JP2555675B2 - Pattern formation method - Google Patents

Pattern formation method

Info

Publication number
JP2555675B2
JP2555675B2 JP63066266A JP6626688A JP2555675B2 JP 2555675 B2 JP2555675 B2 JP 2555675B2 JP 63066266 A JP63066266 A JP 63066266A JP 6626688 A JP6626688 A JP 6626688A JP 2555675 B2 JP2555675 B2 JP 2555675B2
Authority
JP
Japan
Prior art keywords
resist
pattern
positive photoresist
film
photoresist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63066266A
Other languages
Japanese (ja)
Other versions
JPH01238659A (en
Inventor
重雄 魚谷
佐知子 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63066266A priority Critical patent/JP2555675B2/en
Publication of JPH01238659A publication Critical patent/JPH01238659A/en
Application granted granted Critical
Publication of JP2555675B2 publication Critical patent/JP2555675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体素子などの作製における微細加工
法に係り、フォトリソグラフィにおけるパターン形成に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a microfabrication method in manufacturing a semiconductor element or the like, and relates to pattern formation in photolithography.

〔従来の技術〕[Conventional technology]

半導体素子の集積度の向上と共にパターンの微細化も
進んでいる。そこでは依然として光を光源とした光リソ
グラフィが使われている。そして現在では、その高解像
性と優れたアライメント精度ゆえ、縮小投影露光法が主
流である。光リソグラフィで一層レジスト法にて微細パ
ターンを形成する際の課題は、基板段差によるレジスト
膜厚の局所的変動によるパターン寸法の変化(バルク効
果),基板段差側壁等からの散乱光によるレジストの局
所的過剰露光によるパターン寸法の細り(ノッチング効
果,更には縮小投影露光は屈接光学系を使うので、単色
光を光源として用いる。従ってこの単色光を用いること
によって生じる問題点、 即ち、レジストへの入射光、レジスト表面からの反射
光、レジスト/基板界面からの反射光の相互間で、干渉
が生じ、レジスト膜厚のわずかな変動に伴なってレジス
ト中へ吸収される実効的光量の変動がλ/2n(λ:露光
波長、n:レジストの屈折率)の周期で生じ、レジストパ
ターン寸法に変動が生じたり(膜内多重反射効果),レ
ジストの厚さ方向に周期的な光強度の分布が生じ、現像
後のレジストパターン断面にそれに対応した波打ち形状
が生じる(定在波効果)。これらはいづれもレジストパ
ターン寸法の変動や解像不良の原因となる。
As the degree of integration of semiconductor elements is improved, the miniaturization of patterns is also progressing. Optical lithography using light as a light source is still used there. At present, the reduction projection exposure method is the mainstream because of its high resolution and excellent alignment accuracy. The problems in forming a fine pattern by the one-layer resist method by photolithography are the pattern size change (bulk effect) due to the local variation of the resist film thickness due to the substrate step, and the resist local due to the scattered light from the substrate step side wall. Of pattern size due to static overexposure (notching effect, and reduction projection exposure uses a contact optical system, so monochromatic light is used as a light source. Therefore, the problem caused by using this monochromatic light is Interference occurs between the incident light, the light reflected from the resist surface, and the light reflected from the resist / substrate interface, and fluctuations in the effective light amount absorbed in the resist due to slight fluctuations in the resist film thickness. It occurs in the cycle of λ / 2n (λ: exposure wavelength, n: refractive index of resist), and the resist pattern size varies (intra-film multiple reflection effect), resist thickness A periodical light intensity distribution occurs in the depth direction, and a corrugated shape corresponding to it occurs on the resist pattern cross section after development (standing wave effect). These are all causes of variation in resist pattern size and poor resolution. Become.

