JP2554636B2 - Method for producing steel with excellent resistance to sulfide stress corrosion cracking - Google Patents

Method for producing steel with excellent resistance to sulfide stress corrosion cracking

Info

Publication number
JP2554636B2
JP2554636B2 JP61237988A JP23798886A JP2554636B2 JP 2554636 B2 JP2554636 B2 JP 2554636B2 JP 61237988 A JP61237988 A JP 61237988A JP 23798886 A JP23798886 A JP 23798886A JP 2554636 B2 JP2554636 B2 JP 2554636B2
Authority
JP
Japan
Prior art keywords
cooling
stress corrosion
corrosion cracking
cooling rate
sulfide stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61237988A
Other languages
Japanese (ja)
Other versions
JPS6393822A (en
Inventor
明彦 高橋
健 寺沢
亘史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61237988A priority Critical patent/JP2554636B2/en
Publication of JPS6393822A publication Critical patent/JPS6393822A/en
Application granted granted Critical
Publication of JP2554636B2 publication Critical patent/JP2554636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は60〜85Kg/mm2の降伏強度を有し、かつ、硫化
物応力腐食割れに対する優れた抵抗を有する油井管用と
して有用な鋼材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a yield strength of 60 to 85 Kg / mm 2 and is a steel material useful for oil country tubular goods having excellent resistance to sulfide stress corrosion cracking. The present invention relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

近年、硫化水素を含む油田の開発がさかんに行われる
ようになったことに伴い、硫化物応力腐食割れ抵抗の高
い、高強度鋼を低合金成分系で製造することへの要求が
高まってきている。
In recent years, with the rapid development of oil fields containing hydrogen sulfide, the demand for producing high-strength steel with high resistance to sulfide stress corrosion cracking with a low alloy component system has increased. There is.

硫化物応力腐食割れは、硫化水素を含む環境中で、鋼
表面の腐食反応により生じた水素が、鋼中に侵入し、鋼
組織を脆化させることにより生じる一種の水素脆性であ
ると考えられている。
Sulfide stress corrosion cracking is considered to be a type of hydrogen embrittlement that occurs when hydrogen generated by the corrosion reaction of the steel surface enters the steel in an environment containing hydrogen sulfide and embrittles the steel structure. ing.

従来、硫化物応力腐食割れを防止するために、有害と
考えられる鋼中の不純物を、工業的規模で可能な程度に
低減した上、(1)焼入れ、焼もどしにより、均一なマ
ルテンサイト組織を得る方法。(2)いわゆる恒温変態
を生ぜしめ、下部ベイナイト組織を得る方法(例えば特
開昭59−110721号公報)が、有効であると考えられ、一
応の成果を上げてきた。
Conventionally, in order to prevent sulfide stress corrosion cracking, impurities in steel, which are considered to be harmful, are reduced as much as possible on an industrial scale, and (1) quenching and tempering provide a uniform martensitic structure. How to get. (2) A method of producing a so-called constant temperature transformation and obtaining a lower bainite structure (for example, Japanese Patent Laid-Open No. 59-110721) is considered to be effective, and has achieved some results.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、以上の方法には、次の様な欠点をそれぞれ有
している。
However, each of the above methods has the following drawbacks.

(1)本発明が対象とする成分系に焼入れを施し、マル
テンサイト変態を起こさせた場合、焼入れままの強度は
概ね100Kg/mm2程度となり、所望の強度である60〜80Kg/
mm2に対して、高強度に過ぎ、金属組織には過大な転位
が導入された状態となる。
(1) When the component system targeted by the present invention is quenched to cause martensitic transformation, the as-quenched strength is about 100 Kg / mm 2, which is a desired strength of 60 to 80 Kg /
With respect to mm 2 , the strength is too high and excessive dislocations are introduced into the metal structure.

そこで一般に焼もどしを行い過大な歪を緩和して、適
正強度に調整を行うが、この際、セメンタイト等の炭化
物が、焼入れ前状態の旧オーステナイト粒界に沿って優
先的に析出、凝集して、焼もどし後の炭化物分布が不均
一になってしまう。
Therefore, tempering is generally performed to relax excessive strain and adjust to an appropriate strength.At this time, carbides such as cementite are preferentially precipitated and aggregated along the old austenite grain boundaries before quenching. However, the carbide distribution after tempering becomes non-uniform.

