JPH0350997B2 - - Google Patents
Info
- Publication number
- JPH0350997B2 JPH0350997B2 JP57229228A JP22922882A JPH0350997B2 JP H0350997 B2 JPH0350997 B2 JP H0350997B2 JP 57229228 A JP57229228 A JP 57229228A JP 22922882 A JP22922882 A JP 22922882A JP H0350997 B2 JPH0350997 B2 JP H0350997B2
- Authority
- JP
- Japan
- Prior art keywords
- control rod
- core
- reactor
- pattern
- reactivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000009257 reactivity Effects 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 12
- 238000009835 boiling Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000446 fuel Substances 0.000 description 12
- 229910052724 xenon Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 239000002574 poison Substances 0.000 description 4
- 231100000614 poison Toxicity 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 230000004992 fission Effects 0.000 description 2
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 2
- 150000003736 xenon Chemical class 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000005255 beta decay Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は沸騰水形原子炉の制御棒パターンを変
更する方法に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for changing control rod patterns in boiling water nuclear reactors.
沸騰水形原子炉は第1図に示す如く断面十字形
の制御棒1…の周囲に4体の燃料集合体2…を装
荷して単位格子3…を構成し、このような単位格
子3…を格子状に配列して第2図に示す如き平面
形状の炉心4が構成されている。なお、第2図中
のひとつのます目はひとつの単位格子3…を示
す。
As shown in Fig. 1, in a boiling water reactor, four fuel assemblies 2 are loaded around a control rod 1 having a cross-shaped cross section to form a unit lattice 3 . are arranged in a grid to form a planar core 4 as shown in FIG. In addition, one square in FIG. 2 indicates one unit cell 3 .
ところで、このような炉心4では燃料の燃焼度
が進行するに従つて反応度が低下してゆくので、
あらかじめこの反応度の低下に対応した余剰反応
度て与えられている。しかし、原子炉は約1年間
連続運転されるので、この連続運転期間の反応度
低下に対応した余剰反応度を与えると初期の余剰
反応度が過大となり、炉心の停止余裕が減少す
る。このため、燃料中にガドリニア等の可燃性毒
物を混入し、燃焼初期における過大な余剰反応度
を抑制している。したがつて、1サイクル中の余
剰反応度の変化は第3図に示す如く燃焼初期にお
いては可燃性毒物の効果によつて比較的低く抑え
られ、その後可燃性毒物の燃焼によつて余剰反応
度は増大してゆく。そして、この可燃性毒物が完
全に燃焼する燃焼中期において余剰反応度が最大
となり、その後は燃焼の進行とともに余剰反応度
は低下してゆく。この余剰反応度の変化を補償す
るため、沸騰水形原子炉では炉心流量の制御と、
運転時において炉心内に挿入されている制御棒い
わゆる調整棒の本数や挿入量すなわち制御棒パタ
ーンの変更をおこなう。上記反応度の調整は、ま
ず炉心流量の調整によつておこなわれるが、第4
図に示す如く炉心流量による調整幅Aは小さいの
で、この炉心流量による調整で反応度を調整し切
れなくなつた場合には第5図ないし第8図に示す
如き制御棒パターン変更をおこなう。なお、第5
図ないし第8図中のます目すなわち単位格子3…
内に記された数字はその単位格子内の制御棒1…
の挿入ノツチ数を示し、全引抜状態がノツチ数
24、全挿入状態がノツチ数0であり、数字の記さ
れていない単位格子3…ではその制御棒1…が全
引抜状態であることを示す。そして、燃焼初期で
は第5図に示す如く9本の制御棒1…をそれぞれ
12ノツチ挿入した制御棒パターンで運転し、余剰
反応度の増加に対応してこれら制御棒1…を2ノ
ツチずつ挿入し、第6図および第7図に示す如き
制御棒パターンに変更する。また、燃焼後期にお
いて余剰反応度が低下したら9本のうち5本の制
御棒1…を全引抜状態とし、第8図に示す如き制
御棒パターンに変更する。ところで、制御棒1…
を挿入するとその制御棒を含む単位格子3…内の
燃料の下部における出力が低下する。したがつて
この状態で炉心4の出力を一定に維持するとすれ
ば他の単位格子3…内の燃料の下部における出力
がその分だけ増大する。したがつて、このような
制御棒パターンの変更をおこなうと燃料の軸方向
の出力分布が第9図のBからCの如く変化し、下
部における線出力密度が増加する。このため、燃
料の下部における線出力密度の上昇率が過大とな
り、燃料ペレツトと燃料被覆管との機械的な相互
干渉いわゆるPCIを生じ、燃料被覆管の健全性が
低下する不具合を生じる。このため、従来はこの
ような制御棒パターンの変更をおこなう際には第
10図に示す如く炉心4の出力を一度低下させ、
この低出力状態で制御棒パターンの変更をおこな
つていた。 By the way, in such a core 4 , as the burnup of the fuel progresses, the reactivity decreases.
