JP2557414B2 - Fuel assembly for boiling water reactor - Google Patents

Fuel assembly for boiling water reactor

Info

Publication number
JP2557414B2
JP2557414B2 JP62254592A JP25459287A JP2557414B2 JP 2557414 B2 JP2557414 B2 JP 2557414B2 JP 62254592 A JP62254592 A JP 62254592A JP 25459287 A JP25459287 A JP 25459287A JP 2557414 B2 JP2557414 B2 JP 2557414B2
Authority
JP
Japan
Prior art keywords
fuel assembly
reactivity
region
boiling water
water reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254592A
Other languages
Japanese (ja)
Other versions
JPH0198992A (en
Inventor
和毅 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62254592A priority Critical patent/JP2557414B2/en
Publication of JPH0198992A publication Critical patent/JPH0198992A/en
Application granted granted Critical
Publication of JP2557414B2 publication Critical patent/JP2557414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は燃料経済性を向上せしめた沸騰水型原子炉用
燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a fuel assembly for a boiling water nuclear reactor with improved fuel economy.

(従来の技術) 沸騰水型原子炉の炉心では、炉心下部から上方に向か
う冷却材の流れに添って冷却材中にボイドが発生するた
めに、減速材の密度は炉心下部で大きく上部で小さくな
る。このために出力ピーキングが炉心下部に生じやすい
ので、これを低減することがこれまでの開発の目的であ
った。そのために、運転中の出力分布を平坦化するよう
な制御棒パターンや、上下2領域に分割され上部の反応
度が下部よりも高いような燃料が提案されてきた。具体
的には、運転期間を通じて最も平坦であることが証明さ
れているHaling分布に近い出力分布を実現することが目
的であった。そのような燃料の一例である上下方向の濃
縮度・ガドリニア分布を第2図に示す。
(Prior Art) In a boiling water reactor core, voids are generated in the coolant along with the flow of the coolant from the lower part of the core to the upper part, so that the moderator density is large in the lower part of the core and small in the upper part. Become. Because of this, power peaking is likely to occur in the lower part of the core, and reducing it has been the purpose of previous development. For this reason, control rod patterns that flatten the output distribution during operation, and fuels that are divided into upper and lower two regions and in which the reactivity of the upper part is higher than that of the lower part have been proposed. Specifically, the purpose was to realize an output distribution close to the Haling distribution, which has been proven to be the most flat throughout the operation period. An example of such fuel is shown in FIG. 2 which shows the vertical enrichment / gadolinia distribution.

(発明が解決しようとする問題点) ところが、近年、燃料要素の機械的強度の向上に伴な
い、必ずしも出力分布を平坦にすることは必要なくなっ
てきており、むしろ出力ピーキングの許容範囲内で発電
コストの低減のために燃料経済性を向上させることが要
求されるようになってきた。
(Problems to be solved by the invention) However, in recent years, as the mechanical strength of the fuel element has improved, it is not always necessary to make the output distribution flat, but rather power generation within the allowable range of output peaking. There has been a demand for improving fuel economy in order to reduce costs.

この点からみると、上記した炉心上下方向の減速材密
度の分布を燃料経済性向上の手段として利用することが
できる。すなわち、1運転期間において、運転の開始か
ら中期にかけては出力分布を炉心下部で大きく運転し、
末期には出力分布を炉心上部へ移動させる。これによ
り、運転中に炉心上部にプルトニウムを蓄積し、末期に
このプルトニウムを積極的に燃焼させることができる。
From this point of view, the distribution of the moderator density in the vertical direction of the core can be used as a means for improving fuel economy. That is, in one operation period, the power distribution is greatly operated in the lower core from the start of operation to the middle period,
In the final stage, the power distribution is moved to the upper part of the core. As a result, plutonium can be accumulated in the upper part of the core during operation, and this plutonium can be actively burned in the final stage.

しかしながら、前記した出力分布の平坦化を目的とし
て開発された燃料は、このような運転に適った設計とは
なっていない。
However, the fuel developed for the purpose of flattening the above-mentioned power distribution is not designed for such operation.

本発明はかかる点を改良し、燃料経済性を向上させた
沸騰水型原子炉用燃料集合体を提供することを目的とす
るものである。
An object of the present invention is to provide a fuel assembly for a boiling water reactor, which has improved the above points and improved fuel economy.