これら、従来の一層レジスト法の問題点を解決する方
法として、多層レジスト法やARC法、ARCOR法などが提案
されている。しかし、多層レジスト法は、レジスト層を
三層形成し、その後パターン転写を行ってマスクとなる
レジストパターンを形成するため、工程数が多くスルー
プットが低いという問題がある。ARC法は、レジスト下
部に形成した反射防止膜を現像によりウエットエッチン
グする為、サイドエッチ量が多く、このことによる寸法
精度の低下が大きいという問題がある。ARCO法とはレジ
スト膜の上に一層及び多層の干渉型反射防止膜を塗布し
て、レジスト膜中での多重反射を抑える方法だが、かな
り工程数、使用材料が増加するという問題がある。な
お、多層レジストに関しては特開昭第51−10775号など
に記載されている。またARC法としては特開昭第59−934
48号に、ARCOR法は特開昭第62−62520号に記載されてい
る。
As a method for solving these problems of the conventional one-layer resist method, a multilayer resist method, an ARC method, an ARCOR method, and the like have been proposed. However, the multi-layer resist method has a problem that the number of steps is large and the throughput is low because three resist layers are formed and then a pattern is transferred to form a resist pattern serving as a mask. The ARC method has a problem that since the antireflection film formed under the resist is wet-etched by development, the amount of side etching is large, which causes a large decrease in dimensional accuracy. The ARCO method is a method of coating a single-layer or multi-layer interference type antireflection film on a resist film to suppress multiple reflection in the resist film, but there is a problem that the number of steps and materials used considerably increase. The multilayer resist is described in JP-A-51-10775. Further, as the ARC method, Japanese Patent Laid-Open No. 59-934
No. 48 and the ARCOR method are described in JP-A No. 62-62520.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

これら従来の一層レジスト法の問題点のうち、前述の
定在波効果を抑制して、レジストパターン断面形状をス
ムーズ化し、かつ現像後の残潰不良をなくす方法として
従来から露光後現像前ベーク法がある(本方法はIEEE T
ransactions on Electron Devices,Vol.ED−22,No.7,Ju
ly 1975のP464〜466に記載されている。)。この方向は
1工程が増加するだけで、なおかつ連続処理が可能な優
れた方法であるが、SPIE Prceedins Vol.469 Advances
in Resist Technology(1984)のP65〜711にも記載され
ているように従来、以下の欠点を有していた。即ち、マ
スク寸法通りのレジストパターン寸法を得るのに要する
露光量(Eo)が増大し、レジストの種類によっては、未
露光部の膜減りが生じる。そして、定在波効果、即ちレ
ジストパターン断面形状の波打ちをスムーズ化する以外
は前記の従来の一層レジスト法の問題点を解決すること
は殆んどできない。
Among these problems of the conventional one-layer resist method, a conventional post-exposure pre-development bake method has been used as a method of suppressing the standing wave effect described above, smoothing the resist pattern cross-sectional shape, and eliminating residual defects after development. (This method is IEEE T
ransactions on Electron Devices, Vol.ED-22, No.7, Ju
ly 1975, pp. 464-466. ). In this direction, it is an excellent method that allows continuous processing with only one additional step. SPIE Prceedins Vol.469 Advances
As described in P65 to 711 of In Resist Technology (1984), it has conventionally had the following drawbacks. That is, the amount of exposure (Eo) required to obtain a resist pattern dimension that is the same as the mask dimension increases, and the film thickness of the unexposed portion is reduced depending on the type of resist. Further, except for smoothing the standing wave effect, that is, the corrugation of the resist pattern cross-sectional shape, it is almost impossible to solve the problems of the conventional one-layer resist method.

この発明は、上記のような従来一層レジスト法の問題
点を解消するためになされたもので、従来の露光後、現
像前ベーク法の欠点を補い、かつ、従来法以上の性能、
即ち感度の低下及び膜減りの増大なしに、前記の定在波
効果の抑制のみならず、バルク効果減少させ、膜内多重
反射効果を間接的に抑制し、更に解像力、焦点深度を改
善する方法を得ることを目的とする。
The present invention has been made to solve the problems of the conventional resist method as described above, and compensates for the defects of the conventional baking method before exposure and after development, and has a performance higher than that of the conventional method.
That is, a method of not only suppressing the standing wave effect but also reducing the bulk effect, indirectly suppressing the multiple reflection effect in the film, and further improving the resolution and the depth of focus without decreasing the sensitivity and increasing the film loss. Aim to get.

