JP2550601B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2550601B2
JP2550601B2 JP62223609A JP22360987A JP2550601B2 JP 2550601 B2 JP2550601 B2 JP 2550601B2 JP 62223609 A JP62223609 A JP 62223609A JP 22360987 A JP22360987 A JP 22360987A JP 2550601 B2 JP2550601 B2 JP 2550601B2
Authority
JP
Japan
Prior art keywords
substrate
recess
groove
layer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62223609A
Other languages
Japanese (ja)
Other versions
JPS6466939A (en
Inventor
浩一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62223609A priority Critical patent/JP2550601B2/en
Publication of JPS6466939A publication Critical patent/JPS6466939A/en
Application granted granted Critical
Publication of JP2550601B2 publication Critical patent/JP2550601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 〔概要〕 シリコン基板に形成したトレンチを絶縁物で埋めて平
坦化し、この上に半導体デバイスを形成する方法に関
し、 シリコン基板のトレンチ面積の大小に拘らずに基板面
を平坦化することを目的とし、 シリコン基板上に形成した大きさの異なる複数のトレ
ンチを化学気相成長させた絶縁物により穴埋めして基板
面を平坦化する工程が、半導体基板上に溝を形成する工
程と、該基板上に化学気相成長法により溝の深さ以上の
膜厚に絶縁物を被覆する工程と、該溝位置上の該絶縁層
に生じた凹部上に該凹部が平坦な底部を有するほど幅の
広い部分においては、膜厚が溝深さにほぼ等しく、且
つ、該溝の幅によらず該凹部の断面積とほぼ等しい断面
積を有する低コントラストパターンを形成する工程と、
該低コントラストパターンを形成し体基板全面に平坦且
材料層を被覆して平坦化する工程と、該平坦化材料層,
該低コントラストパターン,該絶縁物をほぼ等しいエッ
チング速度で全面エッチングして溝内のみに該絶縁物を
残置する工程とにより形成した基板を用いて半導体デバ
イスを構成する。
DETAILED DESCRIPTION OF THE INVENTION [Outline] A method of filling a trench formed in a silicon substrate with an insulator to planarize the trench and forming a semiconductor device on the trench. The process of flattening the substrate surface by filling a plurality of trenches of different sizes formed on the silicon substrate with an insulator that has been chemically vapor-deposited for the purpose of flattening forms a groove on the semiconductor substrate. And a step of coating an insulating material on the substrate by a chemical vapor deposition method to a film thickness equal to or more than the depth of the groove, and the concave part formed on the concave part in the insulating layer on the groove position is flat. Forming a low-contrast pattern having a film thickness substantially equal to the groove depth and having a cross-sectional area substantially equal to the cross-sectional area of the recess regardless of the width of the groove in a portion having a wider bottom. ,
A step of forming the low-contrast pattern to cover the entire surface of the body substrate with a flat material layer and flattening;
A semiconductor device is formed by using the substrate formed by the low contrast pattern and the step of completely etching the insulator at substantially the same etching rate and leaving the insulator only in the groove.

〔産業上の利用分野〕[Industrial applications]

本発明は基板上に形成したトレンチを絶縁物で埋めて
平坦な基板を得る製造方法に関する。
The present invention relates to a manufacturing method for filling a trench formed on a substrate with an insulating material to obtain a flat substrate.

IC,LSIなどの半導体装置は薄膜形成技術,写真蝕刻技
術(フォトリソグラフィ或いは電子線リソグラフィ),
拡散層形成技術などの進歩によって小形化が進みVLSIが
実用化されているが、かゝる半導体素子間の分離技術と
して従来のシリコン(以下略してSi)の選択酸化による
フィールド酸化膜の形成に代わってSi基板にトレンチ
(深い溝)を形成し、これを絶縁物で穴埋めして素子間
分離を行ったり、縦横比の大きなトレンチを設けて領域
分離することが行われている。
For semiconductor devices such as IC and LSI, thin film formation technology, photolithography technology (photolithography or electron beam lithography),
Although miniaturization is progressing due to advances in diffusion layer formation technology, etc., VLSI has been put to practical use, but as a technology for separating such semiconductor elements, conventional field oxide films have been formed by selective oxidation of silicon (abbreviated as Si). Instead, trenches (deep trenches) are formed in the Si substrate, and the trenches are filled with an insulator for element isolation, or trenches with a large aspect ratio are provided for area isolation.

