JP2560438B2 - Method for manufacturing aluminum nitride substrate - Google Patents

Method for manufacturing aluminum nitride substrate

Info

Publication number
JP2560438B2
JP2560438B2 JP63205584A JP20558488A JP2560438B2 JP 2560438 B2 JP2560438 B2 JP 2560438B2 JP 63205584 A JP63205584 A JP 63205584A JP 20558488 A JP20558488 A JP 20558488A JP 2560438 B2 JP2560438 B2 JP 2560438B2
Authority
JP
Japan
Prior art keywords
aln
substrate
aluminum nitride
firing
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63205584A
Other languages
Japanese (ja)
Other versions
JPH0254597A (en
Inventor
悦郎 宇田川
宏 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63205584A priority Critical patent/JP2560438B2/en
Publication of JPH0254597A publication Critical patent/JPH0254597A/en
Application granted granted Critical
Publication of JP2560438B2 publication Critical patent/JP2560438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔概要〕 窒化アルミニウム基板の製造方法に関し、 高純度で量産性に優れた窒化アルミニウム基板を製造
することを目的とし、 窒化アルミニウムからなるグリーンシートを載置して
焼成する焼成治具が、溶融アルミナよりなる焼成治具を
窒化し、この表面を窒化アルミニウムに変質したものを
使用し、この変質治具の上に前記のグリーンシートを載
置し、窒素気流中で焼成することで窒化アルミニウム基
板の製造方法を構成する。
DETAILED DESCRIPTION OF THE INVENTION [Outline] A method for manufacturing an aluminum nitride substrate, for the purpose of manufacturing an aluminum nitride substrate having high purity and excellent mass productivity, placing and firing a green sheet made of aluminum nitride. The firing jig was made by nitriding a firing jig made of fused alumina, and the surface of which was altered to aluminum nitride was used.The green sheet was placed on the alteration jig and fired in a nitrogen stream. This constitutes the method for manufacturing the aluminum nitride substrate.

〔産業上の利用分野〕[Industrial applications]

本発明は窒化アルミニウム基板の製造方法に関する。 The present invention relates to a method for manufacturing an aluminum nitride substrate.

大量の情報を迅速に処理する必要から情報処理装置は
小形大容量化が行われており、この装置の主体を構成す
る半導体装置は集積化が進み、LSIやVLSIが実用化され
ている。
Information processing devices have been downsized and increased in capacity because of the need to process a large amount of information quickly, and the semiconductor devices that make up the main components of these devices are becoming more integrated, and LSIs and VLSIs are being put to practical use.

こゝで、集積化は単位のトランジスタの小形化により
行われており、導体線路の最小幅として1μm程度のも
のが使用されている。
Here, the integration is performed by miniaturizing the unit transistor, and the minimum width of the conductor line is about 1 μm.

一方、単位のトランジスタには従来どおりの電流がO
N,OFFされることから集積度の増大と共に発熱量も増加
し、10mm角のチップで消費電力は10Wに及んでいる。
On the other hand, the current of the unit transistor is
Since it is turned off, the amount of heat generated increases as the degree of integration increases, and the power consumption reaches 10 W for a 10 mm square chip.

そのため、かゝるLSIチップを多数配列して搭載する
多層配線基板の発熱量は膨大となる。
Therefore, the amount of heat generated by a multilayer wiring board on which a large number of such LSI chips are arranged and mounted is enormous.

こゝで、半導体装置を信頼性よく安定に動作させるた
めには半導体チップの温度を85℃以下、最高でも100℃
以下に維持することが必要である。
Here, in order to operate the semiconductor device reliably and stably, the temperature of the semiconductor chip should be 85 ℃ or less, 100 ℃ at the maximum.
It is necessary to keep below.

そのため、多層配線基板を構成する基板は耐熱性と熱
伝導性が優れていることが必要である。
Therefore, it is necessary that the substrate constituting the multilayer wiring board has excellent heat resistance and thermal conductivity.

〔従来の技術〕[Conventional technology]

LSIやVLSIなどの半導体チップを搭載する基板として
は従来よりアルミナ(α−Al2O3)セラミック基板が使
用され、この基板を基本として冷却構造が考えられてい
る。
An alumina (α-Al 2 O 3 ) ceramic substrate has been conventionally used as a substrate on which a semiconductor chip such as an LSI or VLSI is mounted, and a cooling structure is considered based on this substrate.

すなわち、アルミナよりなる多層セラミック基板の上
にLSIチップをマトリックス状に配列し、それぞれのチ
ップの上に空冷用に設けられているフィンに代えてベロ
ーズを設け、この中に水を循環させチップを冷却するこ
とが行われている。
That is, LSI chips are arranged in a matrix on a multilayer ceramic substrate made of alumina, and bellows are provided on each chip instead of fins provided for air cooling, and water is circulated in the bellows to form the chips. It is being cooled.

また多層セラミック基板を底面とする密封構造体を作
り、低沸点冷媒を構造体の中に循環させて強制冷却する
などの方法も試みられている。
Further, a method of making a sealed structure having a multilayer ceramic substrate as a bottom surface and circulating a low boiling point refrigerant in the structure to forcibly cool it has been attempted.

こゝで、アルミナセラミック基板の熱伝導率はガラス
セラミック基板などに較べると優れているものゝ17〜20
W/mk程度であり、半導体チップの温度上昇を防ぐために
は基板材料を代え、基板を通しての放熱量を増加するこ
とが必要である。
Here, the thermal conductivity of alumina ceramic substrates is superior to that of glass ceramic substrates.
It is about W / mk, and in order to prevent the temperature rise of the semiconductor chip, it is necessary to change the substrate material and increase the heat radiation amount through the substrate.

こゝで、耐熱性と熱伝導率の優れたセラミックスとし
て窒化アルミニウム(AlN)がある。
Here, aluminum nitride (AlN) is a ceramic with excellent heat resistance and thermal conductivity.

このAlNは高温で昇華する性質があり、融点は超高圧
の条件で測定して3000℃以上であり、安定な窒化物であ
る。
This AlN has the property of sublimating at high temperatures, and its melting point is 3000 ° C or higher when measured under ultrahigh pressure conditions, and it is a stable nitride.

また熱伝導率は260W/mk(理論値320W/mk)とα−Al2O
3の熱伝導率が20W/mkであるのに較べ大幅に大きい。
The thermal conductivity is 260 W / mk (theoretical value 320 W / mk) and α-Al 2 O
The thermal conductivity of 3 is 20 W / mk, which is significantly higher than that of 3.

そのため、AlNセラミック基板の実用化が進められて
いる。
Therefore, AlN ceramic substrates are being put into practical use.

次に、AlNセラミック基板を作る方法としてAlNの粉末
を型成形し、高圧を加えて焼成するホットプレス法があ
るが、この方法は量産性に劣り、またパターン精度の点
で高精度の多層配線基板を作ることは不可能である。
Next, as a method of making an AlN ceramic substrate, there is a hot press method in which AlN powder is molded and is baked under high pressure. However, this method is inferior in mass productivity and has a high accuracy in terms of pattern accuracy. It is impossible to make a substrate.

そこで、AlN粉末に焼結助剤を加え、グリーンシート
を作って焼成する方法が実用的であり、この方法が研究
されている。
Therefore, a method in which a sintering aid is added to AlN powder to make a green sheet and fired is practical, and this method has been studied.

そして研究が進められた結果、焼結助剤としては酸化
イットリウム(Y2O3)や酸化カルシウム(CaO)が適し
ており、また1900℃を越す高温で焼成を行うために純度
が高く、緻密で且つ反りのないセラミック基板を得るに
は焼成治具(以下略してセッター)の選択やグリーンシ
ートの配置方法が大切であることなどが公知である。
As a result of further research, yttrium oxide (Y 2 O 3 ) and calcium oxide (CaO) are suitable as sintering aids, and since sintering is performed at a high temperature of over 1900 ° C, the purity and density are high. It is well known that the selection of a firing jig (hereinafter abbreviated as a setter) and the method of arranging the green sheets are important in order to obtain a ceramic substrate that does not warp.

すなわち、焼成温度1800℃を越す材料を焼成する場合
には断熱剤,発熱体などをグラファイト(黒鉛)を用い
て焼成した炉を用い、焼成試料をグラファイト製の容器
に収めて焼成を行うのが通例であるが、この方法を用い
てAlNグリーンシートの焼成を行うとグリーンシートに
含まれている焼結助剤がグラファイトによって還元され
てしまう。
That is, when firing a material having a firing temperature of more than 1800 ° C., it is preferable to use a furnace in which a heat insulating material, a heating element, etc. are fired using graphite (graphite) and to fire the fired sample in a graphite container. As is customary, when the AlN green sheet is fired using this method, the sintering aid contained in the green sheet is reduced by graphite.

そのためにグラファイト容器の内側をAlNや窒化硼素
(BN)の粉末で覆うなどの方法が採られている。
Therefore, a method of covering the inside of the graphite container with powder of AlN or boron nitride (BN) is adopted.

また、平坦なAlN基板を得る方法としてBNセッターとA
lNグリーンシートを交互に積み重ね、BN容器に入れて焼
成する方法も採られている。
In addition, as a method to obtain a flat AlN substrate, BN setter and A
lN green sheets are alternately stacked, placed in a BN container and fired.

然し、この方法による場合にはAlN基板の表面にBNの
拡散が生じて汚染が生じたり、グリーンシートの四隅で
の収縮が大きいことが原因で反りや「うねり」のある基
板が生じ易いと云う問題がある。
However, in this method, BN is diffused on the surface of the AlN substrate to cause contamination, and it is easy to produce a substrate with warpage or "waviness" due to large shrinkage at the four corners of the green sheet. There's a problem.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

以上記したように熱伝導率が大きく、また耐熱性が優
れている点からAlN基板が着目され、実用化が進められ
ているが、汚染や変形のない平坦な基板を得る方法を開
発することが課題である。
As mentioned above, AlN substrates are attracting attention because of their high thermal conductivity and excellent heat resistance, and they are being put into practical use, but to develop a method for obtaining flat substrates that are free from contamination and deformation. Is an issue.

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題はAlNからなるグリーンシートを載置して
焼成するセッターとして、溶融アルミナよりなる焼成治
具を窒化し、この表面をAlNに変質したものを使用し、
このセッターの上に前記のグリーンシートを載置し、N2
気流中で焼成してAlN基板を製造することにより解決す
ることができる。
As a setter for mounting and firing a green sheet made of AlN, the above-mentioned problem uses a furnace in which a firing jig made of fused alumina is nitrided and the surface of which is changed to AlN.
The green sheet is placed on top of the setter, N 2
This can be solved by firing in an air stream to produce an AlN substrate.

〔作用〕[Action]

本発明はセッターとして溶融アルミナの表面を窒化
し、この表面をAlNに変質させたものを用いることによ
り平滑で且つ安定なセッターを得るものである。
The present invention is to obtain a smooth and stable setter by nitriding the surface of fused alumina as a setter and using the one whose surface is modified to AlN.

すなわち、AlNセッターの上にAlNからなるグリーンシ
ートを置くことにより、異種元素の拡散による汚染をな
くすことができる。
That is, by placing a green sheet made of AlN on the AlN setter, it is possible to eliminate contamination due to diffusion of different elements.

こゝで、焼成中における両者の融着が考えられるが、
先に記したようにAlNは超高圧のもとで3000℃以上の温
度で初めて融けるため、1900℃程度の温度では安定で融
着が起こることはない。
Here, it is possible to fuse the two during firing.
As described above, AlN melts for the first time at a temperature of 3000 ° C or higher under ultrahigh pressure, so that it is stable and does not cause fusion at a temperature of about 1900 ° C.

また、グラファイトやBNが直接にグリーンシートと接
することがないので、汚染や焼結助剤の還元が起こるこ
ともない。
Further, since graphite and BN do not come into direct contact with the green sheet, neither contamination nor reduction of the sintering aid occurs.

なお、溶融アルミナ上に形成するAlNの厚さは少なく
とも500μm以上、好ましくは1mm以上が必要で、この理
由は焼成処理中に溶融アルミナの表面への拡散を防止す
るためであり、この厚さのAlNを作る窒化条件は処理温
度は実験の結果、1800〜2050℃、好ましくは1900〜2000
℃、またN2のガス圧としては10Kg/cm2好ましくは100Kg/
cm2が必要である。
The thickness of AlN formed on the fused alumina must be at least 500 μm or more, preferably 1 mm or more, because the reason is to prevent the fused alumina from diffusing to the surface during the firing treatment. The nitriding condition for making AlN is that the treatment temperature is 1800 to 2050 ° C, preferably 1900 to 2000, as a result of experiments.
℃, N 2 as a gas pressure of 10 Kg / cm 2 preferably 100 Kg /
cm 2 required.

また、このようにして形成したセッターの上に載置し
て焼成するAlNグリーンシートの焼成条件としては最高
温度が1800〜1950℃、好ましくは1850〜1900℃がよく、
1気圧で1m3/h以上の流量でN2ガスを流しながら焼成す
るとよい。
Further, as a firing condition of the AlN green sheet to be placed and fired on the setter thus formed, the maximum temperature is 1800 to 1950 ° C, preferably 1850 to 1900 ° C,
It is advisable to perform firing while flowing N 2 gas at a flow rate of 1 m 3 / h or more at 1 atm.

〔実施例〕 実施例1:(セッターの製造例) 大きさが100×100mmで厚さが10mmの平滑な溶融アルミ
ナ基板を用意し、第2図に示すようにグラファイト容器
の中にBNをスペーサとして積み重ねた。
[Example] Example 1: (Manufacturing example of setter) A smooth fused alumina substrate having a size of 100 x 100 mm and a thickness of 10 mm was prepared, and BN was used as a spacer in a graphite container as shown in Fig. 2. Stacked as.

すなわち、側面に複数の穴1の開いているグラファイ
ト容器2の底部にBNスペーサ3を置き、この上に溶融ア
ルミナ基板4を置き、同図に示すようにBNスペーサ3と
溶融アルミナ基板4とを交互に五重に積み重ねグラファ
イトからなる蓋5を置き、この容器2を加圧焼成炉の中
にセットした。
That is, a BN spacer 3 is placed on the bottom of a graphite container 2 having a plurality of holes 1 on its side surface, a fused alumina substrate 4 is placed on the BN spacer 3, and the BN spacer 3 and the fused alumina substrate 4 are placed as shown in FIG. The lid 5 made of graphite was alternately stacked in five layers, and the container 2 was set in a pressure firing furnace.

先ず、炉内をN2ガスで充分に置換した後、室温で100K
g/cm2の圧力になるまで封入し、1950℃まで4時間かけ
て昇温した。
First, after thoroughly replacing the inside of the furnace with N 2 gas, 100 K at room temperature
It was sealed until the pressure reached g / cm 2 , and the temperature was raised to 1950 ° C. over 4 hours.

この時、1950℃における炉内の圧力は500Kg/cm2であ
った。
At this time, the pressure in the furnace at 1950 ° C was 500 Kg / cm 2 .

そして、この状態を6時間保持した後、室温まで徐冷
することにより溶融アルミナ基板4の表面に厚さが1mm
のAlNを形成した。
Then, after keeping this state for 6 hours, the surface of the fused alumina substrate 4 is cooled to room temperature to a thickness of 1 mm.
Formed AlN.

この窒化した溶融アルミナの破断面を走査電子顕微鏡
(SEM)とX線マイクロアナライザ(XMA)で観察したと
ころ、表面から約1mmの厚さまでAlとNとが1:1の強度で
観察され、酸素(O)の存在は認められなかった。
Observation of the fractured surface of this nitrided fused alumina with a scanning electron microscope (SEM) and an X-ray microanalyzer (XMA) showed that Al and N were observed with a strength of 1: 1 from the surface to a thickness of about 1 mm, and oxygen was observed. The presence of (O) was not recognized.

実施例2:(AlN基板の製造例) 平均粒径が1μmのAlN粉に焼結助剤として炭酸カル
シウム(CaCO3)をCaO換算で2重量%添加し、このセラ
ミック粉100gに対し、有機バインダとしてポリビニルブ
チラール(略称PVB)を12g添加し、これに溶剤としてア
ルコールとアセトンを加え、ボールミルで50時間混練し
てスラリーとし、ドクターブレード法により厚さが150
μmのグリーンシートを形成した。
Example 2 (Production Example of AlN Substrate) Calcium carbonate (CaCO 3 ) was added as a sintering aid in an amount of 2% by weight in terms of CaO to AlN powder having an average particle size of 1 μm, and 100 g of this ceramic powder was mixed with an organic binder. Polyvinyl butyral (abbreviated as PVB) 12g is added as this, alcohol and acetone are added as a solvent to this, and it is kneaded with a ball mill for 50 hours to form a slurry.
A μm green sheet was formed.

このグリーンシートの10枚を積層し、厚さが1mmの積
層体とし、これを600℃,9時間の条件で湿潤N2中で加熱
して脱脂をした。
Ten green sheets were laminated to form a laminated body having a thickness of 1 mm, and the laminated body was heated and degreased in wet N 2 at 600 ° C. for 9 hours.

第1図はこのようにして形成したAlN積層体の焼成方
法を示すもので、グラファイト容器2の底にBNスペーサ
3を介して実施例1で作ったセッター6をおき、この上
にAlNグリーンシート7を載置した。
FIG. 1 shows a method of firing the AlN laminate formed in this way. The setter 6 made in Example 1 is placed on the bottom of the graphite container 2 via the BN spacer 3 and the AlN green sheet is placed on top of this. 7 was placed.

そして、セッター6の隅にBNスペーサ3を置き、この
上に同図に示すようにセッター6とグリーンシート7を
置き、これを三回繰り返し、従来のようにグラファイト
からなる蓋5をした。
Then, the BN spacer 3 was placed in the corner of the setter 6, the setter 6 and the green sheet 7 were placed thereon as shown in the same figure, and this was repeated three times, and the lid 5 made of graphite was used as in the conventional case.

そして1気圧で10/分の条件でN2を流しながら1900
℃,10時間の条件で焼成して多層基板を作った。
Then, while flowing N 2 under the condition of 1 atm and 10 / min, 1900
A multilayer substrate was prepared by firing at 10 ° C for 10 hours.

そして、この密度と熱伝導率および反りを測定したと
ころ第1表のような優れた値を得ることができた。
When the density, thermal conductivity and warpage were measured, excellent values as shown in Table 1 could be obtained.

なお、密度3.246は相対密度で99.6%に対応してい
る。
The density of 3.246 corresponds to a relative density of 99.6%.

〔発明の効果〕〔The invention's effect〕

本発明によれば緻密で熱伝導率が高く、汚染がなく平
坦で且つ反りのないAlN基板を量産することができる。
According to the present invention, it is possible to mass-produce an AlN substrate that is dense, has high thermal conductivity, is free from contamination, is flat, and has no warp.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るAlN基板の製造方法を示す断面
図、 第2図は本発明に係るセッターの製造方法を示す断面
図、 である。 図において、 2はグラファイト容器、3はBNスペーサ、 4は溶融アルミナ基板、5は蓋、 6はセッター、7はグリーンシート、 である。
FIG. 1 is a sectional view showing a method for manufacturing an AlN substrate according to the present invention, and FIG. 2 is a sectional view showing a method for manufacturing a setter according to the present invention. In the figure, 2 is a graphite container, 3 is a BN spacer, 4 is a fused alumina substrate, 5 is a lid, 6 is a setter, and 7 is a green sheet.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面を窒化した熔融アルミナの焼成治具の
上に窒化アルミニウムからなるグリーンシートを載置
し、窒素気流中で焼成することを特徴とする窒化アルミ
ニウム基板の製造方法。
1. A method for producing an aluminum nitride substrate, comprising placing a green sheet made of aluminum nitride on a firing jig of fused alumina whose surface is nitrided, and firing it in a nitrogen stream.
JP63205584A 1988-08-18 1988-08-18 Method for manufacturing aluminum nitride substrate Expired - Lifetime JP2560438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205584A JP2560438B2 (en) 1988-08-18 1988-08-18 Method for manufacturing aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205584A JP2560438B2 (en) 1988-08-18 1988-08-18 Method for manufacturing aluminum nitride substrate

Publications (2)

Publication Number Publication Date
JPH0254597A JPH0254597A (en) 1990-02-23
JP2560438B2 true JP2560438B2 (en) 1996-12-04

Family

ID=16509299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205584A Expired - Lifetime JP2560438B2 (en) 1988-08-18 1988-08-18 Method for manufacturing aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JP2560438B2 (en)

Also Published As

Publication number Publication date
JPH0254597A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
JP6399252B2 (en) Circuit board and silicon nitride sintered substrate manufacturing method
JP4013386B2 (en) Support for manufacturing semiconductor and method for manufacturing the same
JP2000058631A5 (en)
US9142439B2 (en) Laminated structure, member for semiconductor manufacturing apparatus, and method for producing laminated structure
JP2024015261A (en) Method for manufacturing sintered silicon nitride substrate
JP2560438B2 (en) Method for manufacturing aluminum nitride substrate
US6316116B1 (en) Ceramic circuit board and method of manufacturing the same
JP2007248317A (en) Heating and cooling module
JP6263301B1 (en) Ceramic substrate and semiconductor module
JP2727652B2 (en) Method for firing aluminum nitride substrate
JPH0624880A (en) Metal-ceramic material and production thereof
JPH0196067A (en) Production of aluminum nitride sintered body
JP3177650B2 (en) High-strength alumina sintered body and method for producing the same
JP2661258B2 (en) Manufacturing method of aluminum nitride substrate
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JP6163246B1 (en) Manufacturing method of ceramic substrate
JP2008088022A (en) Method of manufacturing aluminum nitride substrate
KR101742063B1 (en) Silicon Carbide Heatsink and Manufacturing Method Thereof
JPH03151688A (en) Manufacture of aluminum nitride wiring board
JPH0397682A (en) Production of vessel having setter and method for calcining aluminum nitride substrate by using this vessel
JPH03155693A (en) Manufacture of aluminum nitride wiring board
JPH0818232A (en) Glass ceramic substrate
JP2712639B2 (en) Manufacturing method of aluminum nitride substrate
JP2003146761A (en) Aluminum nitride sintered compact, method of producing the same, and circuit board using the sintered compact
JPH0288467A (en) Aluminum nitride sintered body and production thereof