一方、耐硫化物応力腐食割れ抵抗を高めるためには、
割れの発生起点であるミクロな応力集中サイトとしての
炭化物分布を、できる限り均一かつ微細に分布させるこ
とが必要である。
On the other hand, in order to increase the resistance to sulfide stress corrosion cracking,
It is necessary to distribute the carbide distribution as a micro stress concentration site, which is the starting point of cracking, as uniformly and finely as possible.

従って、焼もどしマルテンサイト組織では、炭化物の
均一分布化に限界があるため、自ずと耐硫化物応力腐食
割れ抵抗と高強度とを併せ持つ鋼材を製造するに当って
限界が生じていた。
Therefore, in the tempered martensite structure, there is a limit to the uniform distribution of carbides, so naturally there was a limit in producing a steel material having both sulfide stress corrosion cracking resistance and high strength.

(2)焼入れ過程の後半の温度範囲(500℃〜300℃)を
通過する時間を制御して、恒温変態ベイナイトを生ぜし
め、過度の歪導入を避け、焼もどし過程における炭化物
分布を均一にする工夫が行われてきた。
(2) By controlling the time of passing through the temperature range (500 ° C to 300 ° C) in the latter half of the quenching process, constant temperature transformation bainite is generated, avoiding excessive strain introduction, and making the carbide distribution uniform in the tempering process. Ingenuity has been made.

しかし、このような方法は、恒温または除冷処理を必
要とするため、いわゆる耐サワー油井管のような単重の
小さな鋼材を工業的に生産する場合には、生産性の低い
方法であると言わざるを得ない。
However, since such a method requires constant temperature or cooling treatment, it is considered to be a low productivity method when industrially producing a small-weight steel material such as so-called sour-resistant oil country tubular goods. I have to say.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来技術の欠点を有利に解消するもの
で、連続冷却によりベイナイト変態を生ぜしめ、しかも
耐硫化物応力腐食割れ性を高めるために、冷却速度を成
分とオーステナイト化条件により規定される範囲内に制
御するというものである。
The present invention advantageously eliminates the above-mentioned drawbacks of the prior art. In order to produce bainite transformation by continuous cooling and to enhance resistance to sulfide stress corrosion cracking, the cooling rate is defined by the components and austenitizing conditions. It is to control within the range.

すなわち、本発明は、重量%で、C:0.2超〜0.4%、S
i:0.1〜1.0%、Mn:0.3〜3.0%、Al:0.005〜0.10%、Nb:
0.01〜0.10%を含み、残部鉄及び不可避的不純物より成
る鋼、または上記5成分に加え、さらに、Cr:0.10〜3.0
0%、Mo:0.10〜1.00%、Ni:0.10〜3.5%、Cu:0.10〜1.5
%、Ti:0.01〜0.10%、V:0.01〜0.10%、B:0.0002〜0.0
02%、Ca:0.005〜0.010%、REM:0.001〜0.020%の1種
または2種以上を含み、残部鉄及び不可避的不純物より
成る鋼を、Ac3点以上のオーステナイト温度域に加熱
後、冷却に際して、800℃〜500℃の温度範囲を次式 logV=6.61−(3.80C+1.07Mn +0.70Ni+0.57Cr+1.58Mo +0.0032P+1.07α) ここで、V:冷却速度℃/S C、Mn、Ni、Cr、MoはWt%で表した組成、Pはオース
テナイト化温度℃、α:B添加で1、B無添加で0、 で表されるV℃/S以上かつV+15℃/S以下の冷却速度で
冷却後、引き続き室温から200℃まで連続的に冷却し、
ベイナイト組織を生ぜしめ、400〜Ac1の温度にて焼もど
しを行うことを特徴とする耐硫化物応力腐食割れ性の優
れた鋼材の製造方法である。
That is, the present invention is, in wt%, C: more than 0.2 ~ 0.4%, S
i: 0.1-1.0%, Mn: 0.3-3.0%, Al: 0.005-0.10%, Nb:
Steel containing 0.01 to 0.10%, balance iron and unavoidable impurities, or the above 5 components, and Cr: 0.10 to 3.0
0%, Mo: 0.10 ~ 1.00%, Ni: 0.10 ~ 3.5%, Cu: 0.10 ~ 1.5
%, Ti: 0.01 to 0.10%, V: 0.01 to 0.10%, B: 0.0002 to 0.0
A steel containing 02%, Ca: 0.005-0.010%, REM: 0.001-0.020%, one or more, and the balance iron and unavoidable impurities is heated to an austenite temperature range of Ac 3 or higher and then cooled. At this time, the temperature range of 800 ℃ ~ 500 ℃, the following formula logV = 6.61- (3.80C + 1.07Mn + 0.70Ni + 0.57Cr + 1.58Mo + 0.0032P + 1.07α) where V: Cooling rate ℃ / SC, Mn, Ni , Cr, Mo are expressed in Wt%, P is austenitizing temperature ℃, α: 1 with B addition, 0 without B addition. Cooling rate above V ° C / S and below V + 15 ° C / S After cooling with, continue to cool from room temperature to 200 ℃,
A method for producing a steel material having excellent sulfide stress corrosion cracking resistance, which is characterized by producing a bainite structure and performing tempering at a temperature of 400 to Ac 1 .