この理由は素子が小形化するに従って絶縁層について
も益々高い寸法精度が必要なことによる。
The reason for this is that as the device becomes smaller, the dimensional accuracy of the insulating layer is required to be higher and higher.

〔従来の技術〕[Conventional technology]

第4図(A)〜(E)は従来の素子分離技術を説明す
る断面図であって、Si基板1には従の選択酸化法により
形成する素子間分離層形成位置と領域分離位置にはリア
クティブ・イオン・エッチング(略称RIE)を用いるト
レンチプロセスによって広い凹部2と狭い凹部3が作ら
れる。(以上同図A) 次に、化学気相成長法(略CVD)によりSi基板1の上
にトレンチの深さ以上の厚さに絶縁層例えば二酸化硅素
(SiO2)層4を形成する。
4 (A) to 4 (E) are cross-sectional views for explaining a conventional element isolation technique. The element isolation layer forming position and the region isolation position formed on the Si substrate 1 by the conventional selective oxidation method are shown in FIG. A wide recess 2 and a narrow recess 3 are created by a trench process using reactive ion etching (abbreviated as RIE). Next, an insulating layer such as a silicon dioxide (SiO 2 ) layer 4 is formed on the Si substrate 1 by chemical vapor deposition (substantially CVD) to a thickness not less than the depth of the trench.

この場合、狭い凹部3では図に示すようにSiO2層4が
互いに接して凹み9ができるのに対して、広い凹部2で
は相似形をした平坦な凹部5が残ってしまう。(以上同
図B) この平坦な凹部5の中に写真蝕刻技術(フォトリソグ
ラフィ)を用いてレジストパターン6を形成して平坦な
凹部5を埋める。
In this case, in the narrow recess 3, the SiO 2 layers 4 are in contact with each other to form a recess 9 as shown in the figure, whereas in the wide recess 2, a flat recess 5 having a similar shape remains. (As shown in FIG. 9B) A resist pattern 6 is formed in the flat recess 5 by using a photolithography technique (photolithography) to fill the flat recess 5.

但し、この場合にレジストパターン6とSiO2層4の境
界部には図に示すように窪み7を残すが、これはマスク
パターンのずれが生じた場合の位置合わせ余裕をとるた
めである。(以上同図C) 次に、この上にスピンコート法などにより絶縁層例え
ばレジスト層8を膜形成して表面を平坦化した後、(以
上同図D)レジスト層8とSiO2層4とが同程度の速度で
エッチングされるエッチャントを用いてSi基板1の位置
までエッチバックすることにより広い凹部2と狭い凹部
3のそれぞれがSiO2により平坦に穴埋めされる。(以上
同図E) こゝで、レジストとSiO2とをほぼ等速度でドライエッ
チングできるエッチャントとしては例えば三弗化メタン
(CHF3)とO2との混合ガスが挙げられる。
However, in this case, a recess 7 is left at the boundary between the resist pattern 6 and the SiO 2 layer 4 as shown in the figure, but this is to allow a positioning margin when the mask pattern is displaced. (The above C in the same figure) Next, after an insulating layer such as a resist layer 8 is formed thereon by a spin coating method or the like to flatten the surface, (D in the same figure above), a resist layer 8 and a SiO 2 layer 4 are formed. By etching back to the position of the Si substrate 1 using an etchant that etches at a similar rate, the wide recess 2 and the narrow recess 3 are each flatly filled with SiO 2 . (E in the same figure) Here, as an etchant capable of dry etching the resist and SiO 2 at a substantially constant rate, for example, a mixed gas of methane trifluoride (CHF 3 ) and O 2 can be cited.

然し、一般にはこのように理想的には進行しない。 However, this is not ideally the case in general.

第3図はかゝる一例を示すもので、平坦なSi基板1の
上に狭い凹部3が集まって存在する場合で、CVD法でSiO
2層4をトレンチの深さ以上の厚さに膜形成した後、ス
ピンコート法などによってレジスト層8を形成すると、
巨視的に見るとレジスト層8は平坦であるが、微視的に
みると狭い凹部3の窪みの存在によって、レジスト層8
の厚さは狭い凹部3の集合領域と平滑基板の領域とでは
図に示すようにレジスト層の厚さが異なる。(以上同図
A) そのため、エッチバックを狭い凹部3の形成が行われ
ていない平滑基板面まで行うと、狭い凹部3の領域では
オーバエッチングとなり、平坦性が損なわれる。(同図
B) 逆に、エッチバックを狭い凹部3が形成されているSi
基板面に合わせると平滑基板面にはSiO2層が残存するこ
とになる。
FIG. 3 shows such an example, and shows a case where narrow recesses 3 are gathered on a flat Si substrate 1, and SiO is formed by the CVD method.
When the resist layer 8 is formed by a spin coating method or the like after forming the film of the second layer 4 to a thickness not less than the depth of the trench
Macroscopically, the resist layer 8 is flat, but microscopically, due to the presence of the recess of the narrow recessed portion 3, the resist layer 8 is
As shown in the figure, the thickness of the resist layer is different between the gathering region of the narrow recesses 3 and the region of the smooth substrate. Therefore, if the etching back is performed up to the smooth substrate surface where the narrow recess 3 is not formed, overetching occurs in the region of the narrow recess 3 and the flatness is impaired. (B in the same figure) On the contrary, Si in which the recess 3 with a narrow etch back is formed
When it is aligned with the substrate surface, the SiO 2 layer remains on the smooth substrate surface.

このように、従来法による場合にはSi基板上に大小の
凹部が存在する場合,SiO2による完全な穴埋めを行うこ
とは困難であった。
As described above, according to the conventional method, it is difficult to completely fill the hole with SiO 2 when there are large and small recesses on the Si substrate.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上記したように従来の素子分離技術では素子間分離
領域や領域分離領域など面積の異なる凹部を絶縁物で穴
埋めして完全に平坦化することは困難であった。
As described above, according to the conventional element isolation technique, it is difficult to completely fill the recesses having different areas such as the element isolation region and the region isolation region with the insulator to completely flatten the surface.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は被処理Si基板上に形成した大きさの異な
る複数のトレンチを化学気相成長させた絶縁物により穴
埋めして基板面を平坦化する工程が、化学気相成長法に
よりトレンチの深さ以上の膜厚に絶縁物を被覆して、該
トレンチと相似形の断面形状をした平坦な凹部を形成す
る工程と、トレンチ位置上の該絶縁層に生じた凹み及び
平坦な凹部の上に形成したレジストパターンと絶縁層と
の間の窪みの上に該凹み及び窪みとほぼ一致する低コン
トラストパターンを被覆する工程と、該低コントラスト
パターンを被覆した被処理Si基板上にレジスト層を被覆
して平坦化する工程と、該被処理Si基板をSi基板面まで
エッチングしてトレンチにのみ絶縁膜を残す工程の実施
により解決することができる。
The above-mentioned problem is that the step of filling the plurality of trenches of different sizes formed on the Si substrate to be treated with the chemical vapor grown insulator to flatten the substrate surface is performed by the chemical vapor deposition method. A step of forming a flat recess having a cross-sectional shape similar to that of the trench by coating an insulator with a film thickness equal to or more than the above, and the recess and the flat recess formed in the insulating layer on the trench position. A step of coating a low-contrast pattern that substantially coincides with the depression and the depression on the depression between the formed resist pattern and the insulating layer, and coating a resist layer on the Si substrate to be processed coated with the low-contrast pattern. This can be solved by carrying out a step of flattening the surface of the Si substrate and a step of etching the Si substrate to be processed up to the surface of the Si substrate to leave the insulating film only in the trench.

〔作用〕[Action]

Si基板上にトレンチプロセスで形成した広い凹部およ
び狭い凹部などのトレンチをSiO2で穴埋めして平坦化す
る従来の方法が理想的に進行しない理由は、第4図に示
すようにCVD法によりSi基板上にSiO2層を形成した際に
狭い凹部3の上に生じた凹み9や平坦な凹部5の上にレ
ジストパターン6を形成する際に生じた窪み7をそのま
ゝ放置して置いたことによる。
The reason why the conventional method of flattening trenches such as wide recesses and narrow recesses formed by the trench process on the Si substrate by filling them with SiO 2 is not ideal is as shown in FIG. The recess 9 formed on the narrow recess 3 when the SiO 2 layer was formed on the substrate and the recess 7 formed on forming the resist pattern 6 on the flat recess 5 were left as they are. It depends.

然し、このような凹み9や窪み7を写真蝕刻法により
レジストを用いて穴埋めをするとこれらのた体積が微少
であることゝ、寸法精度よく行われるために必ず凸にな
り、レジスト層8の形成によっても平坦化されず、その
ためエッチバックしても理想的な穴埋めは行われない。
However, when the recesses 9 and the recesses 7 are filled with a resist by photolithography using a resist, the volume of these is very small, and the projections are always formed in order to achieve dimensional accuracy, so that the resist layer 8 is formed. Does not flatten, and therefore, ideal backfilling is not performed even if it is etched back.

そこで、本発明は凹み9と凹部5と低コントラストの
レジストパターンを形成して穴埋めすることにより問題
を解決するものである。
Therefore, the present invention solves the problem by forming a low-contrast resist pattern in the recesses 9 and the recesses 5 and filling the resist pattern.

第2図は本発明の原理を示す断面図であって、同図
(A)はSi基板1の上にレジストの低コントラストパタ
ーン10を形成した状態を示しており、同図(B)はSi基
板1の広い凹部2と狭い凹部3の上にSiO2層4を形成し
た場合に生じた平坦な凹部5と凹み9に適用した状態を
示している。
FIG. 2 is a sectional view showing the principle of the present invention. FIG. 2 (A) shows a state where a resist low contrast pattern 10 is formed on a Si substrate 1, and FIG. 2 (B) shows Si. It shows a state in which it is applied to a flat concave portion 5 and a concave portion 9 formed when the SiO 2 layer 4 is formed on the wide concave portion 2 and the narrow concave portion 3 of the substrate 1.

このようにするとレジストからなる低コントラストパ
ターン10は高さが低く、裾が拡がっているので、SiO2
4の面とほぼ同等であり、また裾の拡がりがあるために
マスクパターンの位置合わせずれに対しても余裕度が増
加する。
In this way, the low-contrast pattern 10 made of resist has a low height and has a wide hem, which is almost the same as the surface of the SiO 2 layer 4, and the misalignment of the mask pattern due to the wide hem. Also, the margin increases.

次に、かゝる低コントラストパターンの作り方として
は、 ポジ形レジストを塗布した後、この上に光が当たる
と次第に透過し難くなる材料(例えば黒化する材料)を
塗布する。
Next, as a method of forming such a low-contrast pattern, after applying a positive resist, a material (for example, a blackening material) which becomes harder to pass through when light is applied is applied thereon.

弱い光で焦点をずらせて露光する。 Exposure is performed by shifting the focus with weak light.

オーバ露光した現像した後、温度を挙げてリフロー
させる。
After overexposed development, the temperature is raised to cause reflow.

低解像度の露光光学系をもちいる。 It uses a low-resolution exposure optical system.

レチクル乃至マスクのパターンエッジに細かい凹凸
をつけてぼかす。
The pattern edge of the reticle or mask is finely uneven and blurred.

上記の方法を組合わせる。 A combination of the above methods.

などの方法をとることにより行うことができる。It can be done by taking such a method.

〔実施例〕〔Example〕

第1図(A)〜(E)は本発明の実施法を説明する断
面図であって、Si基板の上に従来と同様なトレンチプロ
セスにより素子間分離を行う広い凹部2と狭い凹部3と
の形成を行い、(以上同図A)続いてSiH4とO2を反応ガ
スとして用いるCVDにより従来と同様なSiO2層4を形成
した。
1 (A) to 1 (E) are cross-sectional views for explaining a method for carrying out the present invention, in which a wide concave portion 2 and a narrow concave portion 3 for performing element isolation by a trench process similar to the conventional one are formed on a Si substrate. Was formed (the above-mentioned FIG. A), and then a SiO 2 layer 4 similar to the conventional one was formed by CVD using SiH 4 and O 2 as reaction gases.

こゝで、狭い凹部3の上には凹み9が、また広い凹部
2の上には平坦な凹部5が存在する。(以上同図B) 次に、SiO層4の上に写真蝕刻技術を用いて凹み9と
平坦な凹部5をレジストで穴埋めを行うが、この際に弱
い光で焦点をずらせて露光することにより低コントラス
トパターン10を形成した。
Here, there is a recess 9 above the narrow recess 3 and a flat recess 5 above the wide recess 2. Next, the recess 9 and the flat recess 5 are filled with resist on the SiO layer 4 by using a photo-etching technique. At this time, the focus is defocused by weak light and the exposure is performed. A low contrast pattern 10 was formed.

この処理により凹み9と平坦な凹部5はレジストによ
りほぼ平坦に埋められる。(以上同図C) 次に、この上に従来と同様にスピンコート法によりレ
ジスト層8を被覆して平坦化した後、(以上同図D)、
プラズマエッチング装置にセットし、CHF3とO2との混合
ガスをエッチャントとしてプラズマエッチングを行い、
Si基板面までエッチングすることにより広い凹部2およ
び狭い凹部3をSiO2層4で平坦に穴埋めしたSi基板1を
得ることができた。(以上同図E) 〔発明の効果〕 以上記したように本発明によれば層間絶縁層や分離領
域を密に形成することが必要なSi基板をSiO2のような絶
縁物で平坦に穴埋めすることが可能となり、これにより
VLSIのような高密度な半導体装置を高精度に形成するこ
とが可能となる。
By this process, the recess 9 and the flat recess 5 are almost flatly filled with the resist. (Above same figure C) Next, after the resist layer 8 is coated and flattened by spin coating in the same manner as in the conventional case (above same figure D),
Set it in the plasma etching equipment, perform plasma etching using a mixed gas of CHF 3 and O 2 as an etchant,
By etching up to the surface of the Si substrate, it was possible to obtain the Si substrate 1 in which the wide recesses 2 and the narrow recesses 3 were flatly filled with the SiO 2 layer 4. (Effect of the same figure) [Effect of the invention] As described above, according to the present invention, the Si substrate, which requires the dense formation of the interlayer insulating layer and the isolation region, is flatly filled with an insulator such as SiO 2. It is possible to
It is possible to form a high-density semiconductor device such as VLSI with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)〜(E)は本発明に係る素子分離法を説明
する断面図、 第2図(A),(B)は本発明の原理を示す断面図、 第3図(A),(B)は従来の素子分離法を説明する断
面図、 第4図(A)〜(E)は従来の素子分離技術を説明する
断面図、 である。 図において、 1はSi基板、2は広い凹部、 3は狭い凹部、4はSiO2層、 5は平坦な凹部、6はレジストパターン、 7は窪み、8はレジスト層、 9は凹み、 10は低コントラストパターン、 である。
1 (A) to 1 (E) are sectional views for explaining the element isolation method according to the present invention, FIGS. 2 (A) and 2 (B) are sectional views showing the principle of the present invention, and FIG. 3 (A). , (B) are sectional views for explaining the conventional element isolation method, and FIGS. 4 (A) to (E) are sectional views for explaining the conventional element isolation technique. In the figure, 1 is a Si substrate, 2 is a wide recess, 3 is a narrow recess, 4 is a SiO 2 layer, 5 is a flat recess, 6 is a resist pattern, 7 is a recess, 8 is a resist layer, 9 is a recess, and 10 is a recess. Low contrast pattern.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に形成した大きさの異なる複
数のトレンチを化学気相成長させた絶縁物により穴埋め
して基板面を平坦化する工程が、 半導体基板上に溝を形成する工程と、 該基板上に化学気相成長法により溝の深さ以上の膜厚に
絶縁物を被覆する工程と、 該溝位置上の該絶縁層に生じた凹部上に該凹部が平坦な
底部を有するほど幅の広い部分においては、膜圧が溝深
さにほぼ等しく、且つ、該溝の幅によらず該凹部の断面
積とほぼ等しい断面積を有する低コントラストパターン
を形成する工程と、 該低コントラストパターンを形成した該基板全面に平坦
化材料層を被覆して平坦化する工程と、 該平坦化材料層,該低コントラストパターン,該絶縁物
をほぼ等しいエッチング速度で全面エッチングして溝内
のみに該絶縁物を残置する工程と、を含むことを特徴と
する半導体装置の製造方法。
1. A step of flattening a substrate surface by filling a plurality of trenches formed on a semiconductor substrate with different sizes with an insulating material obtained by chemical vapor deposition, and a step of forming a groove on the semiconductor substrate. A step of coating an insulating material on the substrate by a chemical vapor deposition method so as to have a film thickness equal to or larger than a depth of the groove, and a recess having a flat bottom on the recess formed in the insulating layer on the groove position. Forming a low-contrast pattern in which the film pressure is approximately equal to the groove depth and has a cross-sectional area substantially equal to the cross-sectional area of the recess regardless of the width of the groove in the wide portion. A step of covering the entire surface of the substrate on which the contrast pattern is formed with a planarizing material layer to planarize, and the planarizing material layer, the low contrast pattern, and the insulator are entirely etched at substantially the same etching rate to form only a groove Leave the insulator on The method of manufacturing a semiconductor device that that the process, characterized in that it comprises a.
JP62223609A 1987-09-07 1987-09-07 Method for manufacturing semiconductor device Expired - Lifetime JP2550601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62223609A JP2550601B2 (en) 1987-09-07 1987-09-07 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62223609A JP2550601B2 (en) 1987-09-07 1987-09-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6466939A JPS6466939A (en) 1989-03-13
JP2550601B2 true JP2550601B2 (en) 1996-11-06

Family

ID=16800876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62223609A Expired - Lifetime JP2550601B2 (en) 1987-09-07 1987-09-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2550601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE58908781D1 (en) * 1989-09-08 1995-01-26 Siemens Ag Process for the global planarization of surfaces for integrated semiconductor circuits.
KR100242387B1 (en) * 1997-07-28 2000-03-02 김영환 Method of forming an element isolation film in a semiconductor device
KR100476372B1 (en) * 1997-12-30 2005-07-07 주식회사 하이닉스반도체 Trench type isolation layer formation method for semiconductor devices with different trench widths

Also Published As

Publication number Publication date
JPS6466939A (en) 1989-03-13

Similar Documents

Publication Publication Date Title
EP0545263B1 (en) Method of forming trench isolation having polishing step and method of manufacturing semiconductor device
US5254218A (en) Masking layer having narrow isolated spacings and the method for forming said masking layer and the method for forming narrow isolated trenches defined by said masking layer
EP0340524A1 (en) Planarization process for wide trench isolation
US6147005A (en) Method of forming dual damascene structures
JP3362397B2 (en) Manufacturing method of electronic device including polishing step by polishing
JP2550601B2 (en) Method for manufacturing semiconductor device
JPH11150180A (en) Manufacture of semiconductor device
JP2000150632A (en) Manufacture of semiconductor substrate
JP3773785B2 (en) Manufacturing method of semiconductor device
KR0165453B1 (en) Method of isolation on a semiconductor device
JPH07135247A (en) Manufacture of semiconductor device
JP2748465B2 (en) Method for manufacturing semiconductor device
JP2590711B2 (en) Method for manufacturing semiconductor device
KR100454849B1 (en) Fabrication method of semiconductor
KR100311495B1 (en) Method for flating insulating layer of semiconductor device
JPH05182966A (en) Multilayer-interconnection formation method
JPH0422021B2 (en)
KR100338091B1 (en) Method for manufacturing semiconductor device
KR100617073B1 (en) Method for Fabricating of Semiconductor Device
KR100743619B1 (en) A method for fabricating trench of semiconductor device
KR100338948B1 (en) Manufacturing method for isolation in semiconductor device
KR100292387B1 (en) Trench manufacturing method for semiconductor device isolation
KR100674901B1 (en) Method of forming a gate in a semiconductor device
JPH04359544A (en) Formation method of flat wiring layer
JPH0323649A (en) Manufacture of semiconductor element