[発明の構成] (問題点を解決するための手段) 本発明では、沸騰水型原子炉に用いられる燃料集合体
を、ある任意の境界で上下に第1および第2の二つの領
域に分割し、上部反応度から下部反応度を差し引いた上
下反応度差が正でかつ燃焼と共に増大するように設計し
た。ここで上部反応度および下部反応度とは、領域の境
界位置にかかわりなく燃料集合体中央位置から上端まで
の反応度を平均したものおよび下端までの反応度を平均
したものをいう。またさらに本発明では前記反応度差が
運転初期で1.0〜1.5%Δk、運転末期で1.5〜3.0%Δk
とし、前記任意の境界が燃料集合体の下端から全長の4/
12〜10/12の位置にあるように設計した。
[Configuration of the Invention] (Means for Solving Problems) In the present invention, a fuel assembly used in a boiling water reactor is divided into two regions, a first region and a second region, at upper and lower sides at an arbitrary boundary. It was designed so that the difference between the upper and lower reactivity obtained by subtracting the lower reactivity from the upper reactivity is positive and increases with combustion. Here, the upper reactivity and the lower reactivity mean an average of the reactivity from the center position of the fuel assembly to the upper end and an average of the reactivity from the lower end regardless of the boundary position of the region. Furthermore, in the present invention, the reactivity difference is 1.0 to 1.5% Δk at the beginning of operation and 1.5 to 3.0% Δk at the end of operation.
And the arbitrary boundary is 4 / of the total length from the lower end of the fuel assembly.
Designed to be in the 12-10 / 12 position.

すなわち、本発明は、任意の境界で上下軸方向に第1
の領域および第2の領域の二つの領域に分割され、前記
第1の領域および第2の領域の各々のウラン濃縮度およ
びガドリニア濃度が、燃料集合体の上部反応度(燃料集
合体中央位置から上端までの平均反応度)から下部反応
度(燃料集合体中央位置から下端までの平均反応度)を
差し引いた上下反応度差が正でかつ燃焼と共に増大する
ように分布しており、さらに前記反応度差が運転初期で
1.0〜1.5%Δk、運転末期で1.5〜3.0%Δkであり、前
記任意の境界が燃料集合体の下端から全長の4/12〜10/1
2の位置にあることを特徴とする沸騰水型原子炉用燃料
集合体に関する。
That is, in the present invention, the first boundary is set in the vertical axis direction at an arbitrary boundary.
Area and a second area, and the uranium enrichment and gadolinia concentration of each of the first area and the second area are the upper reactivity of the fuel assembly (from the center position of the fuel assembly). The upper and lower reactivity differences obtained by subtracting the lower reactivity (average reactivity from the center position of the fuel assembly to the lower end) from the average reactivity up to the upper end are positive and distributed so as to increase with combustion. The difference is at the beginning of operation
1.0 to 1.5% Δk, 1.5 to 3.0% Δk at the end of operation, and the arbitrary boundary is 4/12 to 10/1 of the total length from the lower end of the fuel assembly.
The present invention relates to a fuel assembly for a boiling water reactor characterized by being located at the position 2.

(作用) 本発明の燃料集合体を装荷した炉心では、運転初期で
は上下反応度差があまり大きくないので、沸騰水型原子
炉に固有の減速材密度分布のために、出力分布はピーキ
ングの許容範囲内で炉心下部に生ずるが、燃焼と共に上
下反応度差が大きくなるので、運転末期には減速材密度
分布に打ち勝って出力分布を上部に移動させることが可
能となる。これにより、運転中に炉心上部にプルトニウ
ムを蓄積し、末期にこのプルトニウムを積極的に燃焼さ
せることができる。
(Operation) In the core loaded with the fuel assembly of the present invention, since the difference in vertical reactivity is not so large at the initial stage of operation, the power distribution is allowed to be peaking due to the moderator density distribution peculiar to the boiling water reactor. Although it occurs in the lower part of the core within the range, the difference in vertical reactivity increases with combustion, so it becomes possible to overcome the moderator density distribution and move the power distribution to the upper part at the end of operation. As a result, plutonium can be accumulated in the upper part of the core during operation, and this plutonium can be actively burned in the final stage.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) The Example of this invention is described with reference to drawings.

第1図は本発明の一実施例である沸騰水型原子炉用燃
料集合体の上下方向の濃縮度およびガドリニア分布であ
る。本実施例の燃料集合体は丁度中央で上部(第1領
域)および下部(第2領域)に分割されており、濃縮度
は第1領域のほうが0.10wt%高く、ガドリニアロッドの
本数は上下で等しく3本であり、濃度は第1領域のほう
が1.0wt%低い。
FIG. 1 is a vertical enrichment and gadolinia distribution of a boiling water reactor fuel assembly according to an embodiment of the present invention. The fuel assembly of this example is divided into an upper portion (first region) and a lower portion (second region) at the center, the enrichment is 0.10 wt% higher in the first region, and the number of gadolinia rods is higher and lower. The number is equal to three, and the concentration is 1.0 wt% lower in the first region.

第2図は出力分布平坦化を目的として設計された従来
例であるが、第1図の例と同じ位置で上下に分割されて
おり、濃縮度は第1領域の方が0.18wt%高く、ガドリニ
アロッドの本数は上下で等しく3本で、濃度は第1領域
のほうが0.5wt%低い。
Fig. 2 is a conventional example designed for the purpose of flattening the output distribution, but it is divided into upper and lower parts at the same position as in the example of Fig. 1, and the enrichment is 0.18 wt% higher in the first region, The number of gadolinia rods is the same at the top and bottom, and the concentration is 0.5 wt% lower in the first region.

これら二つの燃料の上下反応度差を第3図に示す。第
3図において、31が本発明の実施例、32が従来例であ
る。従来例では全燃焼期間を通じて約2.5%Δkの一定
の上下反応度差であるのに対して、本発明の実施例で
は、燃焼初期では1.3%Δk、末期付近では3.0%Δkと
なっている。
The difference between the upper and lower reactivity of these two fuels is shown in FIG. In FIG. 3, 31 is an embodiment of the present invention and 32 is a conventional example. In the conventional example, there is a constant upper and lower reactivity difference of about 2.5% Δk over the entire combustion period, whereas in the embodiment of the present invention, it is 1.3% Δk at the early stage of combustion and 3.0% Δk near the end stage.

次に、これらの燃料を各々全炉心に装荷したときの軸
方向出力分布を第4図(運転初期)および第5図(運転
末期)に示す。これらの図において、41および51が本発
明の実施例を、42および52が従来例を示す。従来例では
全運転期間を通じて非常に平坦な出力分布となっている
のに対して、本発明の実施例では運転初期では炉心下部
にピークが、末期には上部にピークが生じている。この
ように出力分布が制御される結果、本発明の実施例では
従来例に比べて0.04wt%低い平均濃縮度で同一期間原子
炉を運転することが可能である。これは天然ウラン資源
の利用効率として約2%の向上に相当する。
Next, the axial power distributions when these fuels are loaded in all cores are shown in FIG. 4 (initial stage of operation) and FIG. 5 (end stage of operation). In these figures, 41 and 51 show the embodiment of the present invention, and 42 and 52 show the conventional example. In the conventional example, the output is extremely flat over the entire operation period, whereas in the example of the present invention, a peak appears in the lower part of the core in the initial stage of operation and a peak in the upper part in the final stage. As a result of controlling the power distribution in this way, in the embodiment of the present invention, it is possible to operate the reactor for the same period at an average enrichment lower by 0.04 wt% than the conventional example. This corresponds to an improvement of about 2% in utilization efficiency of natural uranium resources.

第1図に示した本発明の実施例は燃料集合体の丁度中
央で上下に分割した場合であったが、次に、境界位置を
変えた場合について説明する。
The embodiment of the present invention shown in FIG. 1 was a case where the fuel assembly was divided into upper and lower parts at the exact center, but next, a case where the boundary position is changed will be described.

