JP2538561B2 - Fuel assembly for nuclear reactor - Google Patents

Fuel assembly for nuclear reactor

Info

Publication number
JP2538561B2
JP2538561B2 JP61020059A JP2005986A JP2538561B2 JP 2538561 B2 JP2538561 B2 JP 2538561B2 JP 61020059 A JP61020059 A JP 61020059A JP 2005986 A JP2005986 A JP 2005986A JP 2538561 B2 JP2538561 B2 JP 2538561B2
Authority
JP
Japan
Prior art keywords
region
fuel assembly
fuel
concentration
nuclear reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61020059A
Other languages
Japanese (ja)
Other versions
JPS62179688A (en
Inventor
和毅 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61020059A priority Critical patent/JP2538561B2/en
Publication of JPS62179688A publication Critical patent/JPS62179688A/en
Application granted granted Critical
Publication of JP2538561B2 publication Critical patent/JP2538561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は一定の出力ピーキングの範囲内で燃料経済性
をできるだけ高めるようにした原子炉用燃料集合体に関
する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a fuel assembly for a nuclear reactor which maximizes fuel economy within a range of constant power peaking.

[発明の技術的背景とその問題点] 従来の原子炉用燃料集合体では、燃料集合体を構成す
る各燃料棒に装荷された核分裂性物質の濃縮度は軸方向
において均一であった。
[Technical Background of the Invention and Problems Thereof] In a conventional fuel assembly for a nuclear reactor, the enrichment of the fissile material loaded in each fuel rod constituting the fuel assembly was uniform in the axial direction.

ところが、ウラン資源を節約するために、一定出力を
得るに必要なウラン燃料をできるだけ少量化する所謂燃
料経済性の問題が提起され、近年これに対処して核分裂
性物質の濃縮度を燃料棒の上端および下端において中央
部より低下させて軸方向に濃縮度分布をもたせた燃料集
合体が提案されている。
However, in order to save uranium resources, a problem of so-called fuel economy has been raised in which the amount of uranium fuel required to obtain a constant output is reduced as much as possible. There has been proposed a fuel assembly having an enrichment distribution in the axial direction by lowering it from the central portion at the upper end and the lower end.

しかしながら、単に軸方向に濃縮度分布をつけるだけ
では出力ピーキングの増大を招くことになるので、原子
炉の運転が不可能となる。すなわち実際上原子炉を運転
するためには原子炉運転上の制限から決まるある一定の
出力ピーキング以下で運転を行わなければならず、した
がってこの制限内で燃料経済性を最大にするための改良
がなされなければならない。
However, simply providing the enrichment distribution in the axial direction leads to an increase in power peaking, which makes it impossible to operate the reactor. That is, in order to actually operate the reactor, it must be operated below a certain power peaking determined by the reactor operational limits, and therefore improvements to maximize fuel economy within these limits must be made. Must be done.

以上の問題に対し、先ず、一定の出力ピーキング以下
の制限下で最少量の核分裂性物質で臨界状態を達成する
ための濃縮度分布とそのときの相対出力分布を考える。
今、出力ピーキングの上限が1.4の場合についてこれを
考えると、そのような条件を満足するための濃縮度分布
とそれに対応する相対出力分布は例えば第2図のように
なる。第2図においてアは濃縮度分布、イは相対出力分
布である。なお、この場合最低濃縮度として天然ウラン
の0.711%を仮定している。
To deal with the above problems, first consider the enrichment distribution and the relative power distribution at that time for achieving the critical state with the minimum amount of fissile material under the restriction below a certain output peaking.
Now, considering this when the upper limit of the output peaking is 1.4, the enrichment distribution and the relative output distribution corresponding thereto for satisfying such conditions are as shown in FIG. 2, for example. In FIG. 2, a is the enrichment distribution and a is the relative output distribution. In this case, the minimum enrichment is assumed to be 0.711% of natural uranium.

第2図にみられる特徴は、 濃縮度分布は上端部および下端部に天然ウランの領域
を有すること 相対出力分布は中央部の広い領域にわたって制限値の
1.4に一致していること、そしてそうなるように中央部
の濃縮度分布が調整されていること である。
The feature shown in Fig. 2 is that the enrichment distribution has natural uranium regions at the upper and lower ends. The relative power distribution has a limit value over a wide central region.
It agrees with 1.4, and the concentration distribution in the central part is adjusted so that it does.

第2図のような分布をとった場合には、燃料集合体の
平均濃縮度は1.095%で臨界が達成でき、従来の軸方向
に濃縮度が一様な燃料集合体のそれが1.209%であるの
に比べて約11%のウラン資源の節約になる。
When the distribution shown in Fig. 2 is taken, the average enrichment of the fuel assembly is 1.095% and the criticality can be achieved, while that of the conventional fuel assembly with uniform enrichment in the axial direction is 1.209%. It saves about 11% of uranium resources compared to the existing one.

ところで実際の原子炉では、単に臨界になることだけ
が問題ではなく、ある一定期間(通常1年程度)原子炉
を運転することも考えなければならない。すなわち、運
転期間の末期において臨界を達成していることが必要で
あり、それまでの運転中は制御棒や可燃性毒物によって
余剰反応度を制御している。したがって、原子炉の運転
上一定ピーキング以下で燃料経済性を最大にするために
は、運転期間の末期で第2図のような出力分布を達成す
ることが必要である。
By the way, in an actual nuclear reactor, it is not only a matter of becoming critical, but it is necessary to consider operating the nuclear reactor for a certain period (usually about one year). That is, it is necessary to achieve the criticality at the end of the operation period, and the surplus reactivity is controlled by control rods and combustible poisons during the operation until then. Therefore, in order to maximize the fuel economy at a certain peaking or below in the operation of the reactor, it is necessary to achieve the power distribution as shown in Fig. 2 at the end of the operation period.

原子炉の燃料経済性を改善するためには少くとも以上
の問題を考慮して行なう必要があり、そのためには第2
図における中央部領域に対する工夫がさらに必要とな
る。
In order to improve the fuel economy of a nuclear reactor, it is necessary to consider at least the above problems.
It is necessary to further devise the central area in the figure.

[発明の目的] 本発明は上記の情況に鑑みてなされたもので、その目
的は、一定の出力ピーキング以下の条件で燃料経済性を
最大とするおゆな原子炉用燃料集合体を提供することに
ある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel assembly for a union reactor that maximizes fuel economy under a condition of constant power peaking or less. It is in.

[発明の概要] すなわち本発明は、複数本の燃料棒を格子状に配列し
て構成される原子炉用燃料集合体において、燃料集合体
が軸方向に燃料集合体の上端部および下端部の少なくと
も一方からなる第1領域、中央部にあって前記第1領域
に隣接する第2領域、および第1領域および第2領域を
除く第3領域の三領域に区分され、前記第1領域は可燃
性毒物を含有せずかつ前記第2領域および第3領域より
も核分裂性物質の濃縮度が低く、前記第2領域は前記第
3領域よりも可燃性毒物濃度が低くかつ核分裂性物質の
濃縮度が高いかまたは等しいことを特徴とするものであ
る。
[Summary of the Invention] That is, according to the present invention, in a fuel assembly for a nuclear reactor configured by arranging a plurality of fuel rods in a lattice shape, the fuel assembly is axially arranged at an upper end portion and a lower end portion of the fuel assembly. It is divided into three regions, a first region consisting of at least one, a second region in the central portion adjacent to the first region, and a third region excluding the first region and the second region, and the first region is flammable. Contains no toxic toxin and has a lower concentration of fissile material than the second and third regions, and the second region has a lower concentration of combustible poison than the third region and a concentration of fissile substance. Is high or equal.

あるいは、前記第1領域の核分裂性物質の濃縮度は前
記第2領域および第3領域よりも低く、前記第2領域は
前記第3領域よりも核分裂性物質の濃縮度が高いことを
特徴とするものである。
Alternatively, the concentration of the fissile material in the first region is lower than that of the second and third regions, and the concentration of the fissile material in the second region is higher than that of the third region. It is a thing.

このように核分裂性物質の濃縮度分布および可燃性毒
物濃度分布をとることによって、本発明の燃料集合体は
運転期間の末期において前記第2図の出力分布に近い出
力分布を達成することが可能となり、ウラン資源の節約
に資することができる。
By thus obtaining the concentration distribution of the fissile material and the concentration distribution of the burnable poison, the fuel assembly of the present invention can achieve the power distribution close to the power distribution shown in FIG. 2 at the end of the operation period. And can contribute to saving uranium resources.

[発明の実施例] 本発明の実施例を図面を参照して説明する。Embodiments of the Invention Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す燃料集合体の軸方向
断面図である。図面に示すように、本実施例の燃料集合
体は軸方向に次の三領域に区分されている。
FIG. 1 is an axial sectional view of a fuel assembly showing one embodiment of the present invention. As shown in the drawing, the fuel assembly of this embodiment is axially divided into the following three regions.

第1領域(A)…天然ウランが使用されており、可燃性
毒物を含有していない。
First area (A): Natural uranium is used and contains no combustible poison.

第2領域(B)…平均濃縮度3.33%のウランが使用され
ており、可燃性毒物として3.0%のGd2O3を含む燃料棒が
8本ある。
Second region (B): Uranium with an average enrichment of 3.33% is used, and there are eight fuel rods containing 3.0% of Gd 2 O 3 as a burnable poison.

第3領域(C)…平均濃縮度3.33%のウランが使用され
ており、可燃性毒物として4.0%のGd2O3を含む燃料棒が
7本ある。
Third region (C) ... Uranium with an average enrichment of 3.33% is used, and there are seven fuel rods containing 4.0% of Gd 2 O 3 as a burnable poison.

このように本実施例において軸方向に核分裂性物質の
濃縮度分布および可燃性毒物濃度分布を与えた理由を以
下に説明する。
The reason why the concentration distribution of the fissile material and the concentration distribution of the burnable poison in the axial direction are given in this example will be described below.

まず、核分裂性物質の濃縮度分布について説明する。 First, the concentration distribution of fissile material will be described.

前記第2図においては中央部領域は核分裂性物質の濃
縮度分布がかなり細かくなっているが、実際にはこのよ
うに細かく分布させることは困難であり、(1)上下端
部の天然ウラン領域、(2)これに隣接する高濃縮度領
域、および(3)中央に位置する中濃縮度領域の三領域
に分けることになる。ところがこのようにした場合、中
央部の細かい濃縮度分布がなくなるために上下端の天然
ウラン領域の長さを第2図のように全長の1/4程度とす
ると出力ピーキングが増大してしまう。そこで上下端部
の天然ウラン領域の長さを、炉心からの中性子の漏れを
減少させるに充分と考えられる長さ、すなわち上端部で
全長の2/24、下端部で全長の1/24とする。第2領域およ
び第3領域のウラン濃縮度は燃料集合体の平均濃縮度が
3.0%となるように決め、これを3.33%とする。
In FIG. 2, the concentration distribution of fissile material is considerably fine in the central region, but it is actually difficult to make such a fine distribution. (1) Natural uranium regions at the upper and lower ends , (2) a high-concentration region adjacent to this, and (3) a medium-concentration region located in the center. However, in this case, since the fine enrichment distribution in the central portion is eliminated, if the length of the natural uranium region at the upper and lower ends is set to about 1/4 of the total length, the output peaking increases. Therefore, the length of the natural uranium region at the upper and lower ends is considered to be sufficient to reduce the leakage of neutrons from the core, that is, 2/24 of the total length at the upper end and 1/24 of the total length at the lower end. . The uranium enrichment in the second and third regions is the average enrichment of the fuel assembly.
Decide to be 3.0% and make it 3.33%.

次に第2領域および第3領域の可燃性毒物分布につい
て説明する。
Next, the distribution of the burnable poison in the second area and the third area will be described.

本実施例における可燃性毒物分布を上記のようにした
結果、これらの領域での無限増倍率の燃焼変化は第5図
に示すようになる。同図においてオが第2領域の、カが
第3領域の各無限増倍率変化である。
As a result of setting the distribution of the burnable poison in the present embodiment as described above, the combustion change of infinite multiplication factor in these regions is as shown in FIG. In the figure, E is the infinite multiplication factor change in the second region and F is the infinite multiplication factor change in the third region.

一般に従来の原子炉は第3図に示されるような出力分
布で運転され、運転末期の燃焼度分布もおよそこの出力
分布に比例するから、軸方向に濃縮度が一様な従来燃料
の運転末期での無限増倍率軸方向分布は第4図のウのよ
うになる。
Generally, the conventional reactor is operated with the power distribution as shown in Fig. 3, and the burnup distribution at the end of operation is approximately proportional to this power distribution. Therefore, the end of operation of conventional fuel with a uniform enrichment in the axial direction is used. The infinite multiplication factor axial distribution at is as shown in Fig. 4C.

そこで第2領域の可燃性毒物濃度を第3領域より低く
しておけば、第2領域ではより早い時期に可燃性毒物が
燃え尽きることになり、無限増倍率の変化は第5図のオ
のように極大値がより燃焼度の低い位置にきて第2領域
の運転末期での無限増倍率を第3領域のそれより大きく
することができる。その結果、前記濃縮度分布を硬化と
合わせて、運転末期における無限増倍率分布は第4図の
エのようになり、第2図に近い分布が得られる。
Therefore, if the concentration of the burnable poison in the second region is set lower than that in the third region, the burnable poison will burn out in the second region earlier, and the change of the infinite multiplication factor is as shown in Fig. 5e. Moreover, the maximum value comes to a position where the burnup is lower, and the infinite multiplication factor at the end of operation in the second region can be made larger than that in the third region. As a result, the infinite multiplication factor distribution at the end of the operation is as shown in FIG. 4D, and the distribution close to that of FIG.

なお本実施例では第2領域の可燃性毒物入り燃料棒の
本数を第3領域よりも多くしたので、燃焼初期での第2
領域の出力が低下し、そのためこの領域の燃焼が遅れる
ことになる。従って、さらに可燃性毒物濃度を低くして
おくことが可能となり、運転末期の出力分布をさらに第
2図のものに近付けることができる。
In this embodiment, the number of burnable poison-bearing fuel rods in the second region is larger than that in the third region.
The power of the area is reduced, which delays combustion in this area. Therefore, it is possible to further reduce the concentration of combustible poisons, and it is possible to bring the output distribution at the end of operation closer to that shown in FIG.

ところで、核分裂性物質の濃縮度分布だけでも、第2
図の分布に近づけることができる。すなわち、第1領域
の濃縮度も最も低くし、さらに第2領域の濃縮度を第3
領域よりも高くすればよい。しかしながら、濃縮度を高
めただけではその領域の出力が増し運転末期の燃焼度が
増大するので思ったほど効果は上がらない。この場合に
も、第2領域の可燃性毒物濃度を第3領域よりも低くす
るとともに、第2領域の可燃性毒物入り燃料棒本数を増
して、運転初期で第2領域の出力を充分下げておくこと
によって十分な効果が達成できる。
By the way, if only the concentration distribution of fissile material is
The distribution can be approximated to that shown in the figure. That is, the concentration in the first region is also set to the lowest, and the concentration in the second region is set to the third.
It should be higher than the area. However, simply increasing the enrichment does not produce the desired effect because the output in that region increases and the burnup at the end of operation increases. Also in this case, the concentration of the burnable poison in the second region is made lower than that in the third region, and the number of fuel rods containing burnable poison in the second region is increased to sufficiently reduce the output of the second region at the initial stage of operation. Sufficient effect can be achieved by setting.

なお、本実施例では下端より全長の1/24、上端より全
長の2/24を第1領域としたが、第2図に示されていると
おり、第1領域としては、下端より全長の1/8以下、上
端より全長の1/6以下であれば良く、第2領域として
は、下部では全長の1/24程度、上部では全長の1/12程度
が良い。また、第1領域および第2領域は、効果は縮小
されるが、上下いずれか一方のみに設けても良い。さら
に第1領域には、天然ウラン以外に、使用済燃料の再処
理によって得られる回収ウランや濃縮工程で廃棄される
劣化ウランなどを使用しても良い。
In the present embodiment, 1/24 of the total length from the lower end and 2/24 of the total length from the upper end were set as the first region, but as shown in FIG. 2, the first region is 1/24 of the total length from the lower end. / 8 or less, 1/6 or less of the total length from the upper end, and the second region is about 1/24 of the total length in the lower part and about 1/12 of the total length in the upper part. Further, although the effect is reduced in the first region and the second region, they may be provided in only one of the upper and lower sides. In addition to natural uranium, recovered uranium obtained by reprocessing spent fuel and depleted uranium discarded in the concentration step may be used in the first region.

[発明の効果] 以上述べたように、本発明によれば、燃料集合体を軸
方向に三領域に区分し、核分裂性物質の濃縮度および可
燃性毒物濃度を上記した如く各領域に適切に分布させる
ことによって、運転期間末期における反応度分布を制御
し、一定の出力ピーキング以下という条件のもとでウラ
ン資源の節約を最大にすることができる。
[Effects of the Invention] As described above, according to the present invention, the fuel assembly is divided into three regions in the axial direction, and the concentration of the fissile material and the concentration of the burnable poison are properly adjusted to each region as described above. By distribution, the reactivity distribution at the end of the operation period can be controlled, and the uranium resource saving can be maximized under the condition that the output peaking is not higher than a certain level.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の各領域区分を示す図、第2
図は一定の出力ピーキング以下の制限下で最少量の核分
裂性物質で臨界状態を達成するための軸方向の濃縮度分
布とそれに対応する相対出力分布を示す図、第3図は従
来の原子炉の軸方向出力分布を示す図、第4図は従来の
燃料と本発明の燃料の無限増倍率軸方向分布を示す図、
第5図は本発明の第2領域および第3領域の無限増倍率
の燃焼度変化を示す図である。 A……第1領域 B……第2領域 C……第3領域
FIG. 1 is a diagram showing each area division of one embodiment of the present invention, and FIG.
The figure shows the axial enrichment distribution and the corresponding relative power distribution for achieving the critical state with the minimum amount of fissile material under the limit of constant power peaking. Fig. 3 shows the conventional reactor. FIG. 4 is a diagram showing the axial power distribution of FIG. 4, FIG. 4 is a diagram showing the infinite multiplication factor axial distribution of the conventional fuel and the fuel of the present invention,
FIG. 5 is a diagram showing burnup changes of infinite multiplication factors in the second region and the third region of the present invention. A: First area B: Second area C: Third area

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数本の燃料棒を格子状に配列して構成さ
れる原子炉用燃料集合体において、前記燃料集合体が軸
方向に燃料集合体の上端部および下端部の少なくとも一
方からなる第1領域、中央部にあって前記第1領域に隣
接する第2領域、および第1領域および第2領域を除く
第3領域の三領域に区分され、前記第1領域は可燃性毒
物を含有せずかつ前記第2領域および第3領域よりも核
分裂性物質の濃縮度が低く、前記第2領域は前記第3領
域よりも可燃性毒物濃度が低くかつ核分裂性物質の濃縮
度が高いかまたは等しいことを特徴とする原子炉用燃料
集合体。
1. A nuclear reactor fuel assembly constructed by arranging a plurality of fuel rods in a lattice pattern, wherein the fuel assembly comprises at least one of an upper end portion and a lower end portion of the fuel assembly in an axial direction. It is divided into three regions, a first region, a second region in the central portion and adjacent to the first region, and a third region excluding the first region and the second region, and the first region contains a burnable poison. Or the concentration of the fissile material is lower than that of the second and third regions, the concentration of the combustible poison in the second region is lower than that of the third region, and the concentration of the fissile material is higher than that of the third region, or A fuel assembly for a nuclear reactor characterized by being equal.
【請求項2】第2領域の可燃性毒物入り燃料棒本数が第
3領域の可燃性毒物入り燃料棒本数より多い特許請求の
範囲第1項記載の原子炉用燃料集合体。
2. The fuel assembly for a nuclear reactor according to claim 1, wherein the number of burnable poison-bearing fuel rods in the second region is larger than the number of burnable poison-bearing fuel rods in the third region.
【請求項3】複数本の燃料棒を格子状に配列して構成さ
れる原子炉用燃料集合体において、前記燃料集合体が軸
方向に燃料集合体の上端部および下端部の少なくとも一
方からなる第1領域、中央部にあって前記第1領域に隣
接する第2領域、および第1領域および第2領域を除く
第3領域の三領域に区分され、前記第1領域は可燃性毒
物を含有せずかつ前記第2領域および第3領域よりも核
分裂性物質の濃縮度が低く、前記第2領域は前記第3領
域よりも核分裂性物質の濃縮度が高いことを特徴とする
原子炉用燃料集合体。
3. A fuel assembly for a nuclear reactor constructed by arranging a plurality of fuel rods in a grid pattern, wherein the fuel assembly comprises at least one of an upper end portion and a lower end portion of the fuel assembly in an axial direction. It is divided into three regions, a first region, a second region in the central portion and adjacent to the first region, and a third region excluding the first region and the second region, and the first region contains a burnable poison. No, and the concentration of the fissile material is lower than that of the second region and the third region, and the concentration of the fissile material in the second region is higher than that of the third region. Aggregation.
【請求項4】第1領域のうち前記上端部の長さが前記燃
料集合体の全長の1/6以下であり、これに隣接する第2
領域の長さが前記燃料集合体の全長の約1/12であるとと
もに、第1領域のうち前記下端部の長さが前記燃料集合
体の全長の1/8以下であり、これに隣接する第2領域の
長さが前記燃料集合体の全長の約1/24であることを特徴
とする特許請求の範囲第1項ないし第3項記載の原子炉
用燃料集合体。
4. The length of the upper end portion of the first region is 1/6 or less of the total length of the fuel assembly, and a second portion adjacent to this
The length of the region is about 1/12 of the total length of the fuel assembly, and the length of the lower end of the first region is 1/8 or less of the total length of the fuel assembly, and adjacent to this. The fuel assembly for a nuclear reactor according to any one of claims 1 to 3, wherein the length of the second region is about 1/24 of the total length of the fuel assembly.
【請求項5】第1領域に天然ウラン、使用済み燃料の再
処理によって得られる回収ウラン、または濃縮工程で廃
棄される劣化ウランを装荷した特許請求の範囲第1項な
いし第4項記載の原子炉用燃料集合体。
5. An atom according to claim 1, wherein the first region is loaded with natural uranium, recovered uranium obtained by reprocessing spent fuel, or depleted uranium discarded in the enrichment process. Fuel assembly for reactor.
JP61020059A 1986-02-03 1986-02-03 Fuel assembly for nuclear reactor Expired - Lifetime JP2538561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020059A JP2538561B2 (en) 1986-02-03 1986-02-03 Fuel assembly for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020059A JP2538561B2 (en) 1986-02-03 1986-02-03 Fuel assembly for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS62179688A JPS62179688A (en) 1987-08-06
JP2538561B2 true JP2538561B2 (en) 1996-09-25

Family

ID=12016506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020059A Expired - Lifetime JP2538561B2 (en) 1986-02-03 1986-02-03 Fuel assembly for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2538561B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182585A (en) * 1982-04-19 1983-10-25 株式会社東芝 Fuel assembly
JPS5938684A (en) * 1982-08-27 1984-03-02 株式会社東芝 Fuel assembly of reactor

Also Published As

Publication number Publication date
JPS62179688A (en) 1987-08-06

Similar Documents

Publication Publication Date Title
JPH09105792A (en) Initial loading reactor core and fuel assembly
JPH0536757B2 (en)
JPS623916B2 (en)
JPH0378600B2 (en)
JP2538561B2 (en) Fuel assembly for nuclear reactor
JP2625404B2 (en) Fuel assembly
JP3080663B2 (en) Operation method of the first loading core
JP2001124884A (en) Fuel assembly for boiling water reactor and initially charged reactor core
JP2723252B2 (en) Reactor fuel assemblies
JP4044993B2 (en) Reactor fuel loading method
JPH0555836B2 (en)
JPH02232595A (en) Fuel loading of boiling nuclear reactor
JP3117207B2 (en) Fuel assembly for boiling water reactor
JP3441149B2 (en) Reactor core
JP2963712B2 (en) Fuel assembly for boiling water reactor
JP2852101B2 (en) Reactor core and fuel loading method
JPH1090461A (en) Initial loading core of reactor and fuel loading method
JP2519693B2 (en) Fuel assembly
JPH0315717B2 (en)
JPH0519672B2 (en)
JP3596831B2 (en) Boiling water reactor core
JPH1039070A (en) Core for reactor
JP2544249B2 (en) Fuel assembly and reactor core for boiling water reactors
JPS6312270B2 (en)
JPH0650352B2 (en) Boiling water reactor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term