JP2546792B2 - Method for manufacturing substrate material for semiconductor device and substrate material - Google Patents

Method for manufacturing substrate material for semiconductor device and substrate material

Info

Publication number
JP2546792B2
JP2546792B2 JP6293976A JP29397694A JP2546792B2 JP 2546792 B2 JP2546792 B2 JP 2546792B2 JP 6293976 A JP6293976 A JP 6293976A JP 29397694 A JP29397694 A JP 29397694A JP 2546792 B2 JP2546792 B2 JP 2546792B2
Authority
JP
Japan
Prior art keywords
sintered body
semi
substrate material
powder
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6293976A
Other languages
Japanese (ja)
Other versions
JPH07297323A (en
Inventor
武史 甲村
芳宏 梅田
実男 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP6293976A priority Critical patent/JP2546792B2/en
Publication of JPH07297323A publication Critical patent/JPH07297323A/en
Application granted granted Critical
Publication of JP2546792B2 publication Critical patent/JP2546792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、搭載した半導体素子で
発生した熱を効率良く放散させると共に、半導体素子の
熱膨張率に近似した熱膨張率をもつ半導体装置用基板材
料の製造方法及び製造された基板材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently dissipates heat generated in a mounted semiconductor element, and a method and a method for manufacturing a substrate material for a semiconductor device having a thermal expansion coefficient close to that of the semiconductor element. Substrate material.

【0002】[0002]

【従来の技術】半導体素子搭載用の基板材料としては、
搭載される半導体素子との間に熱応力に起因した亀裂や
剥離を抑制するため、半導体素子に比較的近似した熱膨
張率を持つことが要求される。半導体素子に比較的近似
した熱膨張率は、外囲器の熱膨張率にも近く、パッケー
ジングした半導体装置の耐久性を向上させる。他方、半
導体素子の昇温を防止するため、半導体素子で発生した
熱を効率よく放散させるべく良好な熱放散特性をもつこ
とも要求される。このような要求から、W,Mo,コバ
ール,42アロイ等の金属材料やアルミナ,ベリリア等
のセラミックスが基板材料として使用されている。特に
高熱伝導性が要求される基板には、各種Cu合金を使用
する場合もあった。
2. Description of the Related Art As a substrate material for mounting a semiconductor element,
In order to suppress cracks and peeling due to thermal stress between the semiconductor element and the semiconductor element to be mounted, it is required to have a coefficient of thermal expansion relatively close to that of the semiconductor element. The coefficient of thermal expansion relatively close to that of the semiconductor element is close to the coefficient of thermal expansion of the envelope, and improves the durability of the packaged semiconductor device. On the other hand, in order to prevent the temperature rise of the semiconductor element, it is also required to have a good heat dissipation characteristic in order to efficiently dissipate the heat generated in the semiconductor element. Due to such requirements, metal materials such as W, Mo, Kovar, 42 alloy and ceramics such as alumina and beryllia are used as substrate materials. In some cases, various Cu alloys are used for a substrate that requires particularly high thermal conductivity.

【0003】ところで、近年の半導体集積技術の進歩は
著しく、その一環として半導体素子の大型化や高密度化
が急速に進められている。大型化や高密度集積に伴っ
て、半導体素子で発生する熱量も増加の一途である。そ
のため、半導体素子を搭載する基板においても、半導体
素子や外囲器材料と熱膨張係数が近似するだけでなく、
半導体素子で発生した熱量をより効率よく外部に放散さ
せるため、一層高い熱伝導性を持つ材料の開発が要求さ
れている。この要求に応えるため、たとえば特開昭50
−62776号公報では、Cu,Ag等の熱伝導性に優
れた成分及びW,Mo等を含む焼結体を電極としてSi
素子とCu製端子板との間に介在させることを紹介して
いる。また、特開昭59−21032号公報では、粉末
冶金の一手法である溶浸法によってW粉末焼結体中にC
uを溶浸させた材料が紹介されている。これら焼結材料
においては、Cu,Ag等の含有量を変化させることに
より、基板の熱膨張率及び熱伝導性を任意に設定するこ
とができる。そのため、搭載しようとする半導体素子の
材質及びパッケージの形状,大きさ等に応じて最適にC
u,Ag含有量の焼結体を使用すると、半導体素子に近
似した熱膨張率を持ち、熱伝導性に優れた半導体素子搭
載用基板が得られることが予想される。
By the way, in recent years, semiconductor integrated technology has made remarkable progress, and as a part thereof, the size and density of semiconductor elements have been rapidly increased. The amount of heat generated in semiconductor elements is also increasing with the increase in size and high density integration. Therefore, even in the substrate on which the semiconductor element is mounted, not only the coefficient of thermal expansion is close to that of the semiconductor element and the envelope material,
In order to more efficiently dissipate the amount of heat generated in a semiconductor element to the outside, development of a material having higher thermal conductivity is required. In order to meet this demand, for example, JP-A-50
In Japanese Patent Laid-Open No. 62776, Si is used as an electrode by using a sintered body containing components having excellent thermal conductivity such as Cu and Ag and W and Mo.
It is introduced to interpose between the element and the Cu terminal plate. Further, in Japanese Patent Application Laid-Open No. 59-21032, C is added in a W powder sintered body by an infiltration method which is one method of powder metallurgy.
Materials infiltrated with u have been introduced. In these sintered materials, the coefficient of thermal expansion and the thermal conductivity of the substrate can be arbitrarily set by changing the contents of Cu, Ag and the like. Therefore, C is optimally selected according to the material of the semiconductor element to be mounted and the shape and size of the package.
It is expected that when a sintered body containing u and Ag is used, a semiconductor element mounting substrate having a coefficient of thermal expansion similar to that of a semiconductor element and excellent thermal conductivity can be obtained.