〔作用〕[Action]

高強度でかつ耐硫化物応力腐食割れ性を得るには組織
をベイナイトとし、しかも、焼もどし後の炭化物を均一
微細に分布させることが有効である。
In order to obtain high strength and sulfide stress corrosion cracking resistance, it is effective to use bainite as the structure and to uniformly distribute the carbides after tempering.

本発明者らは、種々の成分、加熱条件、冷却条件を組
合せ、耐硫化物応力腐食割れ性に優れた組織の研究を行
った結果、CCT図においてフェライトノーズを通過する
冷却速度(本発明ではVと表記)〜(V+15)℃/Sの間
の冷却速度で冷却することにより生じたベイナイト組織
が、従来のマルテンサイト組織や(V+15)℃/Sより大
きな冷却速度で冷却したベイナイト組織よりも、均一微
細な炭化物分布を、焼もどし後に示し、耐硫化物応力腐
食割れ性に優れることを見出した。
The present inventors have combined various components, heating conditions, cooling conditions, as a result of research on the structure excellent in sulfide stress corrosion cracking resistance, as a result, the cooling rate through the ferrite nose in the CCT diagram (in the present invention, (Denoted as V) to (V + 15) ° C / S, the bainite structure produced by cooling at a cooling rate is higher than the conventional martensite structure and the bainite structure cooled at a cooling rate higher than (V + 15) ° C / S. After the tempering, a uniform and fine carbide distribution was shown, and it was found that the sulfide stress corrosion cracking resistance was excellent.

すなわち、本発明は、耐硫化物応力腐食割れ性に有効
な均一微細炭化物分布を有するベイナイト組織を得るに
必要な合金元素と、オーステナイト化後の冷却条件を組
み合せたことを骨子とする高強度耐応力腐食割れ鋼の製
造方法である。
That is, the present invention, the alloying elements necessary to obtain a bainite structure having a uniform fine carbide distribution effective for sulfide stress corrosion cracking resistance, and high strength resistance that is the essence of combining the cooling conditions after austenitization It is a method of manufacturing stress corrosion cracked steel.

次に本発明における成分の限定理由について述べる。 Next, the reasons for limiting the components in the present invention will be described.

Cは、0.4%以上では、マルテンサイトおよび炭化物
量が増し、耐硫化物応力腐食割れ性が劣化する。0.10%
以下では、フェライトが出現しやすくなり、均一ベイナ
イトとなり難い。
When C is 0.4% or more, the amount of martensite and carbides increases and the sulfide stress corrosion cracking resistance deteriorates. 0.10%
Below, ferrite is likely to appear and it is difficult to form uniform bainite.

Siは脱酸あるいは強度調整用として添加する。0.1%
以下では脱酸が不足し、1%以上では脆化現象が生じ
る。
Si is added for deoxidation or strength adjustment. 0.1%
If it is less than 1%, deoxidation is insufficient, and if it exceeds 1%, an embrittlement phenomenon occurs.