The surplus reactivity corresponding to this decrease in reactivity is given in advance. However, since a nuclear reactor is operated continuously for about one year, if surplus reactivity is given to correspond to the decrease in reactivity during this period of continuous operation, the initial surplus reactivity becomes excessive and the margin for shutdown of the reactor core decreases. For this reason, burnable poisons such as gadolinia are mixed into the fuel to suppress excessive surplus reactivity at the initial stage of combustion. Therefore, as shown in Figure 3, the change in surplus reactivity during one cycle is kept relatively low by the effect of the burnable poison in the early stages of combustion, and then the surplus reactivity is reduced by the combustion of the burnable poison. is increasing. The surplus reactivity reaches its maximum in the middle stage of combustion when the burnable poison is completely burned, and thereafter decreases as the combustion progresses. In order to compensate for this change in surplus reactivity, boiling water reactors control the core flow rate,
During operation, the number and insertion amount of control rods (so-called adjustment rods) inserted into the reactor core, ie, the control rod pattern, are changed. The above reactivity adjustment is first performed by adjusting the core flow rate, but the fourth step is
As shown in the figure, the adjustment range A based on the core flow rate is small, so if the reactivity cannot be adjusted completely by adjusting the core flow rate, the control rod pattern is changed as shown in FIGS. 5 to 8. In addition, the fifth
Square or unit cell 3 in the figure to figure 8...
The number written inside is the control rod 1 in that unit cell...
Indicates the number of insertion notches, and the number of notches in the fully withdrawn state
24. In the fully inserted state, the number of notches is 0, and in the unit grid 3 where no number is written, the control rod 1... is shown to be in the fully withdrawn state. In the early stage of combustion, each of the nine control rods 1... is operated as shown in Figure 5.
The control rod pattern is operated with 12 notches inserted, and as the surplus reactivity increases, these control rods 1 are inserted two notches at a time, changing to the control rod pattern as shown in FIGS. 6 and 7. Furthermore, when the surplus reactivity decreases in the late stage of combustion, five of the nine control rods 1 are brought into a fully withdrawn state, and the control rod pattern is changed to that shown in FIG. By the way, control rod 1...
When a control rod is inserted, the output of the fuel in the lower part of the unit cell 3 containing the control rod decreases. Therefore, if the output of the core 4 is maintained constant in this state, the output at the lower part of the fuel in the other unit grids 3 will increase accordingly. Therefore, when the control rod pattern is changed in this way, the power distribution in the axial direction of the fuel changes as shown from B to C in FIG. 9, and the linear power density in the lower part increases. As a result, the rate of increase in linear power density in the lower part of the fuel becomes excessive, resulting in mechanical mutual interference between the fuel pellets and the fuel cladding, so-called PCI, resulting in a problem in which the integrity of the fuel cladding deteriorates. For this reason, conventionally, when changing the control rod pattern, the output of the core 4 is lowered once as shown in FIG.
The control rod pattern was changed in this low power state.
上記従来の方法では制御棒パターンの変更をな
す際に原子炉の出力を低下させなければならず、
原子炉の稼働率が低下する不具合があつた。ま
た、燃料が燃焼する際には核分裂生成物としてキ
セノンが生成される。このキセノンは熱中性子の
吸収断面積が大きいので、このキセノンの存在に
よつて炉心内の出力分布に三次元的な振動が生じ
ることがある。このキセノンは制御棒が挿入され
ている部分では生成量が少なく、他の部分では生
成量が多い。したがつて、従来の方法では制御棒
パターンの変更の際の制御棒操作量が大きいた
め、制御棒パターンの変更をおこなうと炉心内の
キセノンの分布に大きな変化が生じ、炉心の安定
性上好ましいものではなかつた。
In the conventional method described above, the output of the reactor must be reduced when changing the control rod pattern,
There was a problem that reduced the operating rate of the nuclear reactor. In addition, when the fuel burns, xenon is produced as a fission product. Since this xenon has a large absorption cross section for thermal neutrons, the presence of this xenon can cause three-dimensional oscillations in the power distribution within the reactor core. The amount of xenon produced is small in the area where the control rod is inserted, and the amount produced is large in other areas. Therefore, in the conventional method, the control rod operation amount when changing the control rod pattern is large, and changing the control rod pattern causes a large change in the distribution of xenon in the reactor core, which is favorable for the stability of the reactor core. It wasn't something.