第6図は、濃縮度およびガドリニアの分布を工夫して
上下反応度差が第7図の斜線の範囲内に入るようにした
燃料集合体の、従来例(第2図)に対する天然ウラン資
源有効利用率の改善率である。上下の境界位置が下端か
らその全長の4/12〜10/12の範囲にある場合にかぎって
改善することができた。なお、第7図では、上下の境界
位置がどこであろうと、燃料集合体の中央から上端まで
の反応度の平均値を上部反応度、燃料集合体の中央から
下端までの反応度の平均値を下部反応度と称し、その差
を上下反応度差と定義している。同図からわかるとお
り、天然ウラン資源をより効率的に利用するためには、
上下反応度差は運転初期で1.0〜1.5%Δkの範囲内にあ
り、燃焼とともに増大し、運転末期付近では1.5〜3.0%
Δkの範囲にあることが必要である。初期における上下
反応度差が、この範囲よりも小さい場合には出力が炉心
下部で大きくなり過ぎるし、逆に大きいと十分に炉心下
部に出力を生じさせることができずプルトニウムを蓄積
することができない。また、運転末期の上下反応度差
が、この範囲よりも小さいと十分に炉心上部に出力を生
じさせることができないので蓄積したプルトニウムを燃
焼させることができず、一方、大きいと炉心上部におけ
る出力ピークが大きくなり過ぎる。
Fig. 6 shows a natural uranium resource effective compared to the conventional example (Fig. 2) of a fuel assembly in which the difference in vertical reactivity falls within the range of the diagonal line in Fig. 7 by devising the distribution of enrichment and gadolinia. It is the improvement rate of the utilization rate. The improvement was possible only when the upper and lower boundary positions were within the range of 4/12 to 10/12 of the total length from the lower end. In FIG. 7, wherever the upper and lower boundary positions are, the average value of the reactivity from the center to the upper end of the fuel assembly is shown as the upper reactivity, and the average value of the reactivity from the center to the lower end of the fuel assembly is shown. It is called the lower reactivity and the difference is defined as the upper and lower reactivity difference. As can be seen from the figure, in order to use natural uranium resources more efficiently,
The difference in vertical reactivity is within the range of 1.0 to 1.5% Δk at the beginning of operation, increases with combustion, and is 1.5 to 3.0% near the end of operation.
It must be in the range of Δk. If the difference in upper and lower reactivity in the initial stage is smaller than this range, the output becomes too large in the lower core, and if it is large, the output cannot be sufficiently generated in the lower core and plutonium cannot be accumulated. . Also, if the difference in vertical reactivity at the end of operation is smaller than this range, it is not possible to generate sufficient output in the upper core, so it is not possible to burn the accumulated plutonium, while if it is large, the output peak in the upper core is increased. Grows too large.

[発明の効果] 以上述べてきたように、本発明に基づいて沸騰水型原
子炉に用いられる燃料集合体を任意の境界で上下2領域
に分割し、上下反応度差が正で、かつ燃焼とともに増大
するように上記2領域の濃縮度およびガドリニア分布を
配分すれば、これを装荷した炉心の出力分布を、運転初
期から中期にかけては下部ピークに、末期では上部ピー
クにすることが可能となる。これによって、天然ウラン
資源の利用効率を向上させることができる。
[Effects of the Invention] As described above, the fuel assembly used in the boiling water reactor according to the present invention is divided into two regions, an upper region and a lower region, at an arbitrary boundary, and the difference in the vertical reactivity is positive, and the combustion is performed. If the enrichment and gadolinia distributions in the above two regions are distributed so as to increase with the above, it is possible to make the power distribution of the core loaded with this into a lower peak from the early stage to the middle stage of operation and an upper peak in the final stage. . As a result, the utilization efficiency of natural uranium resources can be improved.