Mnは、焼入性を増し、ベイナイト組織を得るために0.
3%以上必要である。また3.0%以上では、マルテンサイ
ト組織となる。
Mn has a hardenability of 0.0 to obtain a bainite structure.
3% or more is required. If it is 3.0% or more, the structure becomes martensite.

Alは脱酸のための必要量0.005〜0.10%を添加する。N
bは微粒化およびベイナイト組織となすため0.01〜0.10
%添加する。
Al is added in the required amount of 0.005 to 0.10% for deoxidation. N
b is 0.01 to 0.10 because it is atomized and has a bainite structure.
%Added.

Cr、Mo、Ni、Cu、Bはベイナイト生成作用に有用な範
囲で添加し、またTi、Vは、細粒化に有効な範囲で添加
するもので、さらにCa、REMは、硫化物の形態制御に有
効な範囲で添加するものであり、それぞれ Ci:0.10〜3.00% Mo:0.10〜1.00% Ni:0.10〜3.5% Cu:0.10〜1.5% B:0.0002〜0.002% Ti:0.01〜0.10% V:0.01〜0.10% Ca:0.005〜0.010% REM:0.001〜0.020% の1種または2種以上を添加する。
Cr, Mo, Ni, Cu and B are added within a range useful for bainite formation, Ti and V are added within a range effective for grain refinement, and Ca and REM are sulfide forms. It is added in an effective range for control.Ci:0.10 to 3.00% Mo: 0.10 to 1.00% Ni: 0.10 to 3.5% Cu: 0.10 to 1.5% B: 0.0002 to 0.002% Ti: 0.01 to 0.10% V : 0.01 to 0.10% Ca: 0.005 to 0.010% REM: 0.001 to 0.020% Add one or more kinds.

次に本発明におけるオーステナイト化後の冷却条件に
ついて述べる。
Next, cooling conditions after austenitization in the present invention will be described.

所望の強度である60〜85Kg/mm2の降伏応力を得るため
には、組織をベイナイト組織とする必要がある。
In order to obtain a desired yield stress of 60 to 85 Kg / mm 2 , the structure needs to be a bainite structure.

一方耐硫化物応力腐食割れ抵抗を高めるためには、ベ
イナイト均一組織が望ましい。Vは、ベイナイト均一組
織を得るための尺度で、CCT図上でフェライトノーズを
通過する臨界の冷却速度であり、成分と、オーステナイ
ト化条件により次式で表されるものである。
On the other hand, a bainite uniform structure is desirable in order to increase the resistance to sulfide stress corrosion cracking. V is a scale for obtaining a bainite uniform structure, is a critical cooling rate of passing through a ferrite nose on a CCT diagram, and is represented by the following formula depending on the components and austenitizing conditions.

logV=6.61−(3.80C+1.07Mn +0.70Ni+0.57Cr+1.58Mo +0.0032P+1.07α) ここで、V:冷却速度℃/S C、Mn、Ni、Cr、MoはWt%で表した組成、Pはオース
テナイト化温度℃、α:B添加で1、B無添加で0、 従ってV℃/S以上の冷却速度で冷却することにより、
高強度均一ベイナイト組織が得られる。また冷却速度を
(V+15)℃/S以内に制御する理由は以下によるもので
ある。
logV = 6.61- (3.80C + 1.07Mn + 0.70Ni + 0.57Cr + 1.58Mo + 0.0032P + 1.07α) where V is the cooling rate ° C / S C, Mn, Ni, Cr and Mo are compositions expressed in Wt%, P Is austenitizing temperature ℃, α: 1 with B addition, 0 without B addition, therefore, by cooling at a cooling rate of V ℃ / S or more,
A high strength uniform bainite structure is obtained. The reason for controlling the cooling rate within (V + 15) ° C / S is as follows.

従来技術に関する説明の部分でも触れたが、800〜500
℃の温度範囲の冷却速度を(V+15)℃/S以上として、
ベイナイト組織あるいはマルテンサイト組織を得た場合
には、所望の強度以上の過度の強度が得られ、適正な温
度まで焼もどしを行う過程において、炭化物の析出、粗
大化が起こり、耐硫化物応力腐食割れ性にとって不利な
組織となる。
As mentioned in the explanation of the prior art, 800-500
The cooling rate in the temperature range of ℃ is (V + 15) ℃ / S or more,
When a bainite structure or martensite structure is obtained, an excessive strength higher than the desired strength is obtained, and in the process of tempering to an appropriate temperature, precipitation of carbides and coarsening occur, and sulfide stress corrosion corrosion resistance occurs. The structure is disadvantageous for crackability.