本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは原子炉の出力を大き
く変動させることなく定格運転状態で制御棒パタ
ーンの変更を行なうことができ、また制御棒パタ
ーンを変更する際にキセノンの分布の変動が小さ
く、炉心の安定性を向上させることができる沸騰
水形原子炉の制御棒パターン変更方法を提供する
ことにある。
The present invention was made based on the above circumstances, and its purpose is to be able to change the control rod pattern under rated operating conditions without significantly changing the output of the reactor, and to change the control rod pattern. It is an object of the present invention to provide a method for changing a control rod pattern of a boiling water reactor, which can improve the stability of the reactor core by reducing fluctuations in the distribution of xenon when changing the control rod pattern.
本発明は炉心への印加反応度が0.04%実効増倍
率以下である制御棒操作と炉心流量調整を交互に
複数回繰返して制御棒パターンを変更するもので
ある。そして、この1回の制御棒操作の印加反応
度を0.04%実効増倍率以下に抑えることにより、
制御棒操作の際の炉心の出力変動を定格運転状態
の許容誤差として一般に電力供給上運用している
±0.5%の範囲内に抑えることができる。したが
つて、このような制御棒操作と炉心流量調整とを
繰返して制御棒パターンを変更すれば原子炉の出
力を低下させずに定格運転状態で制御棒パターン
を変更でき、原子炉の稼動率を大幅に向上させる
ことができ、かつ制御棒操作の際の線出力密度の
上昇率もきわめて小さいのでPCIを生じる可能性
もない。また、制御棒操作の際のキセノン分布の
変動も小さくなるので炉心の安定性も向上するも
のである。
The present invention changes the control rod pattern by alternately repeating control rod operation and core flow rate adjustment multiple times in which the reactivity applied to the reactor core is less than or equal to the effective multiplication factor of 0.04%. By suppressing the applied reactivity of this one control rod operation to below 0.04% effective multiplication factor,
It is possible to suppress core power fluctuations during control rod operations to within the range of ±0.5%, which is the tolerance for rated operating conditions and is generally used for power supply purposes. Therefore, if the control rod pattern is changed by repeating such control rod operation and core flow rate adjustment, the control rod pattern can be changed under rated operating conditions without reducing the reactor output, and the reactor availability rate can be improved. It is possible to significantly improve the linear power density during control rod operation, and the rate of increase in linear power density during control rod operation is extremely small, so there is no possibility of PCI occurring. In addition, fluctuations in the xenon distribution during control rod operation are also reduced, which improves the stability of the reactor core.
以下第11図ないし第23図を参照して本発明
の一実施例を説明する。第11図ないし第20図
は制御棒操作の手順を示す図であつて、炉心の模
式的な平面図を示し、前述と同様にひとつのます
目はひとつの単位格子3…を示し、また各単位格
子3…内に記された数字はその単位格子内の制御
棒の挿入ノツチ数を示し、また数字の記されてい
ない単位格子3…はその単位格子内の制御棒が全
引抜状態であることを示す。第11図は制御棒操
作前の制御棒パターンを示し、この一実施例はこ
の制御棒パターンを前記した第6図の如き制御棒
パターンに変更する場合のものである。また、こ
の一実施例は水圧形の制御棒駆動機構を備えた沸
騰水形原子炉の場合のものである。
An embodiment of the present invention will be described below with reference to FIGS. 11 to 23. Figures 11 to 20 are diagrams showing the procedure for operating the control rods, and show schematic plan views of the reactor core. As mentioned above, one square represents one unit cell 3 , and each The numbers written inside unit cell 3 indicate the number of insertion notches for control rods in that unit cell, and unit cell 3 with no numbers written on it means that the control rods in that unit cell are fully withdrawn. Show that. FIG. 11 shows a control rod pattern before control rod operation, and this embodiment is for the case where this control rod pattern is changed to the control rod pattern as shown in FIG. 6 described above. Further, this embodiment is for a boiling water nuclear reactor equipped with a hydraulic control rod drive mechanism.