【0004】[0004]

【発明が解決しようとする課題】従来の粉末冶金法によ
ってCu−W系複合材料を製造する場合、Cu含有量が
少ない範囲では、Wに対するCuの分散を一様にするた
め溶浸法が採用される。溶浸法では、予めW粉末を金型
に充填し、金型パンチに圧力を加えてW粉末を圧粉成形
して焼結したものに溶融Cuを溶浸させる。溶浸法によ
るとき、一般的にいって密度の高いものが得られ易い。
しかし、Wの多孔質構造全体にわたり隅々までCuを溶
浸させることは困難である。その結果、未溶浸部や空孔
に起因したピンホール,クローズドポア等の欠陥が焼結
体の内部や表面に発生することが避けられない。欠陥部
は、熱伝導性が悪く、基板材料の特性を低下させる。
When a Cu-W type composite material is manufactured by a conventional powder metallurgy method, the infiltration method is adopted in order to make the dispersion of Cu uniform in W in the range where the Cu content is small. To be done. In the infiltration method, a W powder is filled in a mold in advance, pressure is applied to a mold punch to compact and mold the W powder, and the molten Cu is infiltrated into the product. By the infiltration method, it is generally easy to obtain a high density material.
However, it is difficult to infiltrate Cu into every corner of the entire W porous structure. As a result, it is inevitable that defects such as pinholes and closed pores due to uninfiltrated parts and holes will occur inside and on the surface of the sintered body. The defective portion has poor thermal conductivity and deteriorates the characteristics of the substrate material.

【0005】また、ピンホールがある基板にNiやAu
のめっきを施すと、めっき層に膨れや不めっき等の欠陥
が発生する。めっき層自体の密着強度も低下し、基板表
面から剥離し易くなる。その結果、搭載した半導体素子
の基板に対する接着状態が劣化し、接触抵抗の増加を招
く。また、十分な熱放散能力を持つ熱流路が半導体素子
と基板との間に形成されず、作動中に半導体素子の温度
を上昇させる原因となる。本発明は、このような問題を
解消するために案出されたものであって、予め導電性成
分Cuがコーティングされた状態で含まれているスケル
トン構造のW半焼結体を使用してCuを浸透させること
により、浸透工程でCuの浸透を万遍なく均一に行わ
せ、未浸透部やクローズドポア等の欠陥がない半導体素
子搭載用基板材料を提供することを目的とする。
In addition, Ni or Au may be used on a substrate having a pinhole.
When the plating is applied, defects such as swelling and non-plating occur in the plating layer. The adhesion strength of the plating layer itself is also lowered, and it is easy to peel from the substrate surface. As a result, the state of adhesion of the mounted semiconductor element to the substrate deteriorates, and the contact resistance increases. In addition, a heat flow path having a sufficient heat dissipation ability is not formed between the semiconductor element and the substrate, which causes the temperature of the semiconductor element to rise during operation. The present invention has been devised in order to solve such a problem, and uses a W half-sintered body having a skeleton structure, which is contained in a state in which a conductive component Cu is coated in advance, to remove Cu. An object of the present invention is to provide a substrate material for mounting a semiconductor element, which allows Cu to uniformly permeate in the permeating step evenly by permeating, and has no defects such as a non-permeate portion and closed pores.

【0006】[0006]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、0.1〜15容量%のCuを配
合したW粉末を均一に混合し、得られた粉末混合物を液
相焼結することによりW粒子がCuでコーティングされ
た多孔質の半焼結体を形成し、最終含有量でCuが10
〜50容量%の範囲に調整される量で、Cu浸透材を前
記半焼結体の上面に載置し、全体を加熱することにより
溶融したCuを前記半焼結体の空隙に浸透させることを
特徴とする。
In order to achieve the object, the manufacturing method of the present invention is to uniformly mix W powder containing 0.1 to 15% by volume of Cu, and to obtain a powder mixture. By phase sintering, a porous semi-sintered body in which W particles are coated with Cu is formed, and the final content of Cu is 10
A Cu permeating material is placed on the upper surface of the semi-sintered body in an amount adjusted to a range of ˜50% by volume, and the entire body is heated to allow molten Cu to permeate into the voids of the semi-sintered body. And

【0007】粉末混合物の原料として、Cuの酸化物を
使用することもできる。この場合、Cu酸化物をW粉末
と均一に混合した後、金属状態に還元する。還元は、焼
結時の雰囲気を還元性に維持する還元焼成によって行う
こともできる。この方法によって製造された基板材料
は、ピンホール,クローズドポア等の欠陥となる空隙が
表層部及び内部になく、Cuが均一に分散している。そ
のため、熱的及び電気的特性に局部的な変動がなく、品
質安定性に優れた半導体素子搭載用基板材料として使用
される。
Cu oxide can also be used as a raw material for the powder mixture. In this case, the Cu oxide is uniformly mixed with the W powder and then reduced to a metal state. The reduction can also be performed by reduction firing that maintains the atmosphere during sintering as reducing. In the substrate material manufactured by this method, there are no voids such as pinholes and closed pores in the surface layer portion and inside, and Cu is uniformly dispersed. Therefore, it is used as a substrate material for mounting a semiconductor element, which is free from local fluctuations in thermal and electrical characteristics and has excellent quality stability.

【0008】[0008]

【作用】熱伝導性やめっき性に悪影響を与えるピンホー
ルを無くすためには、W粉末を焼結して得られた半焼結
体中に、溶融状態のCuが万遍なく浸透することが必要
である。そこで、本発明においては、浸透されるCuに
対する親和力を向上させるため、予め所定量のCuをコ
ーティング状態で半焼結体に含ませている。Wの半焼結
体は、空隙間隔の幅に大小があり、酸化物,不純物,添
加元素等の分散状態に応じて、溶融Cuが流入し易い経
路と流入抵抗の大きな経路が生じている内部構造を持つ
多孔質焼結体である。この多孔質焼結体に溶浸法でCu
を含有させるとき、溶融Cuは必然的に流入抵抗が小さ
な経路を優先的に進入し、焼結体内部に溶浸していく。
その結果、流入抵抗の大きな経路に溶融Cuが進入する
割合が低下し、その経路はクローズドポアとして溶浸後
の焼結体中に閉じ込められ易い。
In order to eliminate the pinholes which adversely affect the thermal conductivity and the plating property, it is necessary that the molten Cu uniformly penetrates into the semi-sintered body obtained by sintering the W powder. Is. Therefore, in the present invention, a predetermined amount of Cu is preliminarily contained in the semi-sintered body in a coated state in order to improve the affinity for the permeated Cu. In the semi-sintered body of W, the width of the void space is large and small, and there is a path through which molten Cu easily flows and a path with a large inflow resistance depending on the dispersion state of oxides, impurities, additive elements, etc. It is a porous sintered body having. Cu was applied to this porous sintered body by the infiltration method.
Incorporation of molten Cu inevitably preferentially enters a path having a small inflow resistance and infiltrates into the inside of the sintered body.
As a result, the ratio of molten Cu entering the path having a large inflow resistance is reduced, and the path is likely to be confined as closed pores in the sintered body after infiltration.

【0009】本発明で採用している浸透法では、W焼結
体の内部にある流入経路に沿って進入する溶融Cuの流
入難易差をなくすべく、W焼結体を構成しているW粒子
の表面を浸透材と同材質のCuで予めコーティングして
いる。そして、浸透材をW焼結体の上面に配置し、溶融
Cuを焼結体の内部に浸透させている。その結果、コー
ティングによる迎え水作用と重力による流下作用が働
き、溶融Cuは、流入経路にクローズドポアを生じさせ
ることなく、焼結体内部に万遍なく浸透する。このよう
なCu浸透の均一化は、単にWとCuとの半焼結体をC
uで溶浸させるだけでは得られず、却って焼結体に含ま
れているCuにより流入経路が閉じられる。その結果、
焼結体内部に最後まで閉経路が残り、クローズドポアと
なる。この点、本発明にあっては、必要且つ少量のCu
でW粒子をコーティングしているので、半焼結体に含ま
れているCuがクローズドポアの生成を助長させること
はない。
According to the infiltration method adopted in the present invention, the W particles constituting the W sintered body are eliminated in order to eliminate the difference in difficulty of inflowing the molten Cu along the inflow path inside the W sintered body. The surface of is previously coated with Cu, which is the same material as the penetrant. Then, the permeating material is arranged on the upper surface of the W sintered body, and the molten Cu is permeated into the inside of the sintered body. As a result, the water-welding action by the coating and the downflow action by gravity work, and the molten Cu permeates the inside of the sintered body evenly without forming closed pores in the inflow path. This uniform Cu permeation is achieved by simply converting the semi-sintered body of W and Cu into C
It cannot be obtained only by infiltration with u, but rather the inflow path is closed by Cu contained in the sintered body. as a result,
A closed path remains inside the sintered body to the end, forming a closed pore. In this respect, the present invention requires a small amount of Cu
Since the W particles are coated with, the Cu contained in the semi-sintered body does not promote the formation of closed pores.

【0010】本発明では、このような浸透法の長所を活
かし、Cu浸透材を半焼結体の上面に配置した状態で浸
透材を加熱溶融させる。溶融したCuは、半焼結体の上
面全域に広がった後、半焼結体中に流下し浸透する。こ
のとき、半焼結体のW粒子の表面がCuでコーティング
されているため、溶融Cuに対する半焼結体の濡れ性が
良好である。そのため、半焼結体内部への均一な浸透が
促進される。図1及び図2は、予めコーティング状態で
Cuを含ませた半焼結体と通常の半焼結体におけるCu
の浸透過程を対比して説明する図である。コーティング
状態のCuを含ませた半焼結体の製造には、図1(a)
に示すようにW粉末1にCu粉末2を混合して圧粉成形
し、内部に空隙である空孔3が形成されたものを使用す
る。この圧粉体をCuの融点以上に加熱して液相焼結す
ると、Cuが溶融してW粒子1の表面をコーティング4
し、コーティング状態のCuを介してW粒子1が相互に
結合された半焼結体が製造される。
In the present invention, taking advantage of such an infiltration method, the infiltration material is heated and melted while the Cu infiltration material is placed on the upper surface of the semi-sintered body. The molten Cu spreads over the entire upper surface of the semi-sintered body and then flows down and penetrates into the semi-sintered body. At this time, since the surface of the W particles of the semi-sintered body is coated with Cu, the wettability of the semi-sintered body with respect to the molten Cu is good. Therefore, uniform penetration into the inside of the semi-sintered body is promoted. 1 and 2 show Cu in a semi-sintered body in which Cu is previously contained in a coated state and in a normal semi-sintered body.
It is a figure which compares and permeates the penetration process of. In order to manufacture a semi-sintered body containing Cu in a coated state, FIG.
As shown in (1), the W powder 1 is mixed with the Cu powder 2 and compacted, and the voids 3 which are voids are formed inside. When this green compact is heated to a temperature above the melting point of Cu and liquid phase sintered, Cu melts and the surface of the W particle 1 is coated.
Then, a semi-sintered body in which the W particles 1 are bonded to each other through the coated Cu is manufactured.

【0011】得られた半焼結体の上面に、図1(b)に
示すようにCu浸透材5を配置する。Cu浸透材をCu
の融点以上に加熱保持すると、Cu浸透材5の溶融によ
って生じた溶融Cu6は、半焼結体の表面に広がった
後、流下して半焼結体の内部に浸透する。このとき、W
粒子1の表面にあるCuコーティング4が導入路として
働き、いわゆる迎え水作用が発現する。すなわち、図1
(c)に示すように多孔質構造体の断面全体にわたり溶
融Cu6が浸透する。このときの浸透面7は、浸透方向
に関して一様に進行する。その結果、半焼結体内部にあ
る各空孔3が溶融Cu6で完全に充満され、図1(d)
に示すように多孔質構造体全体に均一にCuが分散し、
内部にピンホール等の欠陥がない焼結体が得られる。こ
れに対し、通常の溶浸法では、図2(a)に示すように
W粒子1を圧粉成形した後、予備焼結したものが多孔質
体として使用される。この多孔質体の上面,下面又は側
面に接するようにCu浸透材4を配置し(図2b)、同
様に加熱・溶融したCuを多孔質体に含浸させる。この
とき、W粒子1の表面にCuのコーティングがないた
め、溶融Cu6は、図2(c)に示すように流入抵抗が
小さい経路を優先して多孔質体内部に侵入し、進入面7
が不揃になる。その結果、焼結が完了した段階で、焼結
体内部に未溶浸部8や空孔9が残存し、ピンホール,ク
ローズドポア等の発生原因となる。
On the upper surface of the obtained semi-sintered body, a Cu permeation material 5 is arranged as shown in FIG. 1 (b). Cu penetration material is Cu
When heated and held at a temperature equal to or higher than the melting point of, the molten Cu 6 generated by melting of the Cu permeation material 5 spreads on the surface of the semi-sintered body, then flows down and permeates into the inside of the semi-sintered body. At this time, W
The Cu coating 4 on the surface of the particles 1 acts as an introduction path, and a so-called water-repellent action is developed. That is, FIG.
As shown in (c), molten Cu6 permeates the entire cross section of the porous structure. The permeation surface 7 at this time advances uniformly in the permeation direction. As a result, each hole 3 inside the semi-sintered body was completely filled with molten Cu6, and as shown in FIG.
As shown in, the Cu is uniformly dispersed throughout the porous structure,
A sintered body having no defects such as pinholes inside can be obtained. On the other hand, in the normal infiltration method, as shown in FIG. 2A, the W particles 1 are compacted and then pre-sintered to be used as the porous body. The Cu permeating material 4 is arranged so as to come into contact with the upper surface, the lower surface or the side surface of this porous body (FIG. 2B), and the heated / melted Cu is similarly impregnated into the porous body. At this time, since there is no coating of Cu on the surface of the W particles 1, the molten Cu 6 preferentially enters the inside of the porous body with a path having a small inflow resistance as shown in FIG.
Will be out of order. As a result, at the stage when the sintering is completed, the uninfiltrated portion 8 and the holes 9 remain inside the sintered body, which causes pinholes, closed pores, and the like.

【0012】この対比から明らかなように、コーティン
グ状態でCuを含ませた半焼結体を使用するとき、溶融
Cu6がW半焼結体の全体に隙間なく万遍に行き渡り、
熱伝導性やめっき性に悪影響を与える未浸透部,空孔等
の欠陥がないCu−W焼結体が得られる。浸透法による
焼結体は、Cuが均一に分散されていること及びピンホ
ールが存在しないことから、単純な溶浸法で製造された
基板材料に比較して品質が安定し、性質が局部的に変動
することがない。得られた焼結体の表面にNi,Au等
のめっきを施すとき、未浸透部,空孔等の欠陥がないこ
とから、密着性に優れ欠陥のないめっき層が形成され
る。したがって、このめっき層を介して半導体素子を接
合したとき、隙間のない接合界面が得られ、接触抵抗を
低下させることができる。この点でも、半導体素子の特
性が安定化し、半導体素子から基板への熱伝導性が向上
する。
As is clear from this comparison, when the semi-sintered body containing Cu in the coated state is used, the molten Cu6 is evenly distributed over the entire W semi-sintered body,
It is possible to obtain a Cu-W sintered body that does not have defects such as non-penetrating portions and voids that adversely affect the thermal conductivity and plating property. Since the sintered body obtained by the infiltration method has a uniform distribution of Cu and no pinholes, the quality of the sintered body is more stable and the properties are localized compared with the substrate material produced by the simple infiltration method. Never fluctuates. When Ni, Au, or the like is plated on the surface of the obtained sintered body, there are no defects such as non-penetrated portions and voids, so that a plating layer having excellent adhesion and no defects is formed. Therefore, when the semiconductor element is bonded via this plating layer, a bonding interface without a gap is obtained, and the contact resistance can be reduced. Also in this respect, the characteristics of the semiconductor element are stabilized, and the thermal conductivity from the semiconductor element to the substrate is improved.

【0013】なお、Wの多孔質半焼結体中に溶融Cuを
万遍なく含浸させるためには、使用されるW粉末原料に
対し、二次粒子が完全に粉砕される前処理や混合条件を
選ぶことが好ましい。たとえば、HF処理やボールミ
ル,アトライター等によって、W二次粒子が除去,粉砕
される。これにより、W二次粒子に起因した未浸透部の
発生が抑制される。また、ボールミル,アトライター等
の機械的混合法やメカニカルアロイング法によってW粉
末及びCu粉末を処理するとき、Wマトリックス中にC
u粉末を均一に分散させることができ、更に良好な結果
が得られる。W等の粉末に予め配合されるCu粉末の量
は、浸透工程におけるWの多孔質半焼結体に対する溶融
Cuの親和性を考慮して、好ましくは15容量%以下の
範囲で定められる。Cuの配合量が15容量%を超える
と、後述する実施例で示されるように物性値のバラツキ
が増加する傾向が見られる。これは、W粒子をつなぐC
u相が多くなって、半焼結体中にクローズドポアが形成
され易くなることに起因するものと推察される。
In order to uniformly impregnate the molten Cu into the porous semi-sintered body of W, the W powder raw material used is subjected to pretreatment and mixing conditions in which secondary particles are completely pulverized. It is preferable to choose. For example, W secondary particles are removed and pulverized by HF treatment, a ball mill, an attritor, or the like. This suppresses the generation of the non-penetrable portion due to the W secondary particles. Further, when the W powder and the Cu powder are processed by a mechanical mixing method such as a ball mill or an attritor, or a mechanical alloying method, C is contained in the W matrix.
The u powder can be dispersed uniformly, and more favorable results can be obtained. The amount of the Cu powder pre-blended with the powder of W or the like is determined in the range of preferably 15% by volume or less in consideration of the affinity of the molten Cu for the porous semi-sintered body of W in the infiltration step. When the amount of Cu compounded exceeds 15% by volume, there is a tendency that the variation in the physical property values increases, as shown in Examples described later. This is C that connects W particles
It is speculated that this is due to the fact that the u phase increases and closed pores are easily formed in the semi-sintered body.

【0014】Cuの配合量の下限は、特に限定されるも
のではないが、W半焼結体に対するCuの親和性を高め
る上で、0.1容量%以上とすることが好ましい。Wの
半焼結体は、溶融Cuが充填される空孔が内部にある多
孔質体である。空孔率が所定値に調整された半焼結体の
形成を容易にするためには、熱伝導率を大幅に低下させ
ない範囲で、活性焼結反応を促進させるNi,Fe,C
o等の第三成分を若干量配合することもできる。たとえ
ば、0.5容量%以下のNiを添加するとき、焼結反応
が促進され、比較的低温でコーティング状態のCuを含
む多孔質構造のW半焼結体が得られる。また、活性焼結
によって収縮量が大きくなるので、空孔率の調整が容易
になる。第三成分の添加は、特にCu含有量が少ないも
のほど効果的である。
The lower limit of the amount of Cu compounded is not particularly limited, but is preferably 0.1% by volume or more in order to enhance the affinity of Cu for the W semi-sintered body. The semi-sintered body of W is a porous body having pores filled with molten Cu inside. In order to facilitate the formation of a semi-sintered body whose porosity is adjusted to a predetermined value, Ni, Fe, C which promotes the active sintering reaction within a range that does not significantly reduce the thermal conductivity.
It is also possible to add a small amount of a third component such as o. For example, when 0.5% by volume or less of Ni is added, the sintering reaction is promoted, and a W semi-sintered body having a porous structure containing Cu in a coated state at a relatively low temperature is obtained. Further, since the amount of shrinkage increases due to the active sintering, it becomes easy to adjust the porosity. The addition of the third component is more effective when the content of Cu is smaller.

【0015】[0015]

【実施例】【Example】

実施例1:平均粒度3μmのW粉末に、第1表に示した
割合でCu粉末を配合し、ボールミルで混合した。この
粉末混合物を圧粉成形した後、Cuの融点以上の温度で
加熱することにより液相焼結し、多孔質構造の半焼結体
を製造した。比較のため、Cu粉末を配合することな
く、W粉末を焼結した半焼結体を製造した。各半焼結体
に、最終Cu含有量が35容量%となるように溶融Cu
を浸透又は溶浸させた。浸透法では、最終Cu含有量が
35容量%となるように調整したCu浸透材を半焼結体
の上に載置し、Cuの融点以上に加熱保持した。得られ
た焼結体を機械加工し、5mm×15mm×40mmの
サイズをもつ試験片をそれぞれ20個製作した。各試験
片の物性を測定した後、蛍光探傷法によりピンホールの
有無を調査した。調査結果を、表1に示す。
Example 1: W powder having an average particle size of 3 μm was mixed with Cu powder in a ratio shown in Table 1 and mixed with a ball mill. This powder mixture was compacted and then heated at a temperature equal to or higher than the melting point of Cu for liquid phase sintering to produce a semi-sintered body having a porous structure. For comparison, a semi-sintered body obtained by sintering W powder was manufactured without compounding Cu powder. Molten Cu was added to each semi-sintered body so that the final Cu content was 35% by volume.
Were permeated or infiltrated. In the permeation method, a Cu permeation material adjusted so that the final Cu content was 35% by volume was placed on the semi-sintered body and heated and maintained at a temperature not lower than the melting point of Cu. The obtained sintered body was machined to produce 20 test pieces each having a size of 5 mm × 15 mm × 40 mm. After measuring the physical properties of each test piece, the presence or absence of pinholes was investigated by a fluorescent flaw detection method. The survey results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明らかなように、Cuを含まない
半焼結体に溶浸法を適用した比較例では、ピンホールが
検出されたものが多い。これに対し、Cuを含有させた
半焼結体にCuを浸透させたものにあっては、Cu含有
量が0.05容量%と極く僅かであっても、ピンホール
の発生が大幅に抑制されている。また、Cu含有量が
0.1容量%以上では、ピンホールが皆無であった。得
られた焼結体に無電解めっき法で厚み3μmのNiめっ
き及び0.3μmのAuめっきを施した後、めっき層を
介してSi素子を接合した。そして、Si素子と基板と
の接合界面を観察したところ、本発明に従って製造され
たものでは、基板に対するSi素子の密着性は極めて優
れたものであった。そのため、稼動中のSi素子で発生
した熱は、この接合界面を経て基板に効率よく伝達さ
れ、外部に放散された。これに対し、溶浸法で製造した
基板にSi素子を搭載したものでは、接合界面に空隙が
検出され、表1に示した基板材料自体の熱伝導率よりも
低い実効熱伝導率を示した。
As is apparent from Table 1, in the comparative examples in which the infiltration method is applied to the semi-sintered body containing no Cu, pinholes are often detected. On the other hand, in the case where Cu is infiltrated into the semi-sintered body containing Cu, the generation of pinholes is significantly suppressed even if the Cu content is as small as 0.05% by volume. Has been done. Further, when the Cu content was 0.1% by volume or more, there were no pinholes. The obtained sintered body was subjected to electroless plating with Ni plating having a thickness of 3 μm and Au plating having a thickness of 0.3 μm, and then an Si element was bonded via a plating layer. Then, when the bonding interface between the Si element and the substrate was observed, the adhesiveness of the Si element to the substrate was extremely excellent in the one manufactured according to the present invention. Therefore, the heat generated in the operating Si element was efficiently transferred to the substrate through the bonding interface and was dissipated to the outside. On the other hand, in the case where the Si element was mounted on the substrate manufactured by the infiltration method, voids were detected at the bonding interface, and the effective thermal conductivity was lower than the thermal conductivity of the substrate material itself shown in Table 1. .

【0018】実施例2:平均粒度3μmのW粉末に、表
1に示した割合でCu粉末及びNi粉末を配合し、実施
例1と同様にして多孔質構造の半焼結体を製造した。そ
の後、半焼結体の上面にCu浸透材を配置し、加熱溶融
したCuを半焼結体中に浸透させた。得られた焼結体か
ら試験片を切り出し、その物性値を調べた結果を表1に
併せ示す。表1から、Niの添加量は、熱伝導率の面か
ら0.5容量%以下にすることが好ましいことが判る。
Example 2 Cu powder and Ni powder were blended in the proportions shown in Table 1 to W powder having an average particle size of 3 μm, and a semi-sintered body having a porous structure was manufactured in the same manner as in Example 1. After that, a Cu permeation material was placed on the upper surface of the semi-sintered body, and the heat-melted Cu was permeated into the semi-sintered body. Table 1 also shows the results of examining the physical properties of test pieces cut out from the obtained sintered body. It can be seen from Table 1 that the addition amount of Ni is preferably 0.5% by volume or less in terms of thermal conductivity.

【0019】実施例3:平均粒径3μmのW粉末に、予
めCu粉末2容量%を配合して多孔質構造の半焼結体を
製造した。その後、最終的にCu含有量がそれぞれ10
容量%,30容量%,50容量%及び60容量%となる
ように調整したCu浸透材を半焼結体の上面に配置し、
加熱溶融したCuを半焼結体中に浸透させた。得られた
焼結体から試験片を切り出し、その物性値を測定した。
表2は、その測定結果を示したものである。
Example 3: A W powder having an average particle size of 3 μm was mixed with 2% by volume of Cu powder in advance to manufacture a semi-sintered body having a porous structure. After that, finally the Cu content is 10 each
Cu infiltrant adjusted to have a volume%, 30 volume%, 50 volume% and 60 volume% is arranged on the upper surface of the semi-sintered body,
The heat-melted Cu was permeated into the semi-sintered body. A test piece was cut out from the obtained sintered body, and its physical property values were measured.
Table 2 shows the measurement results.

【0020】[0020]

【表2】 [Table 2]

【0021】表2にみられるように、Cu含有量が少な
い試料No.9は、若干比重が不足している。Cu含有量
が多い試料No.13は、熱膨張率が10×10-6/℃を
超えている。半導体素子の熱膨張率は平均で10-6/℃
程度であることから、基板と半導体素子との間の熱膨張
差を小さくする上で、Cuの最終含有量を10〜50容
量%の範囲に維持することが好ましいことが判った。
As can be seen from Table 2, the sample No. 9 having a low Cu content has a slightly insufficient specific gravity. Sample No. 13, which has a high Cu content, has a coefficient of thermal expansion of more than 10 × 10 −6 / ° C. The coefficient of thermal expansion of semiconductor elements is 10 -6 / ° C on average
Therefore, it was found that it is preferable to maintain the final Cu content within the range of 10 to 50% by volume in order to reduce the difference in thermal expansion between the substrate and the semiconductor element.

【0022】[0022]

【発明の効果】以上に説明したように、本発明において
は、Cuの一部を配合したW粉末を液相焼結することに
よってコーティング状態でCuを含むW半焼結体の上面
に、必要量に調整されたCu浸透材を配置し、浸透材を
加熱溶融させている。溶融した浸透材は、半焼結体の上
面全域に広がった後、半焼結体中に流下し浸透する。そ
の結果、半焼結体の全域に渡り空孔がCuで充満され、
ピンホール,クローズドポア等の欠陥がなく高熱伝導率
で且つ適正な熱膨張率をもつ焼結体が得られる。このよ
うにして製造された焼結体は、搭載された半導体素子で
発生した熱量を効率よく外部に放散することを可能にす
るため、特に集積密度が高い大容量の半導体素子搭載用
に適にした基板材料として使用される。
As described above, according to the present invention, the required amount of W is added to the upper surface of the W semi-sintered body containing Cu in a coating state by liquid-phase sintering of W powder containing a part of Cu. The Cu permeation material adjusted to the above is arranged, and the permeation material is heated and melted. The melted penetrant spreads over the entire upper surface of the semi-sintered body and then flows down and permeates into the semi-sintered body. As a result, the pores were filled with Cu all over the semi-sintered body,
It is possible to obtain a sintered body with high thermal conductivity and an appropriate coefficient of thermal expansion without defects such as pinholes and closed pores. The sintered body produced in this manner is suitable for mounting a large-capacity semiconductor element with a particularly high integration density because it enables efficient dissipation of the amount of heat generated in the mounted semiconductor element to the outside. Used as a substrate material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った焼結進行状態を示すモデル1 is a model showing the progress of sintering according to the present invention.

【図2】 従来の溶浸法に従った焼結進行状態を示すモ
デル
FIG. 2 is a model showing the progress of sintering according to the conventional infiltration method.

【符号の説明】[Explanation of symbols]

1:W粒子 2:Cu粉末 3:空孔 4:コー
ティング 5:Cu浸透材 6:溶融Cu 7:進入面
8:未溶浸部 9:空孔
1: W particle 2: Cu powder 3: Void 4: Coating 5: Cu penetrant 6: Molten Cu 7: Entry surface
8: Uninfiltrated part 9: Void

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0.1〜15容量%のCuを配合したW
粉末を均一に混合し、得られた粉末混合物を液相焼結す
ることによりW粒子がCuでコーティングされた多孔質
の半焼結体を形成し、最終含有量でCuが10〜50容
量%の範囲に調整される量で、Cu浸透材を前記半焼結
体の上面に載置し、全体を加熱することにより溶融した
Cuを前記半焼結体の空隙に浸透させることを特徴とす
る半導体素子搭載用基板材料の製造方法。
1. W containing 0.1 to 15% by volume of Cu
The powders are uniformly mixed, and the obtained powder mixture is subjected to liquid phase sintering to form a porous semi-sintered body in which W particles are coated with Cu. The final content of Cu is 10 to 50% by volume. A semiconductor element mounting, characterized in that a Cu permeating material is placed on the upper surface of the semi-sintered body in an amount adjusted to a range, and Cu melted by permeating the whole is permeated into the voids of the semi-sintered body. Of manufacturing substrate material for automobile.
【請求項2】 請求項1記載の粉末混合物の原料として
酸化物を使用し、該酸化物を均一に混合した後、金属状
態に還元することを特徴とする半導体素子搭載用基板材
料の製造方法。
2. A method for producing a substrate material for mounting a semiconductor device, comprising using an oxide as a raw material of the powder mixture according to claim 1, uniformly mixing the oxide, and then reducing the oxide to a metal state. .
【請求項3】 請求項1又は2記載の方法で製造され、
内部に空隙のない半導体素子搭載用基板材料。
3. A method manufactured by the method according to claim 1 or 2,
Substrate material for mounting semiconductor devices with no voids inside.
JP6293976A 1994-11-02 1994-11-02 Method for manufacturing substrate material for semiconductor device and substrate material Expired - Fee Related JP2546792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6293976A JP2546792B2 (en) 1994-11-02 1994-11-02 Method for manufacturing substrate material for semiconductor device and substrate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6293976A JP2546792B2 (en) 1994-11-02 1994-11-02 Method for manufacturing substrate material for semiconductor device and substrate material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2159446A Division JP2746279B2 (en) 1990-06-18 1990-06-18 Substrate material for semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07297323A JPH07297323A (en) 1995-11-10
JP2546792B2 true JP2546792B2 (en) 1996-10-23

Family

ID=17801637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6293976A Expired - Fee Related JP2546792B2 (en) 1994-11-02 1994-11-02 Method for manufacturing substrate material for semiconductor device and substrate material

Country Status (1)

Country Link
JP (1) JP2546792B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277326B1 (en) * 2000-05-31 2001-08-21 Callaway Golf Company Process for liquid-phase sintering of a multiple-component material

Also Published As

Publication number Publication date
JPH07297323A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
JP2746279B2 (en) Substrate material for semiconductor device and method of manufacturing the same
JP5718536B2 (en) Connection structure and semiconductor device
US6440578B1 (en) Adhesive compositions for bonding different members bonding method using the composition and composite members bonded by the bonding method
WO2004080913A1 (en) Method for producing a composite material
DE102008005529A1 (en) Heat sink and method of manufacturing a heat sink
CN107226708B (en) Bonded body and method for producing bonded body
JPH06244330A (en) Heat-controlling composite material used in electronic circuit device, and manufacture thereof
EP3632880A1 (en) Ceramic circuit board and method for producing same
JP6132026B2 (en) Method for producing aluminum porous body
JP4113971B2 (en) Low expansion material and manufacturing method thereof
KR102352640B1 (en) Molded article for bonding and manufacturing method thereof
JP2546792B2 (en) Method for manufacturing substrate material for semiconductor device and substrate material
KR102469222B1 (en) Bonding material, manufacturing method of bonding material and bonding body
KR20220152386A (en) Composites and heat dissipation members
JP2006120973A (en) Circuit board and manufacturing method thereof
KR20210144716A (en) composite material
JP3883985B2 (en) Method for producing copper-based low thermal expansion high thermal conductive member
JP5539270B2 (en) Manufacturing method of contact for vacuum valve
JP2004323953A (en) Copper-based low thermal expansion high thermal conduction member, and its production method
Songping Termination of BME–MLCC Using Copper–Nickel Bimetallic Powder as Electrode Material
JP2912211B2 (en) Semiconductor substrate material and method of manufacturing the same
JP2820566B2 (en) Method of manufacturing heat dissipation member for semiconductor package
JP6381731B1 (en) Electronic component with copper electrode
JPH09227979A (en) Low thermal expansion sintered alloy
JP2002356731A (en) Substrate for semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960521

LAPS Cancellation because of no payment of annual fees