しかし、800〜500℃の温度範囲を(V+15)℃/S以下
の冷却速度で冷却した場合には、冷却過程における歪導
入を最低限に抑えることができ、焼きもどしにおいて、
緩和すべき歪量が低減されるため、焼もどし後も、冷却
直後の微細な炭化物分布を維持することが可能となる。
However, when the temperature range of 800 to 500 ° C. is cooled at a cooling rate of (V + 15) ° C./S or less, the strain introduction in the cooling process can be suppressed to the minimum, and in the tempering,
Since the amount of strain to be relaxed is reduced, it becomes possible to maintain a fine carbide distribution immediately after cooling even after tempering.

焼もどし温度の限定理由は次の通りである。焼もどし
は、耐硫化物応力腐食割れ性に有害な内部応力除去のた
め必須であり、その有効焼もどし範囲として400℃〜Ac1
までとする。
The reason for limiting the tempering temperature is as follows. Tempering is essential for removing internal stress that is harmful to sulfide stress corrosion cracking resistance, and its effective tempering range is 400 ° C to Ac 1
Up to

〔実施例〕〔Example〕

第1表に本発明鋼の化学成分と、ベイナイト生成臨界
冷却速度Vを示す。第2表に、第1表で示した鋼に本発
明の冷却を適用した3条件(〜)と、比較例2条件
(〜)を合せて示す。
Table 1 shows the chemical composition of the steel of the present invention and the bainite formation critical cooling rate V. Table 2 shows the three conditions (~) in which the cooling of the present invention is applied to the steel shown in Table 1 and the conditions (~) in Comparative Example 2 together.

第1図に〜の冷却ままおよび、図中( )内で示
した各温度に、それぞれ30分間加熱、空冷後の降伏応力
を示す。いま、焼もどし後の目標、降伏応力を77Kg/mm2
とすると、冷却速度がV以下のでは、冷却ままでも目
標降伏応力を達成できず、高強度化すら難しい。
FIG. 1 shows the yield stress after cooling for 30 minutes and after heating for 30 minutes at each temperature shown in parentheses () in the drawing, as well as after cooling. Now, after the tempering, the target yield stress is 77 Kg / mm 2
Then, if the cooling rate is V or less, the target yield stress cannot be achieved even with cooling, and it is difficult to increase the strength.

そこでを除いた、、、について、それぞれ
焼もどし温度を変化させ、降伏応力を77Kg/mm2にそろえ
て、定荷重式、SSC試験を行い、耐硫化物応力腐食割れ
性の評価を行った。
The tempering temperature was changed for each of those except for, and the yield stress was adjusted to 77 Kg / mm 2 , constant load formula and SSC test were performed, and the sulfide stress corrosion cracking resistance was evaluated.

試験条件は、 負荷応力:0.80×(降伏応力) 腐食液:0.5%CH3COOH+5%NaCl H2S飽和、25℃ 比液量:30ml/cm2 ここで、破断寿命500時間以上のものを耐硫化物応力
腐食割れ性に優れると見なす。
The test conditions are: load stress: 0.80 × (yield stress) corrosive liquid: 0.5% CH 3 COOH + 5% NaCl H 2 S saturated, 25 ° C specific liquid volume: 30 ml / cm 2 Considered to have excellent sulfide stress corrosion cracking resistance.

第2図に、破断寿命と冷却速度の関係を示す。 FIG. 2 shows the relationship between the breaking life and the cooling rate.

本発明条件では、いずれも破断寿命が500時間以上で
あるのに対して、本発明条件を逸脱した場合には、破断
寿命が急激に低下する。
Under the conditions of the present invention, the rupture life is 500 hours or more in all cases, whereas when the conditions of the present invention are deviated, the rupture life is drastically reduced.