まず、第12図に示す如く中央位置の制御棒1
本を操作し、1ノツチだけ挿入する。この1本の
制御棒を1ノツチだけ操作した場合の炉心への印
加反応度は0.016%〜0.024%の実効増倍率の変化
分に相当し、0.04%実効増倍率以下である。次
に、第13図に示す如く左位置の制御棒1本を1
ノツチだけ挿入する。次に第14図に示す如くこ
の左位置の制御棒と対称の位置にある右位置の制
御棒1本を1ノツチ挿入する。さらに第15図な
いし第20図に示す如く上位置、下位置、左下位
置、右上位置、左上位置、右下位置の順に制御棒
を1本1ノツチずつ挿入し、第20図に示す如く
9本の制御棒を1ノツチずつ挿入する。次に中央
位置の制御棒を1ノツチ挿入し、上記と同じ順序
で制御棒を1本ノツチずつ挿入し、前記した第6
図の如き制御棒パターンに変更する。そして、各
制御棒の操作をおこなつた後は炉心流量を調整し
て原子炉の出力を定格運転状態に維持する。そし
て、上記制御棒の1本1ノツチの操作による炉心
への印加反応度は0.016〜0.024%実効増倍率に相
当し、この実効増倍率の変化による原子炉の出力
の変動分は定格出力の0.2〜0.3%に相当する。し
たがつて、このような制御棒操作と炉心流量調整
を繰返すことにより第21図のDに示す如く制御
棒パターンの変更時における原子炉の出力の変動
幅をきわめて小さくすることができる。そして、
定格運転の場合の出力変動の許容誤差は±0.5%
であり、これに対して上記制御棒操作による出力
変動分は0.2〜0.3%であるから定格運転状態を維
持することができるものである。なお、第21図
のEは従来の方法による制御棒パターンの変更の
際の出力低下の状態を示す。また、この一実施例
の方法では1回の制御棒操作による炉心への印加
反応度が小さいので、第22図の下に示す如き出
力分布の状態から制御棒操作をおこなつた後の出
力分布は第22図のGに示す如くその変化がきわ
めて小さいので、定格運転状態のまま制御棒操作
をおこなつてもPCIを生じることはない。また、
第23図のF′に示す如き線出力密度分布の運転状
態から上記の制御棒操作をおこなつた後の線出力
密度分布は第23図のG′の如くなり、線出力密
度の最大増加量Iはこの一実施例の場合約
0.1KW/ftである。そして、PCIを防止するため
の運転規準すなわちPCIOMRでは出力上昇率は
1時間当り0.1KW/ft以下に定められているの
で、この一実施例の場合には制御棒操作の時間間
隔は1時間以上とする。ただし、前述したキセノ
ンは核分裂によつて生成されたよう素がβ崩壊し
て生成され、その半減期は6.7時間で比較的短い。
したがつて、制御棒操作の時間間隔をあまり長く
すると制御棒操作中に出力変動によるキセノン生
成量の変化が現れ、炉心の安定性から好ましくな
いので、制御棒操作の時間間隔はあまり長くない
方がよい。 First, as shown in Fig. 12, the control rod 1 at the center position is
Manipulate the book and insert only one notch. The reactivity applied to the core when one control rod is operated by one notch corresponds to a change in the effective multiplication factor of 0.016% to 0.024%, which is less than the effective multiplication factor of 0.04%. Next, as shown in Figure 13, one control rod at the left position is
Insert only the notch. Next, as shown in FIG. 14, one control rod at the right position, which is symmetrical to the control rod at the left position, is inserted by one notch. Furthermore, the control rods are inserted one notch at a time in the order of upper position, lower position, lower left position, upper right position, upper left position, and lower right position as shown in Figures 15 to 20, and 9 control rods are inserted as shown in Figure 20. Insert the control rod one notch at a time. Next, insert the control rod in the center position one notch, then insert the control rods one notch at a time in the same order as above, and then
Change the control rod pattern to the one shown in the figure. After each control rod is operated, the reactor core flow rate is adjusted to maintain the reactor output at the rated operating state. The reactivity applied to the reactor core by operating each notch of each control rod corresponds to an effective multiplication factor of 0.016 to 0.024%, and the variation in reactor output due to changes in this effective multiplication factor is 0.2 of the rated output. corresponds to ~0.3%. Therefore, by repeating such control rod operations and core flow rate adjustments, the fluctuation range of the reactor output when changing the control rod pattern can be made extremely small as shown in D in FIG. 21. and,
Tolerance of output fluctuation in rated operation is ±0.5%
On the other hand, since the output fluctuation due to the control rod operation is 0.2 to 0.3%, the rated operating state can be maintained. Note that E in FIG. 21 shows the state of output reduction when changing the control rod pattern according to the conventional method. In addition, in the method of this embodiment, since the reactivity applied to the core by one control rod operation is small, the power distribution after control rod operation is changed from the power distribution state shown at the bottom of Fig. 22. As shown in G in Fig. 22, the change is extremely small, so even if the control rods are operated under rated operating conditions, PCI will not occur. Also,
The linear power density distribution after performing the above control rod operation from the operating state of the linear power density distribution as shown in F' in Fig. 23 becomes as shown in G' in Fig. 23, and the maximum increase in linear power density I for this example is approximately
It is 0.1KW/ft. In addition, the operating standard for preventing PCI, ie, PCIOMR, stipulates that the output increase rate is 0.1 KW/ft or less per hour, so in the case of this example, the time interval between control rod operations is more than 1 hour. shall be. However, the aforementioned xenon is produced by β-decay of iodine produced by nuclear fission, and its half-life is relatively short at 6.7 hours.
Therefore, if the time interval between control rod operations is too long, the amount of xenon produced will change due to power fluctuations during control rod operation, which is undesirable from the standpoint of core stability. Good.
なお、本発明は上記の一実施例には限定されな
い。 Note that the present invention is not limited to the above embodiment.
たとえば、本発明は制御棒をより細かい駆動単
位量で操作することができるいわゆる微動制御棒
駆動機構(FMCRD)を用いた沸騰水形原子炉に
も適用することができる。この場合、この微動制
御棒駆動機構は従来の水圧形制御棒駆動機構の最
小制御棒駆動単位である1ノツチよりさらに細か
い駆動単位で制御棒を駆動できるので、1回の制
御棒操作の際に複数の制御棒を同時に操作しかつ
印加反応度を0.04%実効増倍率以下とすることが
できる。したがつて、互に対称の位置にある複数
の制御棒を同時に操作し、炉心の出力分布の変動
をより少なくすることができる。 For example, the present invention can also be applied to boiling water reactors using so-called fine control rod drive mechanisms (FMCRDs), which allow control rods to be operated in finer drive units. In this case, this fine control rod drive mechanism can drive control rods in finer drive units than one notch, which is the minimum control rod drive unit of conventional hydraulic control rod drive mechanisms, so that during one control rod operation, Multiple control rods can be operated simultaneously and the applied reactivity can be kept below the effective multiplication factor of 0.04%. Therefore, it is possible to simultaneously operate a plurality of control rods located at mutually symmetrical positions to further reduce fluctuations in the power distribution of the reactor core.
上述の如く本発明は炉心への印加反応度が0.04
%実効増倍率以下である制御棒操作と炉心流量調
整とを交互に複数回繰返して制御棒パターンを変
更するものである。そして、この1回の制御棒操
作の印加反応度を0.04%実効増倍率以下に抑える
ことにより、制御棒操作の際の炉心の出力変動を
定格運転状態の許容誤差である±0.5%の範囲内
に抑えることができる。したがつて、このような
制御棒操作を繰返して制御棒パターンを変更すれ
ば原子炉の出力を低下させずに定格運転状態で制
御棒パターンを変更でき、原子炉の稼働率を大幅
に向上させることができ、かつ制御棒操作の際の
線出力密度の上昇率もきわめて小さいのでPCIを
生じる可能性もない。また、制御棒操作の際のキ
セノンの分布の変動も小さくなるので炉心の安定
性も向上する等その効果は大である。
As mentioned above, in the present invention, the reactivity applied to the core is 0.04.
The control rod pattern is changed by alternately repeating control rod operations below the % effective multiplication factor and core flow rate adjustment multiple times. By suppressing the applied reactivity of this single control rod operation to below 0.04% effective multiplication factor, the core power fluctuation during control rod operation is kept within ±0.5%, which is the allowable error of the rated operating condition. can be suppressed to Therefore, by repeating such control rod operations and changing the control rod pattern, it is possible to change the control rod pattern under rated operating conditions without reducing the reactor's output, greatly improving the reactor's availability. Moreover, since the rate of increase in linear power density during control rod operation is extremely small, there is no possibility of PCI occurring. In addition, fluctuations in the xenon distribution during control rod operation are also reduced, so the stability of the reactor core is improved, which has great effects.
第1図ないし第10図は従来例を示し、第1図
は炉心の一部の平面図、第2図は炉心の概略的な
平面図、第3図は余剰反応度の変化特性を示す線
図、第4図は炉心流量と出力との関係を示す線
図、第5図ないし第8図は制御棒パターンを示す
炉心の概略的な平面図、第9図は出力分布を示す
線図、第10図は制御棒パターン変更の際の出力
変化を示す線図である。第11図ないし第23図
は本発明の一実施例を示し、第11図ないし第2
0図は制御棒パターンの変更手順を示す炉心の概
略的な平面図、第21図は制御棒パターン変更の
際の出力変動を示す線図、第22図は出力分布を
示す線図、第23図は線出力密度分布を示す線図
である。
1…制御棒、2…燃料集合体、3…単位格子、
4…炉心。
Figures 1 to 10 show conventional examples, Figure 1 is a plan view of a part of the core, Figure 2 is a schematic plan view of the core, and Figure 3 is a line showing the change characteristics of surplus reactivity. 4 is a diagram showing the relationship between core flow rate and power, FIGS. 5 to 8 are schematic plan views of the core showing control rod patterns, and FIG. 9 is a diagram showing power distribution. FIG. 10 is a diagram showing output changes when changing control rod patterns. FIGS. 11 to 23 show an embodiment of the present invention, and FIGS. 11 to 2
Figure 0 is a schematic plan view of the reactor core showing the procedure for changing the control rod pattern, Figure 21 is a line diagram showing power fluctuations when changing the control rod pattern, Figure 22 is a line diagram showing power distribution, and Figure 23 is a diagram showing the power distribution. The figure is a diagram showing the linear power density distribution. 1...Control rod, 2...Fuel assembly, 3 ...Unit cell,
4...Reactor core.
Claims (1)
である制御棒操作と炉心流量調整とを交互に複数
回繰返して制御棒パターンを変更することを特徴
とする沸騰水形原子炉の制御棒パターン変更方
法。1. A control rod for a boiling water reactor characterized in that the control rod pattern is changed by alternately repeating control rod operation and core flow rate adjustment multiple times in which the reactivity applied to the reactor core is 0.04% effective doubling factor or less. How to change the pattern.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57229228A JPS59120991A (en) | 1982-12-28 | 1982-12-28 | Method of changing control rod pattern of bwr type reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57229228A JPS59120991A (en) | 1982-12-28 | 1982-12-28 | Method of changing control rod pattern of bwr type reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59120991A JPS59120991A (en) | 1984-07-12 |
JPH0350997B2 true JPH0350997B2 (en) | 1991-08-05 |
Family
ID=16888838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57229228A Granted JPS59120991A (en) | 1982-12-28 | 1982-12-28 | Method of changing control rod pattern of bwr type reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59120991A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0762714B2 (en) * | 1984-06-27 | 1995-07-05 | 株式会社東芝 | Reactor operation method |
-
1982
- 1982-12-28 JP JP57229228A patent/JPS59120991A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59120991A (en) | 1984-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4587090A (en) | Fuel assembly for boiling water reactor | |
US4652427A (en) | Fuel assembly | |
JPH09105792A (en) | Initial loading reactor core and fuel assembly | |
US5093070A (en) | Core loading strategy | |
JPH04303796A (en) | Fuel assembly for reactor | |
JPS6171389A (en) | Fuel aggregate | |
JPH04301792A (en) | Core of atomic reactor | |
JPH0915361A (en) | Initial loading reactor core | |
JPH0350997B2 (en) | ||
JPS6228437B2 (en) | ||
JP3080663B2 (en) | Operation method of the first loading core | |
JPH0555836B2 (en) | ||
JP3075749B2 (en) | Boiling water reactor | |
JPS59147295A (en) | Fuel assembly | |
JP2656279B2 (en) | Fuel assembly for boiling water reactor | |
JP3596831B2 (en) | Boiling water reactor core | |
JPS61153587A (en) | Fuel aggregate for pressure tube type reactor | |
JPH0631766B2 (en) | Initially loaded core of reactor | |
JPH02232595A (en) | Fuel loading of boiling nuclear reactor | |
JPH0432355B2 (en) | ||
JP2739515B2 (en) | Boiling water reactor | |
JPH09292481A (en) | Fuel charge method and reactor core | |
JPS6312270B2 (en) | ||
JPS63149588A (en) | Fuel aggregate for nuclear reactor | |
JPS5828690A (en) | Reactor operating method |