〔課題を解決するための手段〕[Means for solving the problem]

キノンジアジド系感光剤とアルカリ可溶性ノボラック
樹脂とからなるポジ型フォトレジストを基板上に塗布し
加熱処理する工程と、加熱処理されたポジ型フォトレジ
スト膜の表面をアルカリ性溶液に浸しその後乾燥する工
程と、アルカリ性溶液に浸しその後乾燥したポジ型フォ
トレジスト膜に選択的に紫外線(波長範囲180nm〜450n
m)を照射する工程と、選択的に紫外線照射されたポジ
型フォトレジスト膜を加熱する工程と、加熱処理したポ
ジ型フォトレジスト膜に紫外線(波長範囲180nm〜450n
m)を全面露光する工程と、全面露光されたポジ型フォ
トレジストを現像してレジストパターンを形成する工程
とを備える。
A step of applying a positive photoresist composed of a quinonediazide-based photosensitizer and an alkali-soluble novolac resin on a substrate and heat-treating, a step of immersing the surface of the heat-treated positive photoresist film in an alkaline solution and then drying, The positive photoresist film, which was dipped in an alkaline solution and then dried, was selectively exposed to ultraviolet light (wavelength range 180 nm to 450 n
m), the step of selectively heating the positive photoresist film that has been irradiated with ultraviolet light, and the heat treatment of the positive photoresist film with ultraviolet light (wavelength range 180 nm to 450 n
m) is entirely exposed, and a step of developing the positively exposed photoresist to form a resist pattern is provided.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。第1
図(1)において、1はシリコン結晶基板、このシリコ
ン結晶基板上にポジ型フォトレジストMCPR2000H(三菱
化成製商品名)を回転塗布し、1.16μm厚のレジスト層
2を形成した。次にこの試料をホットプレート3上で70
℃〜110℃の温度で60秒間プリベークした〔第1図
(2)〕。引き続きこの試料の表面を1%〜5%のTMAH
(テトラメチルアンモニウムハイドロオキサイド)のア
ルカリ水溶液4に10〜50秒間浸し、その後純水でリンス
洗浄し、回転乾燥させた〔第1図(3)〕。
Embodiments of the present invention will be described below with reference to the drawings. First
In FIG. 1A, 1 is a silicon crystal substrate, and a positive photoresist MCPR2000H (trade name of Mitsubishi Kasei Co., Ltd.) is spin-coated on the silicon crystal substrate to form a resist layer 2 having a thickness of 1.16 μm. This sample is then placed on the hot plate 3
Prebaking was performed for 60 seconds at a temperature of ℃ to 110 ℃ [Fig. 1 (2)]. Then, the surface of this sample was covered with 1% to 5% TMAH.
It was dipped in an alkaline aqueous solution 4 of (tetramethylammonium hydroxide) for 10 to 50 seconds, then rinsed with pure water, and spin-dried [Fig. 1 (3)].

次に第1図(4)に示すように波長436nmの光を用い
てNA=0.42のレンズを搭載した縮小投影露光装置(ステ
ッパー)で選択的にフォトレジストを露光した。その後
第1図(5)に示すようにホットプレート上で90℃〜15
0℃の温度で60秒間ベーク処理した。次に第1図(6)
に示すように波長436nm,365nn等に輝線スペクトルを持
つ超高圧水銀ランプを用い、1〜30mJ/cm2のエネルギー
で全面露光した。次に第1図(7)に示すようにTMAH2.
38%の水溶液で現像し、シリコン基板上にレジストパタ
ーン2′を形成した。この方法でマスクパターン寸法通
りレジストパターン寸法が仕上る露光量(Eo)は、従来
のレジスト塗布プリベーク,露光,現像の順に処理する
一層レジスト法と同じ値又はそれ以下の値が得られ、感
度の低下は見られなかった。従来一層レジスト法では0.
6μm巾/間隔パターン迄解像したが、0.5μm巾/間隔
パターンはマスクパターンの空間像コントラストが弱い
為、間隔パターン(即ち露光部)の光強度が弱く現像後
レジストが残った。しかし、本発明では、現像前の全面
露光、パターンニング露光とレジスト中のアルカリの効
果、及びパターンニング露光後の熱処理による感光剤濃
度の局所的分布の均一化等により露光部の現像時溶解速
度が増加し、0.5μm巾/間隔パターンの間隔パターン
が解像された。一方、未露光部については、アルカリ表
面処理による、ごく表層の難溶化、感光剤の濃度の高い
レジスト表面近くでのパターンニング露光後の加熱処理
による難溶化層の形成等により現像後の膜減りが抑えら
れ、0.5μm巾/間隔パターンでも残しパターン(巾パ
ターン)の膜減りは全然発生せず、かつ定在波効果によ
るレジストパターン断面の波うち形状もスムーズにな
り、垂直なレジストパターン断面形状が0.5μm巾/間
隔パターンまで得られた。又、解像が困難なスペースパ
ターンの解像能力は従来一層レジストプロセスが0.7μ
mなのに対し、本実施例では0.5μmが大きなパターン
サイズと同様のほぼ垂直なな断面形状で解像され、解像
力で大きな改善が得られた。
Next, as shown in FIG. 1 (4), the photoresist was selectively exposed using a reduction projection exposure apparatus (stepper) equipped with a lens of NA = 0.42 using light of a wavelength of 436 nm. After that, as shown in Fig. 1 (5), 90 ℃ ~ 15
It was baked at a temperature of 0 ° C. for 60 seconds. Next, Fig. 1 (6)
As shown in Fig. 3, the entire surface was exposed with an energy of 1 to 30 mJ / cm 2 by using an ultrahigh pressure mercury lamp having a bright line spectrum at wavelengths of 436 nm and 365 nn. Next, as shown in Fig. 1 (7), TMAH2.
It was developed with a 38% aqueous solution to form a resist pattern 2'on a silicon substrate. With this method, the exposure dose (Eo) that makes the resist pattern dimension the same as the mask pattern dimension is the same as or less than that of the conventional one-layer resist method in which resist coating prebaking, exposure, and development are performed in this order, and the sensitivity is reduced. Was not seen. The conventional one-layer resist method is 0.
Although the pattern of 6 μm width / spacing was resolved, the 0.5 μm width / spacing pattern had a weak aerial image contrast of the mask pattern, so that the light intensity of the spacing pattern (that is, the exposed portion) was weak and the resist remained after development. However, in the present invention, the dissolution rate at the time of development of the exposed portion due to the entire surface exposure before development, the effect of alkali in the patterning exposure and resist, and the uniform distribution of the concentration of the photosensitizer by the heat treatment after the patterning exposure. , And the spacing pattern of 0.5 μm width / spacing pattern was resolved. On the other hand, in the unexposed area, the alkali surface treatment renders the surface layer extremely insoluble, and the patterning near the resist surface where the concentration of the photosensitizer is high forms the insoluble layer by heat treatment after exposure. The thickness of the remaining pattern (width pattern) is not reduced even with a 0.5 μm width / spacing pattern, and the corrugated shape of the resist pattern cross section due to the standing wave effect is also smooth, resulting in a vertical resist pattern cross section shape. Was obtained up to a 0.5 μm width / spacing pattern. In addition, the resolution capability of the space pattern, which is difficult to resolve, is 0.7μ in the conventional resist process.
On the other hand, in the present embodiment, 0.5 μm was resolved in a substantially vertical sectional shape similar to a large pattern size, and a large improvement in resolution was obtained.

更に焦点深度についても従来一層レジストプロセスに
比べ約50%以上の大巾な改善が得られた。更にレジスト
膜厚を1.16μm前後で変化させて、第2図に示すバルク
効果によるレジストパターン寸法変化量(A)と膜内多
重反射効果による寸法変化量(B)とについて従来一層
レジスト法に比べ大巾に減少し著しい改善が得られた。
In addition, the depth of focus was improved by about 50% or more compared to the conventional resist process. Further, by changing the resist film thickness around 1.16 μm, the resist pattern dimension change amount (A) due to the bulk effect and the dimension change amount (B) due to the in-film multiple reflection effect shown in FIG. It was drastically reduced and a remarkable improvement was obtained.

以上の実施例で、露光後現像前のベークを省略する
と、上記性能項目のうち、パターンプロファイル及び焦
点深度について改善が殆んど見られなかった。
In the above Examples, when the bake after the exposure and before the development was omitted, there was almost no improvement in the pattern profile and the depth of focus among the above performance items.

また、全面露光を省略すると、解像力が低下して0.6
μm巾/間隔パターン迄しか解像しなかった。
Also, if the whole surface exposure is omitted, the resolution is reduced to 0.6.
Only the μm width / spacing pattern was resolved.

また、以上の実施例では、パターンニング露光波長と
して436nmのg線の場合について記したが勿論、i線(3
65nm),Xe−Clエキシマレーザ光(308nm),KrFエキシマ
レーサ光(248nm),ArFエキシマレーザ光(193nm),更
には多波長光源の場合にも本発明は有効である。また全
面露光の波長についても同様である。
Further, in the above-mentioned embodiments, the case where the patterning exposure wavelength is 436 nm for the g-line is described, but the i-line (3
65 nm), Xe-Cl excimer laser light (308 nm), KrF excimer laser light (248 nm), ArF excimer laser light (193 nm), and the multi-wavelength light source, the present invention is also effective. The same applies to the wavelength of overall exposure.

また、本実施例ではアルカリ溶液として有機アルカリ
の水溶液で、ポジ型フォトレジスト用の現像液の1種で
あるTMAH(テトラメチルアンモニウムハイドロオキサイ
ド)の水溶液を使ったが、他の有機アルカリの水溶液、
KOH等の無機アルカリの水溶液、更には他のアルカリ性
有機溶液でも本発明の方法は有効であった。また、紫外
線の選択的照射(パターンニング露光)のすぐ後に紫外
線で全面露光し、その後加熱処理して現像しても、上記
とほぼ同等な性能が得られた。また、レジスト塗布から
現像迄の工程中にある最大3回の加熱処理を使用するポ
ジ型フォトレジストの材料組成に対応させて、1回以上
真空中で加熱処理しても、上記の本発明の優れた性能を
組持した上で、現像後のレジストパターンの断面形状が
制御がより容易になった。
Further, in the present embodiment, an aqueous solution of an organic alkali was used as the alkaline solution, and an aqueous solution of TMAH (tetramethylammonium hydroxide), which is one of the developers for positive photoresist, was used.
The method of the present invention was effective with an aqueous solution of an inorganic alkali such as KOH, and also with other alkaline organic solutions. Further, even when the entire surface was exposed to ultraviolet rays immediately after the selective irradiation of ultraviolet rays (patterning exposure), and then the film was subjected to heat treatment and development, almost the same performance as the above was obtained. In addition, even if the heat treatment is performed once or more in vacuum according to the material composition of the positive photoresist, which uses the heat treatment up to three times in the process from resist coating to development, the above-mentioned present invention can be used. Controlling the cross-sectional shape of the resist pattern after development has become easier while maintaining excellent performance.

一方、反射率の高い下地基板(例えば、A1薄膜)上
に、微細レジストパターンを形成する際に、基板からの
反射の影響を抑える為に、吸光剤を加えたポジ型フォト
レジストを用いてパターン形成するが、本発明の方法は
そのような場合でも有効である。
On the other hand, when forming a fine resist pattern on a base substrate with a high reflectance (for example, A1 thin film), a pattern is formed using a positive photoresist to which a light absorber is added in order to suppress the influence of reflection from the substrate. Although formed, the method of the present invention is effective in such cases.

またこの発明の方法を三層レジスト法の上層レジスト
のパターン形成に適用しても、上層レジストと中間層と
の界面からの僅かな反射による膜内多重反射によるパタ
ーン寸法変動を抑制すると共に、レジストパターン断面
形状の改善、更には焦点深度の拡大の面でも有効であ
る。PCM二層レジスト法や、Si含有型ノボラック−ナフ
トキノンジアジド系ポジ型フォトレジストを上層レジス
トとして使うSi系二層レジスト法の上層レジストのパタ
ーン形成に、本発明の方法を導入しても効果がある。
Further, even when the method of the present invention is applied to the pattern formation of the upper layer resist by the three-layer resist method, the pattern size variation due to the in-film multiple reflection due to the slight reflection from the interface between the upper layer resist and the intermediate layer is suppressed, and the resist It is also effective in terms of improving the pattern cross-sectional shape and further increasing the depth of focus. Even if the method of the present invention is introduced into the pattern formation of the upper layer resist of the PCM two-layer resist method or the Si-based two-layer resist method using the Si-containing type novolak-naphthoquinonediazide positive photoresist as the upper layer resist, it is effective. .

下地基板とポジ型フォトレジストの間に吸光度の高い
吸収型反射防止膜や、屈折率及び膜厚を制御した干渉型
反射防止膜を形成して、レジストパターン形成を行う反
射防止膜(ARC)法においても、更に、ポジ型フォトセ
ンサレジストの上に屈折率及び膜厚を制御した干渉型の
一層又は多層の反射防止膜を被覆してパターン形成を行
うパターン形成方法においても本発明の方法は有効であ
る。
An antireflection film (ARC) method for forming a resist pattern by forming an absorption type antireflection film having high absorbance between the base substrate and the positive type photoresist or an interference type antireflection film whose refractive index and film thickness are controlled. In addition, the method of the present invention is also effective in a pattern forming method in which a positive type photosensor resist is coated with an interference type single-layer or multi-layer antireflection film whose refractive index and film thickness are controlled to form a pattern. Is.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明のパターン形成方法によれ
ば、フォトレジスト膜の表面をアルカリ性溶液に浸し、
その後乾燥する工程と、選択的に紫外線照射されたポジ
型フォトレジスト膜を加熱する工程、および加熱処理し
たポジ型フォトレジスト膜に紫外線を全面露光する工程
を備えているので、(1)レジスト感度の低下、および
膜減りの増大なしに、定在波効果を抑制することができ
る、(2)解像力、焦点深度の改善ができる、(3)レ
ジストパターンの断面形状の制御を容易にすることがで
きる、というような多層レジスト並みのレジストパター
ンが、極めて簡単で高価装置及び材料を必要とせずに形
成できるという効果がある。
As described above, according to the pattern forming method of the present invention, the surface of the photoresist film is dipped in an alkaline solution,
After that, it is provided with a step of drying, a step of heating the positive photoresist film selectively irradiated with ultraviolet rays, and a step of exposing the heat treated positive photoresist film to ultraviolet rays over the entire surface. The standing wave effect can be suppressed without lowering the film thickness and the film loss, (2) the resolution and the depth of focus can be improved, and (3) the cross-sectional shape of the resist pattern can be easily controlled. There is an effect that a resist pattern similar to that of a multi-layer resist can be formed without using an extremely simple and expensive device and material.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す工程図である。第2
図は従来法の問題点を説明する図である。 なお図中、同一符号は同一、又は相当部分を示す。 1……Si基板、2……ポジ型フォトレジスト、3……ホ
ットプレート、4……アルカリ溶液、5……紫外線、
2′……現像後のレジストパターン
FIG. 1 is a process drawing showing an embodiment of the present invention. Second
The figure is a diagram for explaining the problems of the conventional method. In the drawings, the same reference numerals indicate the same or corresponding parts. 1 ... Si substrate, 2 ... positive photoresist, 3 ... hot plate, 4 ... alkali solution, 5 ... ultraviolet,
2 '... resist pattern after development