〔発明の効果〕 本発明により、高強度でかつ耐応力腐食割れ性に優れ
た鋼材を製造することができるので工業的効果は甚大で
ある。
[Advantages of the Invention] According to the present invention, a steel material having high strength and excellent stress corrosion cracking resistance can be produced, so that the industrial effect is enormous.

【図面の簡単な説明】[Brief description of drawings]

第1図は、オーステナイト化後の冷却過程における冷却
速度により、冷却ままの降伏応力が変化し、各焼もどし
により、それぞれ降伏応力を焼77Kg/mm2に調整できるこ
とを示す図表、第2図は、第1図で焼もどし行った場合
について、定荷重式SSC試験において、破断寿命が冷却
速度により変化することを示す図表である。
Fig. 1 is a chart showing that the yield stress in the as-cooled state changes depending on the cooling rate in the cooling process after austenitization, and that each temper can adjust the yield stress to 77Kg / mm 2 for quenching. 2 is a chart showing that the breaking life changes depending on the cooling rate in the constant load SSC test when tempering is performed in FIG. 1.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 C:0.2超〜0.4% Si:0.1〜1.0% Mn:0.3〜3.0% Al:0.005〜0.10% Nb:0.01〜0.10% を含み、残部鉄及び不可避的不純物より成る鋼を、Ac3
点以上のオーステナイト温度域に加熱後、冷却に際し
て、800〜500℃の温度範囲を次式で表されるV℃/S以上
かつV+15℃/S以下の冷却速度で冷却後、引き続き室温
から200℃まで連続的に冷却し、ベイナイト組織を生ぜ
しめ、400℃〜Ac1の温度にて焼もどしを行うことを特徴
とする耐硫化物応力腐食割れ性の優れた鋼材の製造方
法。 logV=6.61−(3.80C+1.07Mn+0.70Ni+0.57Cr +1.58Mo +0.0032P+1.07α) ここで、V:冷却速度℃/S C,Mn,Ni,Cr,Moはwt%で表した組成、Pはオーステナイ
ト化温度℃、 α:B添加で1、B無添加で0。
1. By weight%, C: more than 0.2 to 0.4% Si: 0.1 to 1.0% Mn: 0.3 to 3.0% Al: 0.005 to 0.10% Nb: 0.01 to 0.10%, with the balance iron and unavoidable impurities Made of steel, Ac 3
After heating to the austenite temperature range above the point, upon cooling, the temperature range of 800 to 500 ° C is cooled at the cooling rate of V ° C / S or more and V + 15 ° C / S or less represented by the following formula, and then from room temperature to 200 ° C. A method for producing a steel material having excellent resistance to sulfide stress corrosion cracking, which comprises continuously cooling to 400 ° C. to produce a bainite structure and tempering at a temperature of 400 ° C. to Ac 1 . logV = 6.61- (3.80C + 1.07Mn + 0.70Ni + 0.57Cr + 1.58Mo + 0.0032P + 1.07α) where V is the cooling rate ° C / SC, Mn, Ni, Cr and Mo are compositions expressed in wt%, and P is Austenitizing temperature ℃, α: 1 with B addition, 0 without B addition.
【請求項2】重量%で、 C:0.2超〜0.4% Si:0.1〜1.0% Mn:0.3〜3.0% Al:0.005〜0.10% Nb:0.01〜0.10% を含み、さらに、 Cr:0.10〜3.00% Mo:0.10〜1.00% Ni:0.10〜3.5% Cu:0.10〜1.5% Ti:0.01〜0.10% V:0.01〜0.10% B:0.0002〜0.002% Ca:0.005〜0.010% REM:0.001〜0.020% の1種または2種以上を含み、残部鉄及び不可避的不純
物より成る鋼を、Ac3点以上のオーステナイト温度域に
加熱後、冷却に際して、800〜500℃の温度範囲を次式で
表されるV℃/S以上かつV+15℃/S以下の冷却速度で冷
却後、引き続き室温から200℃まで連続的に冷却し、ベ
イナイト組織を生ぜしめ、400℃〜Ac1の温度にて焼もど
しを行うことを特徴とする耐硫化物応力腐食割れ性の優
れた鋼材の製造方法。 logV=6.61−(3.80C+1.07Mn+0.70Ni+0.57Cr +1.58Mo +0.0032P+1.07α) ここで、V:冷却速度℃/S C,Mn,Ni,Cr,Moはwt%で表した組成、Pはオーステナイ
ト化温度℃、 α:B添加で1、B無添加で0。
2. By weight%, C: more than 0.2 to 0.4% Si: 0.1 to 1.0% Mn: 0.3 to 3.0% Al: 0.005 to 0.10% Nb: 0.01 to 0.10% and further Cr: 0.10 to 3.00. % Mo: 0.10 to 1.00% Ni: 0.10 to 3.5% Cu: 0.10 to 1.5% Ti: 0.01 to 0.10% V: 0.01 to 0.10% B: 0.0002 to 0.002% Ca: 0.005 to 0.010% REM: 0.001 to 0.020% After heating steel containing one or two or more kinds and the balance iron and unavoidable impurities to the austenite temperature range of Ac 3 points or more, when cooling, a temperature range of 800 to 500 ° C. is represented by the following formula V After cooling at a cooling rate of ℃ / S or more and V + 15 ℃ / S or less, then continuously cool from room temperature to 200 ℃ to produce bainite structure and temper at 400 ℃ ~ Ac 1 A method for producing a steel material having excellent sulfide stress corrosion cracking resistance. logV = 6.61- (3.80C + 1.07Mn + 0.70Ni + 0.57Cr + 1.58Mo + 0.0032P + 1.07α) where V is the cooling rate ° C / SC, Mn, Ni, Cr and Mo are compositions expressed in wt%, and P is Austenitizing temperature ℃, α: 1 with B addition, 0 without B addition.
JP61237988A 1986-10-08 1986-10-08 Method for producing steel with excellent resistance to sulfide stress corrosion cracking Expired - Lifetime JP2554636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237988A JP2554636B2 (en) 1986-10-08 1986-10-08 Method for producing steel with excellent resistance to sulfide stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237988A JP2554636B2 (en) 1986-10-08 1986-10-08 Method for producing steel with excellent resistance to sulfide stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS6393822A JPS6393822A (en) 1988-04-25
JP2554636B2 true JP2554636B2 (en) 1996-11-13

Family

ID=17023451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237988A Expired - Lifetime JP2554636B2 (en) 1986-10-08 1986-10-08 Method for producing steel with excellent resistance to sulfide stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP2554636B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116502B2 (en) * 1988-12-03 1995-12-13 マツダ株式会社 Steel member manufacturing method
EP0828007B1 (en) * 1995-05-15 2001-11-14 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP4609138B2 (en) * 2005-03-24 2011-01-12 住友金属工業株式会社 Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
CA2918720C (en) 2013-07-26 2019-04-16 Nippon Steel & Sumitomo Metal Corporation High-strength steel material for oil well and oil well pipes
MX2017004258A (en) 2014-10-01 2017-06-06 Nippon Steel & Sumitomo Metal Corp High-strength steel material for oil wells, and oil well pipe.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338519A (en) * 1986-08-01 1988-02-19 Sumitomo Metal Ind Ltd Production of steel plate having excellent hydrogen induced cracking resistance

Also Published As

Publication number Publication date
JPS6393822A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JPH01283322A (en) Production of high-strength oil well pipe having excellent corrosion resistance
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JPH06172859A (en) Production of high strength steel tube excellent in sulfide stress corrosion cracking resistance
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
CN113308593B (en) Carbon distribution and two-step isothermal quenching based medium carbon silicon manganese low alloy steel heat treatment process
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2554636B2 (en) Method for producing steel with excellent resistance to sulfide stress corrosion cracking
JP3291068B2 (en) Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics
JPH05320749A (en) Production of ultrahigh strength steel
CN1057135C (en) High corrosion-resisting austenite stainless steel
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP2544867B2 (en) Manufacturing method of hyper-eutectoid steel wire
US3502514A (en) Method of processing steel
JPH0254416B2 (en)
JPH0670247B2 (en) Method for producing high strength steel sheet with good formability
JPS61147815A (en) Production of roll having high hardened depth
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH05202417A (en) Production of steel wire for ultrahigh strength spring
JPS58120720A (en) Production of tempered steel
JPS61166919A (en) Manufacture of unrefined warm-forged article having high toughness
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic