JPH03155693A - Manufacture of aluminum nitride wiring board - Google Patents

Manufacture of aluminum nitride wiring board

Info

Publication number
JPH03155693A
JPH03155693A JP29560989A JP29560989A JPH03155693A JP H03155693 A JPH03155693 A JP H03155693A JP 29560989 A JP29560989 A JP 29560989A JP 29560989 A JP29560989 A JP 29560989A JP H03155693 A JPH03155693 A JP H03155693A
Authority
JP
Japan
Prior art keywords
green sheet
temperature
firing
nitride
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29560989A
Other languages
Japanese (ja)
Inventor
Mineharu Tsukada
峰春 塚田
Koji Omote
孝司 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29560989A priority Critical patent/JPH03155693A/en
Publication of JPH03155693A publication Critical patent/JPH03155693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To obtain a nitriding aluminum interconnection substrate which has a high density and excellent heat conductivity without increasing the resistance of conductor made of tungsten by installing a laminated body of AlN green sheet wherein a conductor pattern is printed with W paste to an enclosed vessel made of nitriding ceramics and firing the laminated body under a nitrogen gas ambient atmosphere at or below a temperature at which said nitriding ceramics starts decomposition. CONSTITUTION:A green sheet, after dried, is punched into 100mm square. This punched green sheet is screen-printed with W paste and then grease-removed for 4 hours under an N2 ambient atmosphere of 900 deg.C after the lamination. Then, this green sheet 3 is set into a nitriding ceramics enclosed vessel 1 and fired at a temperature ranging from 1550 to 1750 deg.C under an N ambient atmosphere or more specifically at or below the temperature at which nitrides start decomposition. W is not affected by the vessel according to this manufacturing method. Therefore, conductor resistance indicates a proper value and provides an accurate substrate having an excellent thermal conductivity.

Description

【発明の詳細な説明】 〔概要〕 窒化アルミニウム配線基板の製造方法に関し、導体抵抗
値が低い窒化アルミニウム配線基板の製造方法を実用化
することを目的とし、タングステンペーストを用いて導
体パターンを印刷した窒化アルミニウム・グリンシート
を積層した後、該積層体を窒化アルミニウム或いは窒化
硅素などの窒化物セラミックスよりなる密閉容器中に設
置し、窒素ガス雰囲気中で前記酸化物セラミックスが分
解を始める温度以下の温度で焼成して焼結させ、前記積
層体を一体化することを特徴として窒化アルミニウム配
線基板の製造方法を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing an aluminum nitride wiring board, a conductor pattern was printed using tungsten paste with the aim of putting into practical use a method for manufacturing an aluminum nitride wiring board with a low conductor resistance value. After laminating the aluminum nitride green sheets, the laminated body is placed in a sealed container made of nitride ceramics such as aluminum nitride or silicon nitride, and the temperature is lower than the temperature at which the oxide ceramic starts to decompose in a nitrogen gas atmosphere. The method for manufacturing an aluminum nitride wiring board is characterized in that the laminated body is integrated by firing and sintering the aluminum nitride wiring board.

〔産業上の利用分野〕[Industrial application field]

本発明は窒化アルミニウム配線基板の製造方法に関する
The present invention relates to a method of manufacturing an aluminum nitride wiring board.

大量の情報を高速に処理する必要から情報処理装置は小
形大容量化が行われており、この装置の主体を占める半
導体集積回路は集積度が向上してLSIやVLSIが実
用化されている。
Due to the need to process a large amount of information at high speed, information processing devices are becoming smaller and larger in capacity, and the degree of integration of semiconductor integrated circuits that form the main body of these devices has improved, and LSI and VLSI have been put into practical use.

そして、これらの集積回路はチップのま\で複数個をセ
ラミックスからなるチップ搭載用基板(インターポーザ
)に搭載してLS【モジニールを作り、これを取替え単
位として印刷配線基板などに装着する実装形体がとられ
つ\ある。
These integrated circuits are mounted as chips on a chip mounting substrate (interposer) made of ceramics to create a LS [modinir], which is then mounted as a replacement unit on a printed wiring board, etc. There is a toretsu.

このように半導体集積回路の集積度が増し、また高密度
実装が行われるに従って装置の発熱量も加速度的に増加
している。
As described above, as the degree of integration of semiconductor integrated circuits increases and high-density packaging is performed, the amount of heat generated by devices is also increasing at an accelerating pace.

すなわち、当初はIC−チップ当たりの発熱量は約3.
5W程度と少なかったが、現在LSI−チップ当たりの
発熱量は約10W程度に増加しており、これがマトリッ
クス状に多数個装着されている場合は発熱量は膨大であ
り、これは更に増加する傾向にある。
That is, initially, the amount of heat generated per IC chip was approximately 3.
The amount of heat generated per LSI chip used to be as low as 5W, but now the amount of heat generated per LSI chip has increased to about 10W.If a large number of chips are installed in a matrix, the amount of heat generated is enormous, and this is likely to increase further. It is in.

従来、 LSIチップなどを搭載する基板は熱伝導度が
高く、耐熱性が優れたアルミナ(A12es)が使用さ
れてきた。
Conventionally, alumina (A12es), which has high thermal conductivity and excellent heat resistance, has been used for substrates on which LSI chips and the like are mounted.

然し、アルミナの熱伝導度は優れているもの\20W 
/sK程度であり、上記のチップ搭載用基板用材料とし
ては不充分である。
However, alumina has an excellent thermal conductivity of 20W.
/sK, which is insufficient as a material for the above-mentioned chip mounting substrate.

そこで、熱伝導度が320 W/mK (理論値)と大
きなAINが着目され、この基板の実用化が進められて
いる。
Therefore, attention has been focused on AIN, which has a high thermal conductivity of 320 W/mK (theoretical value), and efforts are being made to put this substrate into practical use.

第1表は両者の特性を比較したものである。Table 1 compares the characteristics of both.

第1表 すなわち、AINは熱伝導度が優れている以外に熱膨張
係数が小さく、LsIを構成するSiの熱膨張係数(3
,6X 10−’/ t )に近く、また誘電率が小さ
いことは信号の遅延時間を少なくシ、また多層基板を形
成する場合に漏話(Crosstalk)を少なくでき
る点からも有利である。
Table 1 shows that in addition to excellent thermal conductivity, AIN has a small coefficient of thermal expansion, and the coefficient of thermal expansion (3
, 6X 10-'/t), and the dielectric constant is small, which is advantageous in terms of reducing signal delay time and reducing crosstalk when forming a multilayer substrate.

〔従来の技術〕[Conventional technology]

Anは融点が高く、基板の焼成は1800℃を越す高温
で行われることから導体線路の構成金属としては高融点
のタングステン(W)を用い、電子回路の形成はWペー
ストをグリンシート上にスクリーン印刷し、これを焼成
することによって行われている。
Since An has a high melting point and the substrate is fired at a high temperature exceeding 1800°C, tungsten (W) with a high melting point is used as the constituent metal of the conductor line, and the electronic circuit is formed by screening W paste on a green sheet. This is done by printing and firing.

また、グリシジ−1・を格納して焼成する焼成容器の構
成材料も限られており、高温においても安定な窒化硼素
(BN)やグラファイト(C)などが用いられている。
Furthermore, the materials for constructing the firing container for storing and firing Glyci-1 are limited, and materials such as boron nitride (BN) and graphite (C), which are stable even at high temperatures, are used.

然し、これらの焼成容器を使用して検討した結果、グラ
ファイト容器を用いて焼成した基板はグラファイトの還
元力によって著しい重量減少を示し、緻密な基板が得ら
れないことが判った。
However, as a result of studies using these firing containers, it was found that substrates fired using graphite containers showed a significant weight loss due to the reducing power of graphite, and a dense substrate could not be obtained.

また、ON容器を用いた場合はAlの緻密化には有効で
あるが、BNがWと反応して硼化タングステン(11,
8)を生じ、導体抵抗を著しく増大させることが判った
In addition, when using an ON container, it is effective for densifying Al, but BN reacts with W, resulting in tungsten boride (11,
8) and significantly increased the conductor resistance.

以上のことから、AINグリンシートの焼成にはBN容
器が適するもの\、導体線路をスクリーン印刷したへI
Nグリンシートの焼成には向いておらず、この解決が必
要であった。
From the above, we found that BN containers are suitable for firing AIN green sheets.
It is not suitable for firing N-green sheets, and a solution to this problem was needed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

INグリンシートの焼成にあたって使用されている8N
焼成容器は熱伝導率の高いAIN基板を得るためのもの
で、Wのような導体線路を設けた^j2Nグリンシート
の焼成には向いていない。
8N used in firing IN Grin sheet
The firing container is used to obtain an AIN substrate with high thermal conductivity, and is not suitable for firing ^j2N green sheets provided with conductor lines such as W.

そこで、これに適した焼成容器を実用化することが課題
である。
Therefore, the challenge is to put into practical use a firing container suitable for this purpose.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題はWペーストを用いて導体パターンを印刷し
たへβNグリンシートを積層した後、この積層体を窒化
アルミニウム或いは窒化硅素などの窒化物セラミックス
よりなる密閉容器中に設置し、窒素ガス雰囲気中で前記
の窒化物セラミックスが分解を始める温度以下の温度で
焼成して焼結させ、積層体を一体化することを特徴とす
る特許N配I!基板の製造方法を構成することにより解
決することができる。
The above problem was solved by laminating βN green sheets printed with conductive patterns using W paste, then placing this laminated body in a closed container made of nitride ceramics such as aluminum nitride or silicon nitride, and placing it in a nitrogen gas atmosphere. The patent N-I is characterized in that the nitride ceramic is fired and sintered at a temperature below the temperature at which it begins to decompose, thereby integrating the laminate. This problem can be solved by configuring the substrate manufacturing method.

第2表 〔作用〕 従来、AiNグリンシートの焼成温度は1800〜19
00℃が好ましいとされており、この観点から融点が3
550℃のグラファイトや融点が3000℃以上のEI
Nなどが焼成容器として使用されてきた。
Table 2 [Function] Conventionally, the firing temperature of AiN green sheets was 1800 to 19
It is said that 00℃ is preferable, and from this point of view, the melting point is 3
Graphite with a temperature of 550℃ and EI with a melting point of 3000℃ or higher
N and the like have been used as firing containers.

然し、発明者等は焼成時間を従来より伸ばすことにより
焼成温度を1550℃以上にまで下げることができ、ま
た充分に緻密な基板が得られることが判った。
However, the inventors found that by extending the firing time compared to the conventional method, the firing temperature could be lowered to 1550° C. or higher, and a sufficiently dense substrate could be obtained.

そのため、焼成容器としては窒化アルミニウム(^lN
>或いは窒化硅素(Si3N4)、などの窒化物セラミ
ックスが使用でき、この場合、Wは焼成容器の影響を受
けないために導体抵抗も本来の値を示すことが判った。
Therefore, aluminum nitride (^lN) is used as a firing container.
Alternatively, nitride ceramics such as silicon nitride (Si3N4) can be used; in this case, it has been found that the conductor resistance shows its original value because W is not affected by the firing vessel.

第2表にこれら窒化物の融点と沸点との関係を示した。Table 2 shows the relationship between the melting point and boiling point of these nitrides.

一方、これらの窒化物を容器として使用する場合の注意
事項としては、6Nやグラファイトに較べると融点が低
いために焼成温度が高すぎると蒸気圧が高くなり、消耗
が激しくなることから、使用温度の上限を規定する必要
があり、発明者等は実験の結果、焼成温度を1750℃
以下にすればよいことが判った。
On the other hand, when using these nitrides as containers, it is important to note that their melting point is lower than that of 6N or graphite, so if the firing temperature is too high, the vapor pressure will be high and the consumption will be rapid. As a result of experiments, the inventors determined that the firing temperature should be set at 1750°C.
I found that I could do the following.

また、セラミックスの焼結に使用する焼結助剤について
は、従来よりイツトリウム(Y)系化合物(例えば酸化
イツトリウムYarn)とカルシウム(Ca)系化合物
(例えば炭酸カルシウムCaC05)が用いられている
が、Y系は液相の発生温度が1700℃以上と高いため
に、本発明のように従来より低温で焼成する場合には不
適当である。
Furthermore, as for sintering aids used in sintering ceramics, yttrium (Y)-based compounds (e.g., yttrium oxide Yarn) and calcium (Ca)-based compounds (e.g., calcium carbonate CaC05) have been used. Y-based materials have a liquid phase generation temperature as high as 1700° C. or higher, and are therefore unsuitable for firing at lower temperatures than conventional ones, as in the present invention.

一方、Ca系は液相の発生温度が1400℃以上とY系
に較べると低いために本発明の目的に適しており、その
ため本発明の目的にはCa系が或いはこれとY系との混
合物の使用が適している。
On the other hand, Ca-based systems are suitable for the purpose of the present invention because their liquid phase generation temperature is 1400°C or higher, which is lower than that of Y-based systems. is suitable for use.

次に、焼結助剤の添加量としてはAlN100重量部に
対して0.5〜10重量%が適当である。
Next, the appropriate amount of the sintering aid added is 0.5 to 10% by weight based on 100 parts by weight of AlN.

また導体材料としては従来のアルミナ基板と同様にWペ
ーストを用いればよい。
Further, as the conductor material, W paste may be used as in the case of conventional alumina substrates.

〔実施例〕〔Example〕

A11N粉末100重量部に、焼結助剤としてCaC口
。或いはCaCO5とY2O,の混合物を用い、これに
バインダとしてポリビニルブチラール(略称PVB)を
10重量部、可塑剤としてジブチルフタレート(略称D
IP)を10重量部、分散媒としてエチルアルコールを
50重量部を加え、ボールミルで混練してスラリーを作
り、ドクターブレード法により成形ギャップ450μm
、送り速度2.3m/分の条件で成形を行い、グリンシ
ートを作った。
Add CaC as a sintering aid to 100 parts by weight of A11N powder. Alternatively, a mixture of CaCO5 and Y2O is used, with 10 parts by weight of polyvinyl butyral (abbreviated as PVB) as a binder and dibutyl phthalate (abbreviated as D) as a plasticizer.
Add 10 parts by weight of IP) and 50 parts by weight of ethyl alcohol as a dispersion medium, knead with a ball mill to make a slurry, and use the doctor blade method to form a slurry with a forming gap of 450 μm.
A green sheet was produced by molding at a feed rate of 2.3 m/min.

このグリンシートを乾燥した後、100 M角に打ち抜
き、このグリンシートにWペーストをスクリーン印刷し
、積層した後、900 t:のN2雰囲気中で4時間脱
脂した。
After drying this green sheet, it was punched out into a 100 M square, W paste was screen printed on this green sheet, the sheets were laminated, and then degreased for 4 hours in a N2 atmosphere at 900 tons.

次に、このグリンシートを第1図に示す窒化セラミック
ス密閉容器中にセットし、第3表と第4表に示す各種の
条件で焼成し、基板の密度、熱伝導率および導体抵抗を
測定した。
Next, this green sheet was set in the nitride ceramic sealed container shown in Figure 1, and fired under various conditions shown in Tables 3 and 4, and the density, thermal conductivity, and conductor resistance of the substrate were measured. .

こ\で、第1図に示す窒化セラミックス密閉容器の構造
は従来使用されているB〜やグラファイト密閉容器と全
く同じであり、この実施例の場合、窒化物セラミックス
よりなる密閉容器1の大きさは内径が1100mmX1
00の正方形であり、この中に同じ窒化物セラミックス
よりなり、厚さが5柵のセッターがあり、この上に先に
形成したグリンシート3をセットし、この上に窒化物セ
ラミックスよりなる蓋4が被せである。
The structure of the nitride ceramic closed container shown in Fig. 1 is exactly the same as the conventionally used B~ and graphite closed containers, and in the case of this example, the size of the closed container 1 made of nitride ceramics is The inner diameter is 1100mm x 1
00 square, and inside this is a setter made of the same nitride ceramics with a thickness of 5 bars, on which the previously formed green sheet 3 is set, and on top of this is a lid 4 made of nitride ceramics. is covered.

そして、この窒化物セラミックス密閉容器をそ第 8表 第4 表 れぞれiN製および5isN4製と変え、これをN。Then, this nitride ceramic hermetic container was Table 8 Fourth table These were replaced with those made by iN and 5isN4, respectively.

雰囲気中で600℃/時の昇温速度で設定温度にまで昇
温し、設定時間に亙って加熱して焼結を行わせ、その後
に自然冷却を行って取り出した。
The temperature was raised to a set temperature in an atmosphere at a heating rate of 600° C./hour, heated for a set time to perform sintering, and then naturally cooled and taken out.

第3表はINよりなる密閉容器を用いて焼成した結果を
、また第4表はSi、N、よりなる密閉容器を用いて焼
成した結果であり、焼結密度、熱伝導度および導体抵抗
の欄にO印、Δ、×、◎などが記しであるが、焼結密度
の欄のQ印は99.0%以上、Δ印は97.0〜99.
0. X印は97.0%以下の密度であることを示して
いる。
Table 3 shows the results of firing using a sealed container made of IN, and Table 4 shows the results of firing using a sealed container made of Si, N. The columns are marked with O marks, Δ, ×, ◎, etc., and the Q marks in the sintered density column are 99.0% or more, and the Δ marks are 97.0 to 99.
0. The X mark indicates a density of 97.0% or less.

また、熱伝導度の欄のO印は180W/mK以上。Also, the O mark in the thermal conductivity column is 180W/mK or higher.

Δ印は150〜180 W/mK、 X印は150W/
mK以下の値であることを示している。
Δ mark is 150 to 180 W/mK, X mark is 150 W/mK
This indicates that the value is less than mK.

また、導体抵抗の欄のO印は15iΩノロ以下、Δ印は
15〜20 mΩ/口、X印は20 ffiΩ/口以上
の値以上ることを示している。
Further, in the conductor resistance column, the O mark indicates a value of 15 iΩ or less, the Δ mark indicates a value of 15 to 20 mΩ/mouth, and the X mark indicates a value of 20 ffiΩ/mouth or more.

また、◎印は発明者等が推奨する処理条件であることを
示している。
Further, the mark ◎ indicates that the processing conditions are recommended by the inventors.

第3表と第4表において、例1〜例14は何れも良好な
結果が得られているが、これ以外の条件は何れかの問題
があり、好ましくない。
In Tables 3 and 4, good results were obtained in Examples 1 to 14, but other conditions had some problems and were not preferred.

すなわち、例15は基板自体は良好であるが、焼成温度
が高く、また時間が長いために密閉容器の消耗が甚だし
い。
That is, in Example 15, although the substrate itself was good, the firing temperature was high and the time was long, resulting in considerable wear and tear on the closed container.

また、例16は焼成時間が短すぎるために基板の焼結が
進んでいない。
Further, in Example 16, the sintering of the substrate did not progress because the firing time was too short.

また、例17.18は焼成温度が低すぎるために焼結が
進んでいない。
Furthermore, in Examples 17 and 18, sintering did not progress because the firing temperature was too low.

また、例19.20はAj2N基板の焼成はよいが導体
抵抗が異常に増加するために不良である。
Further, in Examples 19 and 20, the firing of the Aj2N substrate was good, but the conductor resistance was abnormally increased, so it was defective.

また、例21はiNおよび焼結助剤がグラファイトによ
り還元されるために焼結が進行していない。
Further, in Example 21, sintering did not proceed because iN and the sintering aid were reduced by graphite.

以上の結果から判るように導体パターンを印刷したAf
Nグリンシートを窒化物セラミックスよりなる密閉容器
に設置し、1550〜1750℃のように窒化物が分解
し始める温度以下で焼成することにより特性の良い基板
を得ることができる。
As can be seen from the above results, Af
A substrate with good characteristics can be obtained by placing an N-green sheet in a closed container made of nitride ceramics and firing it at a temperature below the temperature at which the nitride begins to decompose, such as 1550 to 1750°C.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施によりWかる導体抵抗の
増加を伴うことなく密度が高く伝導率の優れたAj?N
基板を得ることができ
As described above, by carrying out the present invention, Aj? N
you can get the board

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る窒化物セラミックス密閉容器の断
面図である。 回 手において、 lは密閉容器、 3はグリンシート、 2はセッター 4は蓋、 である。
FIG. 1 is a sectional view of a nitride ceramic sealed container according to the present invention. In the turn, l is a closed container, 3 is a green sheet, 2 is a setter 4 is a lid, and these are.

Claims (2)

【特許請求の範囲】[Claims] (1)タングステンペーストを用いて導体パターンを印
刷した窒化アルミニウム・グリンシートを積層した後、
該積層体を窒化物セラミックスよりなる密閉容器中に設
置し、窒素ガス雰囲気中で前記窒化物セラミックスが分
解を始める温度以下の温度で焼成して焼結させ、前記積
層体を一体化することを特徴とする窒化アルミニウム配
線基板の製造方法。
(1) After laminating aluminum nitride green sheets with conductor patterns printed using tungsten paste,
The laminate is placed in a closed container made of nitride ceramics, and fired and sintered in a nitrogen gas atmosphere at a temperature below the temperature at which the nitride ceramic begins to decompose, thereby integrating the laminate. A method for producing a featured aluminum nitride wiring board.
(2)請求項1記載の窒化物セラミックスよりなる密閉
容器が窒化アルミニウム或いは窒化硅素よりなることを
特徴とする窒化アルミニウム配線基板の製造方法。
(2) A method for manufacturing an aluminum nitride wiring board, characterized in that the sealed container made of the nitride ceramic according to claim 1 is made of aluminum nitride or silicon nitride.
JP29560989A 1989-11-14 1989-11-14 Manufacture of aluminum nitride wiring board Pending JPH03155693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29560989A JPH03155693A (en) 1989-11-14 1989-11-14 Manufacture of aluminum nitride wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29560989A JPH03155693A (en) 1989-11-14 1989-11-14 Manufacture of aluminum nitride wiring board

Publications (1)

Publication Number Publication Date
JPH03155693A true JPH03155693A (en) 1991-07-03

Family

ID=17822842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29560989A Pending JPH03155693A (en) 1989-11-14 1989-11-14 Manufacture of aluminum nitride wiring board

Country Status (1)

Country Link
JP (1) JPH03155693A (en)

Similar Documents

Publication Publication Date Title
US6579818B2 (en) Glass ceramic sintered product
JPS6273799A (en) Multilayer ceramic circuit substrate
JPH02197189A (en) Aluminum nitride circuit board and manufacture thereof
EP0196670B1 (en) Ceramic substrates for microelectronic circuits and process for producing same
JPH03120791A (en) Method for formation of via in aluminum nitride substrate
JPH03155693A (en) Manufacture of aluminum nitride wiring board
JP2692332B2 (en) Manufacturing method of aluminum nitride substrate
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JPH03151688A (en) Manufacture of aluminum nitride wiring board
JPH0745957A (en) Aluminum nitride multilayer wiring board provided with high-dielectric layer and its manufacture
JP3683067B2 (en) Aluminum nitride sintered body
JPH0624880A (en) Metal-ceramic material and production thereof
JPS60253294A (en) Multilayer ceramic board
JP3121769B2 (en) Silicon nitride multilayer substrate and method of manufacturing the same
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
WO1999056510A1 (en) Method of producing ceramic multilayer substrate
JPH09121004A (en) Composite ceramic substrate
JPH02243570A (en) Production of aluminum nitride base plate
JPH02302088A (en) Method of baking aluminum nitride substrate
JP2697234B2 (en) Manufacturing method of aluminum nitride substrate
JPS63182887A (en) Manufacture of ceramic wiring circuit board
JP2761790B2 (en) Manufacturing method of aluminum nitride green sheet
JPH05254863A (en) Ceramic substrate, ceramic printed circuit board and its production
JPH01155685A (en) Manufacture of maltilayer substrate of aluminum nitride
JPH01155686A (en) Multilayer substrate of aluminum nitride and manufacture thereof