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記工程を含むパターン形成方法。 (1)キノンジアジド系感光剤とアルカリ可溶性ノボラ
ック樹脂とからなるポジ型フォトレジストを基板上に塗
布し、加熱処理する工程。 (2)加熱処理された上記ポジ型フォトレジスト膜の表
面をアルカリ性溶液に浸し、その後乾燥する工程。 (3)アルカリ性溶液に浸し、その後乾燥した上記ポジ
型フォトレジスト膜に選択的に紫外線(波長範囲180nm
〜450nm)を照射する工程。 (4)選択的に紫外線照射された上記ポジ型フォトレジ
スト膜を加熱する工程。 (5)加熱処理した上記ポジ型フォトレジスト膜に紫外
線(波長範囲180nm〜450nm)を全面露光する工程。 (6)全面露光された上記ポジ型フォトレジストを現像
してレジストパターンを形成する工程。
1. A pattern forming method including the following steps. (1) A step of applying a positive photoresist composed of a quinonediazide-based photosensitizer and an alkali-soluble novolak resin onto a substrate and subjecting it to heat treatment. (2) A step of immersing the surface of the heat-treated positive photoresist film in an alkaline solution and then drying it. (3) UV light (wavelength range 180 nm) is selectively applied to the above-mentioned positive type photoresist film which is dipped in an alkaline solution and then dried.
~ 450 nm) irradiation step. (4) A step of heating the positive photoresist film selectively irradiated with ultraviolet rays. (5) A step of entirely exposing the heat-treated positive photoresist film to ultraviolet rays (wavelength range 180 nm to 450 nm). (6) A step of forming a resist pattern by developing the above-mentioned positive photoresist which has been entirely exposed.
JP63066266A 1988-03-18 1988-03-18 Pattern formation method Expired - Fee Related JP2555675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066266A JP2555675B2 (en) 1988-03-18 1988-03-18 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066266A JP2555675B2 (en) 1988-03-18 1988-03-18 Pattern formation method

Publications (2)

Publication Number Publication Date
JPH01238659A JPH01238659A (en) 1989-09-22
JP2555675B2 true JP2555675B2 (en) 1996-11-20

Family

ID=13310870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066266A Expired - Fee Related JP2555675B2 (en) 1988-03-18 1988-03-18 Pattern formation method

Country Status (1)

Country Link
JP (1) JP2555675B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299959A (en) * 1988-10-06 1990-04-11 Matsushita Electric Ind Co Ltd Pattern forming method
JPH0562894A (en) * 1991-09-03 1993-03-12 Sharp Corp Forming method for fine pattern
JP2009194242A (en) * 2008-02-15 2009-08-27 Tokyo Electron Ltd Coating and developing device, coating and developing method, and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984426A (en) * 1982-11-04 1984-05-16 Nec Corp Patterning method of positive resist
JPS59155921A (en) * 1983-02-25 1984-09-05 Fujitsu Ltd Formation of resist pattern
DE3510219A1 (en) * 1985-03-21 1986-09-25 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING A PHOTOPOLYMERIZABLE RECORDING MATERIAL

Also Published As

Publication number Publication date
JPH01238659A (en) 1989-09-22

Similar Documents

Publication Publication Date Title
JP7009568B2 (en) Photosensitivity Chemical Amplification Resist Methods and Techniques Using Chemicals and Processes
TWI459440B (en) Flood exposure process for dual tone development in lithographic applications
US5413898A (en) Method of forming a pattern on a substrate having a step change in height
JPS6358367B2 (en)
JP2009534870A (en) How to shorten the minimum pitch in a pattern
KR100675782B1 (en) Non absorbing reticle and method of making same
JPH11231553A (en) Production of substrate
JP2560773B2 (en) Pattern formation method
JP2555675B2 (en) Pattern formation method
US6132940A (en) Method for producing constant profile sidewalls
KR100291331B1 (en) Apparatus for fabricating semiconductor device and method for forming pattern of semiconductor device
JP3676947B2 (en) Semiconductor device manufacturing equipment, semiconductor device pattern forming method using the same, and semiconductor device manufacturing photoresist using the same
JP2692241B2 (en) Method of forming resist pattern
JP2589346B2 (en) Pattern formation method
WO1986001914A1 (en) Photolithography process using positive photoresist containing unbleachable light absorbing agent
KR100272519B1 (en) Patterning method of semiconductor device
JP2676833B2 (en) Method for forming photoresist pattern
JPH06140297A (en) Resist applying method
KR940011204B1 (en) Process for producing fine pattern
KR940007052B1 (en) Patterning method using multilayer photoresist
JPH06216068A (en) Method for forming photoresist pattern
JPH08293454A (en) Formation method for resist pattern
JPH0574701A (en) Resist pattern forming method
JPH09232217A (en) Formation method for resist pattern
JPH0562894A (en) Forming method for fine pattern

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees