AR is produced in the upper part of the argon column, and exhaust gas W is discharged from the upper part of the upper column, and nitrogen gas N is discharged from the upper part of the lower column via an expansion turbine 8.

本発明では、このように構成した空気液化分離装置1を
製品需要に応じた最適な運転状態に保持するために、各
部に各種の制御器、計測器1分析器等を配置するととも
に、これらの各機器から得られる情報及びあらかじめ定
められた各設定値に基いて前記各計測制御器を作動させ
て各部の流量を制御する制御手段9とを備えている。こ
の制御手段9には、制御用電算機及び/又はエキスパー
トシステムが用いられる。尚、図中dはデータ(情報)
入出力を示す。
In the present invention, in order to maintain the air liquefaction separation apparatus 1 configured as described above in an optimal operating state according to product demand, various controllers, measuring instruments 1 analyzers, etc. are arranged in each part, and these It is equipped with a control means 9 that operates each of the measurement controllers and controls the flow rate of each part based on information obtained from each device and each predetermined setting value. This control means 9 uses a control computer and/or an expert system. In addition, d in the figure is data (information)
Indicates input and output.

まず原料空気Aを供給する管路10には、原料空気Aの
流量を計測する流量計30aとガイドベーン30bとか
らなる計測制御器30が設けられている。この計測制御
器30は、原料空気Aの流量と共にガイドベーン30b
の開度を制御手段9に出力し、該制御手段9からの指示
によりガイドベーン30bを開閉して原料空気Aの供給
量を制御するもので、製品酸素ガスGOの生産量に応し
て算定される値が設定値となる。尚、流量の制御手段と
しては、上記ガイドベーン30bに代えて管路に自動弁
を設けることによっても同様に行うことができる。
First, the pipe line 10 that supplies the raw material air A is provided with a measurement controller 30 that includes a flow meter 30a that measures the flow rate of the raw material air A and a guide vane 30b. This measurement controller 30 controls the flow rate of the raw material air A and the guide vane 30b.
outputs the opening degree to the control means 9, and opens and closes the guide vane 30b according to instructions from the control means 9 to control the supply amount of the raw material air A, and is calculated according to the production amount of the product oxygen gas GO. The value set is the set value. Note that the flow rate can be controlled in the same manner by providing an automatic valve in the conduit instead of the guide vane 30b.

製品酸素ガスGoを導出する管路11には、製品酸素ガ
スGOの流量を計測する流量計31aと自動弁31bと
からなる計測制御器31が設けられている。この計測制
御器31は、製品酸素ガスGOの流量と共に自動弁31
bの開度を制御手段9に出力し、該制御手段9からの指
示により自動弁31bを開閉して製品酸素ガスGOの産
出量を制御するもので、製品酸素ガスGOの需要量に応
じて算定される値が設定値となり、かつ酸素純度が規定
の値を維持するように微調整される。この製品酸素ガス
用計測制御器31に関連して上部塔5aの製品酸素ガス
導出部近傍には、製品酸素ガスGOの純度を計測する分
析計31Cが設けられており、該純度を制御手段9に出
力している。
A measurement controller 31 consisting of a flow meter 31a and an automatic valve 31b for measuring the flow rate of the product oxygen gas GO is provided in the conduit 11 that leads out the product oxygen gas Go. This measurement controller 31 controls the flow rate of the product oxygen gas GO and the automatic valve 31.
The opening degree of b is output to the control means 9, and the automatic valve 31b is opened and closed according to instructions from the control means 9 to control the production amount of the product oxygen gas GO, depending on the demand for the product oxygen gas GO. The calculated value becomes the set value, and the oxygen purity is finely adjusted to maintain the specified value. In connection with the product oxygen gas measurement controller 31, an analyzer 31C for measuring the purity of the product oxygen gas GO is provided near the product oxygen gas outlet of the upper column 5a. It is output to.

製品窒素ガスGNを導出する管路12には、製品窒素ガ
スGNの流量を計測する流量計32aと自動弁32bと
からなる計測制御器32が設けられている。この計測制
御器32は、製品窒素ガスGNの流量と共に自動弁32
bの開度を制御手段9に出力し、該制御手段9からの指
示により自動弁32bを開閉して製品窒素ガスGNの産
出量を制御するもので、原料空気Aの供給量に応じて算
定される値が設定値となる。
A measurement controller 32 consisting of a flow meter 32a and an automatic valve 32b for measuring the flow rate of the product nitrogen gas GN is provided in the pipe line 12 that leads out the product nitrogen gas GN. This measurement controller 32 controls the automatic valve 32 along with the flow rate of the product nitrogen gas GN.
The opening degree of b is output to the control means 9, and the automatic valve 32b is opened and closed according to instructions from the control means 9 to control the production amount of product nitrogen gas GN, which is calculated according to the supply amount of raw material air A. The value set is the set value.

粗アルゴンARを導出する管路13には、粗アルゴンA
Rの流量を計測する流量計33aと自動弁33bとから
なる計測制御器33及び該粗アルゴン中の酸素濃度を測
定する分析器33cが設けられている。この計測制御器
33は、粗アルゴンARの流量と共に自動弁33bの開
度を制御手段9に出力し、該制御手段9からの指示によ
り自動弁33bを開閉して粗アルゴンARの産出量を制
御するもので、原料空気Aの供給量に応じて算定される
値が設定値となり、かつ分析器33cから得られる粗ア
ルゴン中の酸素濃度が規定の値以下という条件を満たし
つつ、粗アルゴンARの生産量が最大になるように微調
整される。
Crude argon A is connected to the pipe line 13 that leads out crude argon AR.
A measurement controller 33 consisting of a flow meter 33a for measuring the flow rate of R and an automatic valve 33b, and an analyzer 33c for measuring the oxygen concentration in the crude argon are provided. The measurement controller 33 outputs the flow rate of the crude argon AR and the opening degree of the automatic valve 33b to the control means 9, and controls the output amount of the crude argon AR by opening and closing the automatic valve 33b according to instructions from the control means 9. The value calculated according to the supply amount of raw air A becomes the set value, and the crude argon AR is Finely tuned to maximize production.

また、この空気液化分離装置1に付属設備として液化粗
アルゴンタンク(L A T + ) 50 a fr
<設けられている場合及び/又は該装置から液化粗アル
ゴンが供給される液化粗アルゴンタンク(LAT2 )
50bが設けられている場合は、これらのlff115
0 a、  50 bの粗アルゴンARの量を検知計測
する手段、例えば液面計、圧力計等を設けて、該計測手
段で得られたデータも前記制御手段9に伝え、前記各デ
ータと関連させて装置各部を制御するように構成するこ
とができる。
In addition, a liquefied crude argon tank (L A T + ) 50 a fr is attached to this air liquefaction separation device 1.
<If provided and/or a liquefied crude argon tank (LAT2) to which liquefied crude argon is supplied from the device
If 50b is provided, these lff115
A means for detecting and measuring the amount of crude argon AR of 0 a, 50 b is provided, such as a liquid level gauge, a pressure gauge, etc., and the data obtained by the measuring means is also transmitted to the control means 9, and the data related to each of the above data is The device can be configured to control each part of the device by controlling the device.

液化酸素LOを導出する管路14には、液化酸素LOの
流量を計測する流量計34aと自動弁34bとからなる
計測制御器34が設けられている。
A measurement controller 34 consisting of a flow meter 34a and an automatic valve 34b for measuring the flow rate of the liquefied oxygen LO is provided in the conduit 14 that leads out the liquefied oxygen LO.

この計測制御器34は、液化酸素LOの流量と共に自動
弁34bの開度を制御手段9に出力し、該制御手段9か
らの指示により自動弁34bを開閉して液化酸素LOの
産出量を制御するもので、あらかじめ設定された値、又
は寒冷上のバランスを維持するように制御される。
This measurement controller 34 outputs the flow rate of liquefied oxygen LO and the opening degree of the automatic valve 34b to the control means 9, and opens and closes the automatic valve 34b according to instructions from the control means 9 to control the output amount of liquefied oxygen LO. It is controlled to maintain a preset value or cold balance.

また、上記液化粗アルゴンと同様に、この空気液化分離
袋f1に付属設備として液化酸素タンク(LOT+ )
51aが設けられている場合及び/又は該装置から液化
酸素LOを供給される液化酸素タンク(LOT2 )5
1bが設けられている場合は、これらの貯槽51a、5
1bの液化酸素LOの量を検知計測する手段、例えば液
面計、圧力計等を設けて、該計測手段で得られたデータ
も前記制御手段9に伝え、前記各データと関連させて装
置各部を制御するように構成することができる。
In addition, like the liquefied crude argon mentioned above, a liquefied oxygen tank (LOT+) is attached to this air liquefaction separation bag f1.
51a and/or a liquefied oxygen tank (LOT2) 5 supplied with liquefied oxygen LO from the device.
1b, these storage tanks 51a, 5
A means for detecting and measuring the amount of liquefied oxygen LO of 1b is provided, such as a liquid level gauge, a pressure gauge, etc., and the data obtained by the measuring means is also transmitted to the control means 9, and each part of the apparatus is can be configured to control the

液化窒素LNを導出する管路15には、液化窒素LNの
流量を計測する流量計35aと自動弁35bとからなる
計測制御器35が設けられている。
A measurement controller 35 consisting of a flow meter 35a and an automatic valve 35b for measuring the flow rate of the liquefied nitrogen LN is provided in the conduit 15 that leads out the liquefied nitrogen LN.

この計測制御器35は、液化窒素LNの流量と共に自動
弁35bの開度を制御手段9に出力し、該制御手段9か
らの命令により自動弁35bを開閉して液化窒素LNの
産出量を制御するもので、あらかじめ設定された値、又
は寒冷上のバランス及び純度を維持するように制御され
、さらに下部塔5bの還流液化窒素の純度を維持てきる
ように、膨張タービン流体の流量との関連において制御
される。
This measurement controller 35 outputs the flow rate of liquefied nitrogen LN and the opening degree of the automatic valve 35b to the control means 9, and opens and closes the automatic valve 35b according to a command from the control means 9 to control the output amount of liquefied nitrogen LN. The flow rate of the expansion turbine fluid is controlled to a preset value or to maintain the refrigeration balance and purity, and also to maintain the purity of the refluxed liquefied nitrogen in the lower column 5b. Controlled by

この液化窒素LNの場合も、空気液化分離装置1に付属
設備として液化窒素タンク(LNT+ )52aが設け
られている場合及び/又は該装置から液化窒素LNの供
給を受ける液化窒素タンク(LNT2 )52bが設け
られている場合は、これらの貯槽52a、52bの液化
窒素LNの量を検知計測する手段、例えば液面計、圧力
計等を設けて、該計測手段で得られたデータも前記制御
手段9に伝え、前記各データと関連させて装置各部を制
御するように構成することができる。
In the case of liquefied nitrogen LN, the air liquefaction separation device 1 is also provided with a liquefied nitrogen tank (LNT+) 52a as an accessory equipment, and/or the liquefied nitrogen tank (LNT2) 52b receives the liquefied nitrogen LN from the device. is provided, a means for detecting and measuring the amount of liquefied nitrogen LN in these storage tanks 52a and 52b, such as a liquid level gauge or a pressure gauge, is provided, and the data obtained by the measuring means is also controlled by the control means. 9 and control each part of the apparatus in association with each of the above-mentioned data.

また、液状製品だけでなく、ガス製品に対しても同様の
制御を行うことができる。尚、前述の各製品タンクにお
いて、装置に付属したタンクとは該装置と配管により接
続されているタンクを意味し、製品が供給されるタンク
とは、ローリ−等により製品の供給を受ける可能性の有
るタンクを意味するもので、該装置からのみ製品の供給
を受けるもののほか、複数の空気液化分離装置から製品
を供給されるものも含む。
Further, similar control can be performed not only for liquid products but also for gas products. Regarding each product tank mentioned above, a tank attached to a device means a tank connected to the device by piping, and a tank to which the product is supplied refers to a tank that may receive the product by lorry, etc. This refers to a tank with a tank that is supplied with products only from this device, as well as tanks that are supplied with products from multiple air liquefaction separation devices.

膨張タービン8に窒素ガスNを導入する管路16には、
該窒素ガスNの流量を計測する流量計368と自動弁3
6bとからなる計測制御器36が設けられている。この
計測制御器36は、窒素ガスNの流量と共に自動弁36
bの開度を制御手段9に出力し、該制御手段9からの指
示により自動弁36bを開閉して膨張タービン導入流体
量を制御するもので、原料空気量から算出された値が設
定値となり制御されるが、寒冷上のバランスや運転目的
に応じた還流液化窒素流量との関連において設定された
値により調整される。
The pipe line 16 that introduces nitrogen gas N into the expansion turbine 8 includes
Flowmeter 368 and automatic valve 3 for measuring the flow rate of the nitrogen gas N
A measurement controller 36 consisting of 6b is provided. This measurement controller 36 controls the flow rate of nitrogen gas N and the automatic valve 36.
The opening degree of b is output to the control means 9, and the automatic valve 36b is opened and closed according to instructions from the control means 9 to control the amount of fluid introduced into the expansion turbine, and the value calculated from the amount of raw air becomes the set value. It is controlled by a value set in relation to the refrigeration liquefied nitrogen flow rate depending on the cooling balance and the operational purpose.

上部塔5aに還流液を導入する管路17には、該管路1
7内の液化窒素の流量を計測する流量計37aと自動弁
37bとからなる計測制御器37が設けられている。こ
の計測制御器37は、液化窒素の流量と共に自動弁37
bの開度を制御手段9に出力し、該制御手段9からの指
示により自動弁37bを開閉して還流液量を制御するも
ので、原料空気量から算出された値が設定値となり制御
される。
The pipe line 17 that introduces the reflux liquid into the upper column 5a includes the pipe line 1.
A measurement controller 37 consisting of a flow meter 37a and an automatic valve 37b for measuring the flow rate of liquefied nitrogen in the tank 7 is provided. This measurement controller 37 controls the automatic valve 37 along with the flow rate of liquefied nitrogen.
The opening degree of b is output to the control means 9, and the automatic valve 37b is opened and closed according to instructions from the control means 9 to control the amount of reflux liquid, and the value calculated from the raw material air amount becomes the set value and is controlled. Ru.

下部塔5bの底部の液化空気を上部塔5aに導入する管
路18には、液化空気の流量を制御する自動弁38bが
設けられるとともに、下部塔底部には該底部の液面を計
測する液面計38cが設けられている。この自動弁38
bと液面計38aとからなる計測制御器38は、下部塔
底部の液化空気の液面高さに応じて自動弁38の開度を
制御し、下部塔底部の液面が一定になるように制御され
る。
The pipe line 18 that introduces the liquefied air at the bottom of the lower column 5b into the upper column 5a is provided with an automatic valve 38b that controls the flow rate of the liquefied air, and a liquid valve is installed at the bottom of the lower column to measure the liquid level at the bottom. A face meter 38c is provided. This automatic valve 38
A measurement controller 38 consisting of a liquid level gauge 38a and a liquid level gauge 38a controls the opening degree of the automatic valve 38 according to the liquid level height of the liquefied air at the bottom of the lower column, so that the liquid level at the bottom of the lower column remains constant. controlled by.

また、下部塔底部の液化空気を粗アルゴン塔6の凝縮器
6aに導入する管路19には、液化空気の流量を計測す
る流量計39aと自動弁39bとからなる計測制御器3
9が設けられている。この計測制御器39は、凝縮器6
aに導入する液化空気の流量と共に自動弁39bの開度
を制御手段9に出力し、該制御手段9からの指示により
自動弁39bを開閉して液化空気量を制御するもので、
原料空気量から算出された値が設定値となり制御される
In addition, in the pipe line 19 that introduces the liquefied air at the bottom of the lower column to the condenser 6a of the crude argon column 6, there is a measurement controller 3 that includes a flow meter 39a that measures the flow rate of the liquefied air and an automatic valve 39b.
9 is provided. This measurement controller 39 is connected to the condenser 6
The opening degree of the automatic valve 39b is outputted to the control means 9 together with the flow rate of the liquefied air introduced into the a, and the automatic valve 39b is opened and closed according to instructions from the control means 9 to control the amount of liquefied air.
The value calculated from the raw material air amount becomes the set value and is controlled.

上部塔上部から排ガスWを排出する管路2oには、排ガ
ス中の酸素濃度を計測する分析器4oが設けられており
、該管路20内の排ガス中に含まれる酸素濃度を制御手
段9に出力する。さらに該管路20には、排ガスの流量
を制御する流量計418と自動弁41bとからなる計測
制御器41が設けられている。
An analyzer 4o for measuring the oxygen concentration in the exhaust gas is provided in the pipe 2o that discharges the exhaust gas W from the upper part of the upper column, and the oxygen concentration contained in the exhaust gas in the pipe 20 is sent to the control means 9. Output. Further, the pipe line 20 is provided with a measurement controller 41 consisting of a flow meter 418 and an automatic valve 41b for controlling the flow rate of exhaust gas.

そして前記制御手段9は、分散型制御装置9aとAIス
テーション(エキスパートシステム)からなる推論計算
手段9bとにより構成されている。
The control means 9 is composed of a distributed control device 9a and an inference calculation means 9b consisting of an AI station (expert system).

分散型制御装置9aは、前述の各種機器がら得られる流
量や濃度、圧力、温度及び製品採取目標値等の各種入力
情報を推論手段9bに供給するとともに、該推論計算手
段9bから出力される各部の流量設定値に基づいて前記
各制御器を作動させる。
The distributed control device 9a supplies various input information such as flow rate, concentration, pressure, temperature, and product sampling target value obtained from the various devices mentioned above to the inference means 9b, and also inputs information from each section outputted from the inference calculation means 9b. The respective controllers are operated based on the flow rate set value.

推論計算手段9bは、分散型制御装置9aがら受は取る
各種情報を元にして現状の運転パターンを認識するとと
もに、前回の運転指令と最新の運転指令及び装置を構成
する機器の運転能力等の運転条件から最適な運転パター
ンを推論し、該推論に基づいて最適な製品採取量、還流
液量、膨張タービン流量等の各部の運転諸元を算出し制
御する。
The inference calculation means 9b recognizes the current driving pattern based on various information received from the distributed control device 9a, and also recognizes the previous driving command, the latest driving command, and the driving ability of the equipment constituting the device. The optimum operating pattern is inferred from the operating conditions, and based on the inference, the optimum operating specifications of each part, such as the optimum product collection amount, reflux liquid amount, and expansion turbine flow rate, are calculated and controlled.

即ち分散型制御装置9aは、推論計算手段9bの推論に
必要なデーターを推論計算手段9bに与え、推論計算手
段9bから受は取るデーターを元にして各部の制御を行
うように構成されている。
That is, the distributed control device 9a is configured to provide data necessary for inference by the inference calculation means 9b to the inference calculation means 9b, and control each part based on the data received and received from the inference calculation means 9b. .

ここで、運転モード変更時の上記推論計算手段9bの動
作を説明する。まず推論計算手段9bは、前記分散型制
御装置9aから受は取る各部の流量等の運転諸元と、あ
らかじめ設定されている各運転パターンにおける最適流
量とを比較して現在の運転パターンを認識し、新しい指
令による運転に移行後、前回の指令による運転を続行で
きるか否か、又は変更すべきか否かを推論する。この推
論は、優先すべき事項、例えば製品酸素の純度と生産量
、これに伴う原料空気量、各運転モードにおいて確保す
べき各々の製品採取量等の最適物質収支と熱バランスの
確保等をベースにして、原料空気圧縮機の減量限界や液
化ガス製品の需要、さらに前回の運転指令等の情報から
最適な運転パターンを選択するものであり、また変化量
に応じて運転移行までの時定数を設定する。
Here, the operation of the inference calculation means 9b when changing the driving mode will be explained. First, the inference calculation means 9b compares the operating specifications such as the flow rate of each part received from the distributed control device 9a with the optimum flow rate for each operating pattern set in advance, and recognizes the current operating pattern. After shifting to operation according to the new command, it is inferred whether the operation according to the previous command can be continued or whether it should be changed. This reasoning is based on priority matters, such as the purity and production amount of product oxygen, the amount of raw material air associated with this, and ensuring the optimal material balance and heat balance, such as the amount of product taken in each operation mode. The system selects the optimal operation pattern based on information such as the weight loss limit of the feed air compressor, the demand for liquefied gas products, and the previous operation command, and also adjusts the time constant until operation transition according to the amount of change. Set.

例えば酸素ガスの減量が指令され、前回の指令が液化窒
素採取運転であった場合、原料空気量を酸素ガス採取量
に応じて減らしたときに確保すべき窒素ガス量や空気圧
縮機の減量限界等から採取する液化窒素量及び還流液量
、膨張タービン流量等、各部の流量を推論する。この結
果、各部の流量がそれぞれの時定数でセットされた値に
到達するように制御される。そしてセット値に到達後に
生じる製品純度や熱バランスのズレは、現状の運転パタ
ーンからどの部分をどの程度修正すべきかを推論し、そ
の結果に基づいて制御を行う。例えば、液製品を採取し
ない運転であれば、熱バランス調節用の系の流量又は弁
開度が所定の範囲に入るように、タービン流体置設定値
を各部の流量との関連において微調整する。
For example, if a command is given to reduce oxygen gas, and the previous command was for liquefied nitrogen sampling operation, the amount of nitrogen gas that should be secured when the amount of raw air is reduced according to the amount of oxygen gas collected, and the air compressor's reduction limit. Infer the flow rate of each part, such as the amount of liquefied nitrogen and reflux liquid collected from etc., the flow rate of the expansion turbine, etc. As a result, the flow rate of each part is controlled so that it reaches the value set by each time constant. In order to deal with deviations in product purity and heat balance that occur after the set values are reached, it is inferred from the current operating pattern which parts should be corrected and to what extent, and control is performed based on the results. For example, in the case of operation in which no liquid product is sampled, the turbine fluid position set value is finely adjusted in relation to the flow rate of each part so that the flow rate or valve opening of the heat balance adjustment system falls within a predetermined range.

また、上記液化ガス製品の需要情報としては、該空気液
化分離装置に付設された貯槽だけに限らず、他の複数の
貯槽、例えば各地に設置された液化ガス供給拠点の多数
の貯槽の液保有量の情報をオンラインで取り入れること
により、これらの液保有量変動に基づく需要情報も含め
て液製品の採取量を設定することができる。
In addition, the demand information for the above liquefied gas products is not limited to the storage tank attached to the air liquefaction separation device, but also the liquid storage capacity of multiple storage tanks, for example, many storage tanks at liquefied gas supply bases installed in various places. By incorporating amount information online, it is possible to set the amount of liquid product to be collected, including demand information based on fluctuations in the amount of liquid held.

このようにして各部の流量等の運転諸元を制御すること
により、各種製品を効率よく採取することが可能となり
、最適な運転状態への切り替えも短時間で行うことが可
能となる。また、装置運転時における運転モードの変更
だけでなく、装置起動時の各部の流量等の諸元の制御も
同様に行うことができ、起動時間の短縮を図れ、空気液
化分離装置の生産効率を大幅に向上させることができる
By controlling the operating specifications such as the flow rate of each part in this manner, it becomes possible to efficiently collect various products, and it becomes possible to switch to the optimum operating state in a short time. In addition to changing the operating mode during equipment operation, it is also possible to control specifications such as the flow rate of each part when starting the equipment, reducing startup time and increasing the production efficiency of the air liquefaction separation equipment. can be significantly improved.

尚、装置各部の気液の流れについては、一般の空気液化
分離装置と同様のため詳細な説明は省略する。また、空
気液化分離装置の構成は、上記実施例に限らず、従来か
ら用いられている各種能力向上設備を備えたものにも、
本発明を適用することが可能であり、実施例で挙げた製
品を全て併産するものに限るものでもない。
Note that the flow of gas and liquid in each part of the device is similar to that of a general air liquefaction separation device, so a detailed explanation will be omitted. In addition, the configuration of the air liquefaction separation device is not limited to the above-mentioned example, but can also be configured with various conventionally used capacity improvement equipment.
It is possible to apply the present invention, and the products mentioned in the examples are not all limited to those that are co-produced.

また、運転諸元も流量、濃度(純度)、液面のみならず
、温度、圧力をも対象として制御することも可能である
ことは言う迄もない。
It goes without saying that the operating specifications can also be controlled not only in terms of flow rate, concentration (purity), and liquid level, but also in terms of temperature and pressure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の空気液化分離装置の制御
方法は、装置各部の気液の流量や濃度等をもとにして現
状の運転パターンを認識し、これに基づいて各部の最適
運転諸元を推論し計算して制御するから、各運転パター
ンにおける最適な運転状態で各製品を製出することがで
き、各製品の収率を向上することができる。特に製品需
要の変動や貯槽の製品量変化による運転モードの移行を
迅速に行え、従来操作員の熟練度に頼っていた複雑な運
転条件の設定を代行でき、操作員の高齢化。
As explained above, the method for controlling the air liquefaction separation equipment of the present invention recognizes the current operating pattern based on the flow rate and concentration of gas and liquid in each part of the equipment, and based on this, the optimal operating pattern for each part. Since the source is inferred, calculated, and controlled, each product can be produced under the optimal operating conditions for each operating pattern, and the yield of each product can be improved. In particular, it is possible to quickly shift operating modes due to fluctuations in product demand or changes in the amount of product in the storage tank, and it is possible to take over the setting of complex operating conditions that previously relied on the skill level of operators, and as operators become older.

後継者不足といった社会的要求にも対応することができ
る。
It can also respond to social demands such as the lack of successors.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す空気液化分離装置の系統図
である。 1・・・空気液化分離装置  2・・・圧縮機  3・
・・精製設備  4・・・主熱交換器  5・・・複精
留塔6・・・アルゴン塔  7・・・主凝縮蒸発器  
8・・・膨張タービン  9・・・制御手段 9a・・
・分散型制御装置  9b・・・推論計算手段  30
,31,32.36、34.35,36,37,38.
39゜41・・・計測制御器  40・・・分析器  
A・・・原料空気  AR・・・粗アルゴン  GO・
・・酸素ガスGN・・・窒素ガス  LO・・・液化酸
素  LN・・・液化窒素  W・・・排ガス
The figure is a system diagram of an air liquefaction separation device showing one embodiment of the present invention. 1... Air liquefaction separation device 2... Compressor 3.
...Refining equipment 4...Main heat exchanger 5...Double rectification column 6...Argon column 7...Main condensing evaporator
8... Expansion turbine 9... Control means 9a...
・Distributed control device 9b...Inference calculation means 30
, 31, 32.36, 34.35, 36, 37, 38.
39°41...Measurement controller 40...Analyzer
A... Raw air AR... Crude argon GO.
...Oxygen gas GN...Nitrogen gas LO...Liquefied oxygen LN...Liquefied nitrogen W...Exhaust gas

Claims (1)