なお、上端あるいは下端に低濃縮度ブランケットを配
置した燃料集合体においては、第1および第2領域は、
ブランケット部を除く部分について分割したものであ
り、上下反応度差もブランケット部を除く部分について
定義する。
In the fuel assembly in which the low enrichment blanket is arranged at the upper end or the lower end, the first and second regions are
This is a division of the part excluding the blanket part, and the difference in vertical reactivity is also defined for the part excluding the blanket part.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例である燃料集合体の濃縮度お
よびガドリニア軸方向分布を示す図、第2図は従来設計
された燃料集合体の濃縮度およびガドリニア軸方向分布
を示す図、第3図は第1図および第2図に示す各燃料集
合体の運転期間中の上下反応度差の変化を示す図、第4
図および第5図は上記各燃料を炉心に装荷したときの運
転初期の軸方向出力分布および運転末期の軸方向出力分
布をそれぞれ示す図、第6図は上下反応度差が第7図の
斜線範囲に入るようにした燃料集合体の上下境界位置と
ウラン資源利用効率との関係を示す図、第7図は本発明
の燃料集合体における運転期間中の上下反応度差を示す
図である。
FIG. 1 is a diagram showing the enrichment and gadolinia axial distribution of a fuel assembly, which is an embodiment of the present invention, and FIG. 2 is a diagram showing the enrichment and gadolinia axial distribution of a conventionally designed fuel assembly, FIG. 3 is a diagram showing changes in the vertical reactivity difference during the operation period of each fuel assembly shown in FIGS. 1 and 2, and FIG.
Figures 5 and 5 show the axial power distribution at the beginning of operation and the axial power distribution at the end of operation when the above fuels are loaded into the core, respectively. FIG. 7 is a diagram showing the relationship between the upper and lower boundary positions of the fuel assembly so as to fall within the range and the uranium resource utilization efficiency, and FIG. 7 is a diagram showing the difference in vertical reactivity during the operating period in the fuel assembly of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】任意の境界で上下軸方向に第1の領域およ
び第2の領域の二つの領域に分割され、前記第1の領域
および第2の領域の各々のウラン濃縮度およびガドリニ
ア濃度が、燃料集合体の上部反応度(燃料集合体中央位
置から上端までの平均反応度)から下部反応度(燃料集
合体中央位置から下端までの平均反応度)を差し引いた
上下反応度差が正でかつ燃焼と共に増大するように分布
しており、さらに前記反応度差が運転初期で1.0〜1.5%
Δk、運転末期で1.5〜3.0%Δkであり、前記任意の境
界が燃料集合体の下端から全長の4/12〜10/12の位置に
あることを特徴とする沸騰水型原子炉用燃料集合体。
1. An arbitrary boundary is divided into two regions, a first region and a second region, in the vertical axis direction, and the uranium enrichment and gadolinia concentration of each of the first region and the second region are divided. , The upper and lower reactivity difference (average reactivity from the center position of the fuel assembly to the upper end) of the fuel assembly minus the lower reactivity (average reactivity from the center position of the fuel assembly to the lower end) is positive. Moreover, it is distributed so as to increase with combustion, and the reactivity difference is 1.0 to 1.5% at the initial stage of operation.
Δk, 1.5 to 3.0% Δk at the end of operation, and the arbitrary boundary is located at a position of 4/12 to 10/12 of the entire length from the lower end of the fuel assembly, the fuel assembly for a boiling water reactor body.
【請求項2】前記第1領域の濃縮度が前記第2領域の濃
縮度よりも高く、前記第1領域のガドリニア濃度が前記
第2領域のガドリニア濃度よりも低い特許請求の範囲第
1項記載の沸騰水型原子炉用燃料集合体。
2. The concentration range of the first region is higher than that of the second region, and the gadolinia concentration of the first region is lower than the gadolinia concentration of the second region. Boiling water reactor fuel assembly.
JP62254592A 1987-10-12 1987-10-12 Fuel assembly for boiling water reactor Expired - Lifetime JP2557414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254592A JP2557414B2 (en) 1987-10-12 1987-10-12 Fuel assembly for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254592A JP2557414B2 (en) 1987-10-12 1987-10-12 Fuel assembly for boiling water reactor

Publications (2)

Publication Number Publication Date
JPH0198992A JPH0198992A (en) 1989-04-17
JP2557414B2 true JP2557414B2 (en) 1996-11-27

Family

ID=17267182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254592A Expired - Lifetime JP2557414B2 (en) 1987-10-12 1987-10-12 Fuel assembly for boiling water reactor

Country Status (1)

Country Link
JP (1) JP2557414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670133B2 (en) * 2016-03-04 2020-03-18 日立Geニュークリア・エナジー株式会社 Fuel assemblies and reactor cores

Also Published As

Publication number Publication date
JPH0198992A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
JP2557414B2 (en) Fuel assembly for boiling water reactor
JPS6296889A (en) Light water type reactor core and fuel charging method thereof
JPH04301792A (en) Core of atomic reactor
JPH0915361A (en) Initial loading reactor core
JPH05249270A (en) Core of nuclear reactor
JP5693209B2 (en) Operation method of the first loaded core
JP2963712B2 (en) Fuel assembly for boiling water reactor
JP3117207B2 (en) Fuel assembly for boiling water reactor
JP3080663B2 (en) Operation method of the first loading core
JPH0631766B2 (en) Initially loaded core of reactor
JP2723252B2 (en) Reactor fuel assemblies
JP3596831B2 (en) Boiling water reactor core
JPS63149588A (en) Fuel aggregate for nuclear reactor
JP2538561B2 (en) Fuel assembly for nuclear reactor
JPH01193693A (en) Controlling of nuclear reactor
JPH0650351B2 (en) Reactor core
JPH067182B2 (en) Fuel assembly
JPH0350997B2 (en)
JPH04235386A (en) Operating method of reactor
JPH0331794A (en) Boiling water reactor
JPS58172580A (en) Reactor
JPH03243889A (en) Fuel assembly for boiling water reactor
JPS6263887A (en) Fast breeder reactor
JPH0833466B2 (en) Boiling water reactor core

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12