【特許請求の範囲】 1、圧縮、精製、冷却した原料空気を液化精留分離して
酸素、窒素等の製品ガス、製品液化ガス及び排ガスを導
出する空気液化分離装置において、(a)装置のリアル
タイムの運転状態を検知するための空気量、製品量、タ
ービン量、還流液量等の各部の流量及び/又はそれらの
純度、液面を計測する手段、 (b)上記計測手段からの情報により装置の運転状態を
認識し、かつ運転指令に基づき最適運転条件及び最短時
間での運転移行操作方法の推論を行う計算手段、及び (c)上記計算結果により上記各部の制御を指令する制
御手段と該制御手段からの信号により上記装置各部の流
量等の運転諸元を制御する制御器、 とを備えたことを特徴とする空気液化分離装置。 2、前記計測手段が、原料空気流量の計測制御器、製品
酸素ガス流量の計測制御器、製品窒素ガス流量の計測制
御器、液化酸素流量の計測制御器、液化窒素流量の計測
制御器、膨張タービン流体流量の計測制御器、上部塔還
流液用液化窒素量の計測制御器、上部塔導入液化空気流
量の計測制御器、下部塔底部の液面の計測制御器、排ガ
ス中の酸素濃度の計測器及び製品ガス純度分析計である
ことを特徴とする請求項1記載の空気液化分離装置。 3、前記空気液化分離装置が、該空気液化分離装置に付
属する製品貯槽及び/又は該空気液化分離装置から製品
の供給を受ける製品貯槽を有する装置であって、前記貯
槽の貯ガス量及び/又は貯液量を検知計測する手段と、
該計測手段から得られた情報を、前記推論計算手段に伝
達する手段とを有することを特徴とする請求項1記載の
空気液化分離装置。 4、前記認識推論計算手段は、制御用電子計算機及び/
又はエキスパートシステムであることを特徴とする請求
項1乃至3のいずれかに記載の空気液化分離装置。 5、原料空気を圧縮、精製、冷却して精留塔に導入し、
液化精留分離により酸素、窒素等の製品ガス、製品液化
ガス及び排ガスを導出する空気液化分離装置の制御方法
において、前記原料空気、製品ガス、製品液化ガス、排
ガス等の各部の流量等の運転諸元に基づいて現状の運転
パターンを認識するとともに、前回の運転指令と最新の
運転指令及び装置を構成する機器の運転能力等の運転条
件から最適な運転パターンを推論し、該推論に基づく最
適な製品採取量、還流液量、膨張タービン流量等の各部
の運転諸元を計算し、制御することを特徴とする空気液
化分離装置の制御方法。 6、前記空気液化分離装置に付属する製品貯槽及び/又
は該装置から製品の供給を受ける製品貯槽に設けられた
製品量検知計測手段により、該製品貯槽中の製品ガス量
及び/又は製品液化ガス量を検知計測し、これにより得
られた情報を前記現状の運転パターン認識に同時に導入
して最適運転パターンの推論を行い、各部の運転諸元を
計算し、制御することを特徴とする請求項5記載の空気
液化分離装置の制御方法。 7、前記最適な運転パターンの認識及び推論計算は、エ
キスパートシステムにより行うことを特徴とする請求項
5又は6記載の空気液化分離装置の制御方法。
[Scope of Claims] 1. In an air liquefaction separation device for extracting product gases such as oxygen and nitrogen, product liquefied gas, and exhaust gas by liquefaction rectification separation of compressed, purified, and cooled raw material air, (a) Means for measuring the flow rate and/or purity and liquid level of each part such as air volume, product volume, turbine volume, and reflux liquid volume to detect real-time operating conditions; (b) Based on information from the above measuring means; (c) a control means for instructing the control of each of the above parts based on the calculation results; and (c) a calculation means for recognizing the operating state of the device and inferring the optimum operating conditions and operation transition operation method in the shortest time based on the operation command. An air liquefaction separation device comprising: a controller that controls operating specifications such as flow rates of each part of the device based on signals from the control means. 2. The measuring means includes a raw material air flow rate measurement controller, a product oxygen gas flow rate measurement controller, a product nitrogen gas flow rate measurement controller, a liquefied oxygen flow rate measurement controller, a liquefied nitrogen flow rate measurement controller, and an expansion device. Turbine fluid flow rate measurement controller, upper column reflux liquid liquefied nitrogen amount measurement controller, upper column liquefied air flow rate measurement controller, lower column bottom liquid level measurement controller, exhaust gas oxygen concentration measurement The air liquefaction separation device according to claim 1, wherein the air liquefaction separation device is a gas purification analyzer and a product gas purity analyzer. 3. The air liquefaction separation device is a device having a product storage tank attached to the air liquefaction separation device and/or a product storage tank that receives product supply from the air liquefaction separation device, and the amount of gas stored in the storage tank and/or or means for detecting and measuring the amount of stored liquid;
The air liquefaction separation apparatus according to claim 1, further comprising means for transmitting information obtained from the measuring means to the inference calculation means. 4. The recognition inference calculation means includes a control electronic computer and/or
The air liquefaction separation device according to any one of claims 1 to 3, wherein the air liquefaction separation device is an expert system. 5. Compress, refine, and cool the raw air and introduce it into the rectification column,
In a method for controlling an air liquefaction separation device that derives product gases such as oxygen and nitrogen, product liquefied gas, and exhaust gas by liquefaction rectification separation, the operation of the flow rate of each part of the raw material air, product gas, product liquefied gas, exhaust gas, etc. In addition to recognizing the current driving pattern based on the specifications, the optimal driving pattern is inferred from the previous driving command, the latest driving command, and driving conditions such as the driving ability of the equipment that makes up the device, and the optimal driving pattern is determined based on the inference. 1. A method for controlling an air liquefaction separation device, which comprises calculating and controlling operating specifications of each part, such as the amount of product to be collected, the amount of reflux liquid, and the flow rate of an expansion turbine. 6. The product gas amount and/or product liquefied gas in the product storage tank is determined by the product amount detection and measurement means installed in the product storage tank attached to the air liquefaction separation device and/or the product storage tank that receives product supply from the device. A claim characterized in that the amount is detected and measured, information obtained thereby is simultaneously introduced into the current driving pattern recognition, an optimal driving pattern is inferred, and driving specifications of each part are calculated and controlled. 5. The method for controlling an air liquefaction separation device according to 5. 7. The method of controlling an air liquefaction separation device according to claim 5 or 6, wherein the recognition and inference calculation of the optimum driving pattern is performed by an expert system.
JP8442690A 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof Expired - Fee Related JP2967422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8442690A JP2967422B2 (en) 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8442690A JP2967422B2 (en) 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof

Publications (2)

Publication Number Publication Date
JPH03282182A true JPH03282182A (en) 1991-12-12
JP2967422B2 JP2967422B2 (en) 1999-10-25

Family

ID=13830259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8442690A Expired - Fee Related JP2967422B2 (en) 1990-03-30 1990-03-30 Air liquefaction separation device and control method thereof

Country Status (1)

Country Link
JP (1) JP2967422B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004372A (en) * 2001-06-26 2003-01-08 Nippon Sanso Corp Method and system for liquefying/separating air
EP1604160A2 (en) * 2003-03-20 2005-12-14 Praxair Technology, Inc. Method for operating a cryogenic plant
WO2014173496A3 (en) * 2013-04-25 2015-08-20 Linde Aktiengesellschaft Method for obtaining an air product in an air separating system with temporary storage, and air separating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445909B1 (en) * 2011-12-30 2014-10-01 주식회사 포스코아이씨티 System of managing Gas separating Plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004372A (en) * 2001-06-26 2003-01-08 Nippon Sanso Corp Method and system for liquefying/separating air
JP4699643B2 (en) * 2001-06-26 2011-06-15 大陽日酸株式会社 Air liquefaction separation method and apparatus
EP1604160A2 (en) * 2003-03-20 2005-12-14 Praxair Technology, Inc. Method for operating a cryogenic plant
EP1604160A4 (en) * 2003-03-20 2011-02-02 Praxair Technology Inc Method for operating a cryogenic plant
WO2014173496A3 (en) * 2013-04-25 2015-08-20 Linde Aktiengesellschaft Method for obtaining an air product in an air separating system with temporary storage, and air separating system
US10533795B2 (en) 2013-04-25 2020-01-14 Linde Aktiengesellschaft Method for obtaining an air product in an air separating system with temporary storage, and air separating system

Also Published As

Publication number Publication date
JP2967422B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
US5669238A (en) Heat exchanger controls for low temperature fluids
US3912476A (en) Air separating apparatus
US6332336B1 (en) Method and apparatus for maximizing the productivity of a natural gas liquids production plant
CN107490245B (en) Automatic load-variable control method for air separation device
JP3451453B2 (en) Air liquefaction separation device and control method thereof
US5355685A (en) Purification of refrigerant
JPH03282182A (en) Air liquefying separator and controlling method therefor
EP1522808A1 (en) Methods and systems for optimizing argon recovery in an air separation unit
JP4279540B2 (en) Control method of air separation device
CN211782274U (en) Advanced control system of air separation and air separation production system
US4674290A (en) Vent control for a vessel
JP2967421B2 (en) Method and apparatus for controlling argon sampling by air liquefaction separation
US4734114A (en) Controlling method of air separator
US4261719A (en) Method of and apparatus for controlling rate of material air supply to air separation plant
US4415142A (en) Apparatus for handling converter gas
JPS6155034B2 (en)
JP4803897B2 (en) Control method of air liquefaction separation device
CN220524729U (en) Improved chlorine liquefier of liquid supply system
JP3027368B1 (en) Air liquefaction separation device and control method thereof
JP2726970B2 (en) Control method of air liquefaction / separation equipment corresponding to demand fluctuation
Leegwater Industrial experience with double quality control
US4769056A (en) Distillation pressure control
JP3213848B2 (en) Nitrogen production apparatus and control method thereof
JPH05149679A (en) Air liquefying and separating device and its controlling method
RU1809268C (en) Method and device for automatic control of air separation process in cryogenic complex

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees