KR102469222B1 - Bonding material, manufacturing method of bonding material and bonding body - Google Patents

Bonding material, manufacturing method of bonding material and bonding body Download PDF

Info

Publication number
KR102469222B1
KR102469222B1 KR1020227009180A KR20227009180A KR102469222B1 KR 102469222 B1 KR102469222 B1 KR 102469222B1 KR 1020227009180 A KR1020227009180 A KR 1020227009180A KR 20227009180 A KR20227009180 A KR 20227009180A KR 102469222 B1 KR102469222 B1 KR 102469222B1
Authority
KR
South Korea
Prior art keywords
bonding material
sintered body
less
silver
bonding
Prior art date
Application number
KR1020227009180A
Other languages
Korean (ko)
Other versions
KR20220041243A (en
Inventor
진팅 지우
Original Assignee
센주긴조쿠고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센주긴조쿠고교 가부시키가이샤 filed Critical 센주긴조쿠고교 가부시키가이샤
Publication of KR20220041243A publication Critical patent/KR20220041243A/en
Application granted granted Critical
Publication of KR102469222B1 publication Critical patent/KR102469222B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • H01L2224/2711Shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • H01L2224/2712Applying permanent coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/275Manufacturing methods by chemical or physical modification of a pre-existing or pre-deposited material
    • H01L2224/27505Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

도전체(12)와 기판(14)이 접합재(13)에 의해 접합되어 있는 접합체(10)에 있어서, 접합재(13)로서, 은 분말이 소고된 소결체를 포함하고, 당해 소결체의 기공율이 8~30%이며, 접합면의 표면 조도(Ra)가 500 nm 이상 3.3μm 이하인 것을 채용한다. In the joined body 10 in which the conductor 12 and the substrate 14 are joined by the bonding material 13, the bonding material 13 includes a sintered body in which silver powder is sintered, and the porosity of the sintered body is 8 to 8. It is 30%, and the surface roughness (Ra) of 500 nm or more and 3.3 micrometers or less of a joint surface is employ|adopted.

Description

접합재, 접합재의 제조 방법 및 접합체Bonding material, manufacturing method of bonding material and bonding body

본 발명은, 접합재, 접합재의 제조 방법 및 접합체에 관한 것이다. 본원은, 2019년 10월 15일에 일본에 출원된 특원 2019-188913호에 근거하는 우선권을 주장하고, 그 내용을 여기에 원용한다.The present invention relates to a bonding material, a manufacturing method of the bonding material, and a bonded body. This application claims priority based on Japanese Patent Application No. 2019-188913 for which it applied to Japan on October 15, 2019, and uses the content here.

탄화 규소(SiC)를 이용한 파워 반도체는, 종래의 규소를 이용한 반도체와 비교하여 소형이고, 에너지 손실을 저감하는 것 외에, 300℃ 이상이라고 하는 고온에서도 동작 가능하다고 하는 특징을 가진다. Power semiconductors using silicon carbide (SiC) are smaller than conventional semiconductors using silicon, have reduced energy loss, and are capable of operating even at high temperatures of 300°C or higher.

SiC 파워 반도체를 고온에서 동작시키는 경우, 동작 환경에서의 내열 온도가 약 150℃인 종래의 땜납은 접합재로서 적당하지 않다. 이것에 대신하는 접합재로서, 내열성, 전기 전도율이 뛰어난, 금속 미립자가 용제에 분산한 페이스트(금속 미립자 페이스트)를 이용하는 것이 검토되고 있다. In the case of operating SiC power semiconductors at high temperatures, conventional solder having a heat resistance temperature of about 150 DEG C in an operating environment is not suitable as a bonding material. As a bonding material instead of this, the use of a paste in which metal fine particles are dispersed in a solvent (metal fine particle paste) having excellent heat resistance and electrical conductivity has been studied.

그렇지만, 상기 금속 미립자 페이스트를 이용하여 기판과 칩을 고온 하에서 접합했을 경우, 접합시에 용제가 휘발하여, 접합부에 큰 기공(보이드)이 생기는 문제나, 얻어진 접합체에 있어서 칩의 위치가 어긋나 버린다고 하는 문제가 있었다. However, when a substrate and a chip are bonded at a high temperature using the above-mentioned metal fine particle paste, the solvent volatilizes during bonding and large pores (voids) are formed at the bonded portion, and the position of the chip is displaced in the resulting bonded body. There was a problem.

이에 대하여, 접합부에 있어서의 큰 기공의 형성을 억제하기 위해서, 은 입자를 가압하면서 성형하여 접합재를 제작하고, 이 접합재를 이용하여 기재 사이를 접합한다고 하는 방법이 제안되고 있다(특허문헌 1 참조). On the other hand, in order to suppress the formation of large pores in the joint portion, a method has been proposed in which silver particles are molded while being pressed to produce a bonding material, and the bonding material is used to bond between substrates (see Patent Document 1). .

특허문헌 1: 일본 특허 제4876979호 공보Patent Document 1: Japanese Patent No. 4876979

그렇지만, 특허문헌 1에 기재된 접합재를 이용하여 기판과 칩을 고온 하에서 접합했을 경우, 얻어진 접합체의 접합 강도가 충분하지 않다고 하는 문제가 있다. However, when a substrate and a chip are bonded at a high temperature using the bonding material described in Patent Literature 1, there is a problem that the bonding strength of the obtained bonded body is not sufficient.

여기서, 본 발명은, 종래보다도 뛰어난 접합 강도를 가지는 접합체를 제작할 수 있는 접합재, 그 접합재의 제조 방법, 그 접합재를 이용한 접합체를 제공하는 것을 목적으로 한다.Here, an object of the present invention is to provide a bonding material capable of producing a bonded body having superior bonding strength than before, a manufacturing method of the bonding material, and a bonded body using the bonding material.

상기의 과제를 해결하기 위해서, 본 발명은 이하의 구성을 채용했다. In order to solve the above problems, the present invention adopts the following configuration.

즉, 본 발명의 제1의 태양은, 은 분말이 소고(燒固)된 소결체를 포함하고, 상기 소결체의 기공율이 8~30%이며, 접합면의 표면 조도(Ra)가, 500 nm 이상 3.3μm 이하인 것을 특징으로 하는, 접합재이다. That is, the first aspect of the present invention includes a sintered body in which silver powder is sintered, the porosity of the sintered body is 8 to 30%, and the surface roughness (Ra) of the bonding surface is 500 nm or more and 3.3 It is a bonding material characterized in that it is less than μm.

또한, 본 발명의 제2의 태양은, 접합재의 제조 방법으로서, 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정을 갖고, 상기 분산액 중의 상기 용제의 함유량이, 5 질량% 이상 25 질량% 이하인 것을 특징으로 하는, 접합재의 제조 방법이다. A second aspect of the present invention is a method for producing a bonding material, comprising a step of obtaining a sintered body by heating a coating film formed using a dispersion of a solvent and silver powder, wherein the content of the solvent in the dispersion is 5 mass % or more and 25 mass% or less, characterized in that, a manufacturing method of a bonding material.

또한, 본 발명의 제3의 태양은, 접합재의 제조 방법으로서, 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정을 갖고, 상기 은 분말은, 평균 입자 지름이 상위(相違)한 제1의 은 입자군과 제2의 은 입자군을 포함하고, 상기 제1의 은 입자군의 평균 입자 지름이 50 nm 이상 1000 nm 미만이며, 상기 제2의 은 입자군의 평균 입자 지름이 1μm 이상 20μm 미만인 것을 특징으로 하는, 접합재의 제조 방법이다. Further, a third aspect of the present invention, as a method for producing a bonding material, includes a step of obtaining a sintered body by heating a coated film formed using a solvent and a dispersion of silver powder, wherein the silver powder has a different average particle diameter ( The first silver particle group and the second silver particle group are mutually exclusive, the average particle diameter of the first silver particle group is 50 nm or more and less than 1000 nm, and the average particle of the second silver particle group A method for producing a bonding material characterized in that the diameter is 1 μm or more and less than 20 μm.

제3의 태양에 따른 접합재의 제조 방법에 있어서, 상기 은 분말은, 추가로, 평균 입자 지름이 20μm 이상 60μm 미만인 제3의 은 입자군을 포함하는 것이 바람직하다. In the method for producing a bonding material according to the third aspect, the silver powder preferably further includes a third group of silver particles having an average particle diameter of 20 μm or more and less than 60 μm.

또한, 제2 또는 제3의 태양에 따른 접합재의 제조 방법은, 상기 소결체를 얻는 공정에 있어서, 상기 도공막에 가해지는 압력을 5 MPa 이하로 하면서, 상기 도공막을 가열하는 것이 바람직하다. In the method for manufacturing a bonding material according to the second or third aspect, in the step of obtaining the sintered body, the coated film is preferably heated while the pressure applied to the coated film is 5 MPa or less.

또한, 제2 또는 제3의 태양에 따른 접합재의 제조 방법은, 추가로, 상기 소결체의 표면을 연마하는 공정, 또는, 상기 소결체의 표면에 은, 구리, 주석, 금 및 니켈로 이루어지는 군으로부터 선택되는 1종 이상의 도금을 입히는 공정을 가지는 것이 바람직하다. In addition, the manufacturing method of the bonding material according to the second or third aspect further includes a step of polishing the surface of the sintered body, or a surface of the sintered body selected from the group consisting of silver, copper, tin, gold, and nickel It is preferable to have a step of coating one or more types of plating to be.

또한, 본 발명의 제4의 태양은, 도전체와, 기판이, 상기의 제1의 태양에 따른 접합재에 의해 접합되어 있는 것을 특징으로 하는, 접합체이다.Further, a fourth aspect of the present invention is a bonded body characterized in that the conductor and the substrate are bonded by the bonding material according to the first aspect.

본 발명에 의하면, 종래보다도 뛰어난 접합 강도를 가지는 접합체를 제작할 수 있는 접합재, 그 접합재의 제조 방법, 그 접합재를 이용한 접합체를 제공할 수 있다.According to the present invention, it is possible to provide a bonding material capable of producing a bonded body having superior bonding strength than before, a manufacturing method of the bonding material, and a bonded body using the bonding material.

[도 1] 본 발명에 따른 접합체의 일실시 형태를 나타내는 단면도이다.
[도 2a] 접합재의 단면의, 주사형 전자현미경에 의한 현미경상(像)이다.
[도 2b] 접합재의 단면의, 주사형 전자현미경에 의한 현미경상이다.
[도 2c] 접합재의 단면의, 주사형 전자현미경에 의한 현미경상이다.
[도 2d] 접합재의 단면의, 주사형 전자현미경에 의한 현미경상이다.
[도 2e] 접합재의 단면의, 주사형 전자현미경에 의한 현미경상이다.
[도 3a] 본 발명에 따른 접합재와 은 도금한 동판의 접합부 부근의 현미경상이다.
[도 3b] 본 발명에 따른 접합체의 쉬어 강도와, 소결시의 온도 및 압력의 관계를 나타내는 그래프이다.
[도 4a] 본 발명에 따른 접합재와 도금을 입히지 않은 동판의 접합부 부근의 현미경상이다.
[도 4b] 본 발명에 따른 접합체의 쉬어 강도와, 소결시의 온도 및 압력의 관계를 나타내는 그래프이다.
[Fig. 1] A cross-sectional view showing one embodiment of a bonded body according to the present invention.
[ Fig. 2A ] It is a microscopic image of a cross section of a bonding material by a scanning electron microscope.
[FIG. 2B] A microscopic image of a cross section of a bonding material by a scanning electron microscope.
[ Fig. 2c ] A microscopic image of a cross section of a bonding material by a scanning electron microscope.
[ Fig. 2d ] A microscopic image of a cross section of a bonding material by means of a scanning electron microscope.
[ Fig. 2e ] A microscopic image of a cross section of a bonding material by means of a scanning electron microscope.
[Fig. 3a] A microscopic image of the vicinity of a junction between a bonding material according to the present invention and a silver-plated copper plate.
[Fig. 3b] is a graph showing the relationship between the shear strength of the bonded body according to the present invention and the temperature and pressure during sintering.
[Fig. 4a] A microscopic image of the vicinity of the junction between the bonding material according to the present invention and the unplated copper plate.
[Fig. 4b] is a graph showing the relationship between the shear strength of the bonded body according to the present invention and the temperature and pressure during sintering.

도 1은, 본 발명에 따른 접합체의 일실시 형태를 나타내는 단면도이다. 1 is a cross-sectional view showing one embodiment of a bonded body according to the present invention.

도 1에 나타내는 접합체(10)는, 도전체(12)와 기판(14)이 접합재(13)에 의해 접합된 적층체이다. A bonded body 10 shown in FIG. 1 is a laminated body in which a conductor 12 and a substrate 14 are bonded together by a bonding material 13 .

본 실시 형태의 접합체(10)는, 접합재(13)에 특징이 있고, 그 외의 구성에 대해서는 공지의 여러 가지의 접합체를 적절히 적용할 수 있다. The bonded body 10 of this embodiment is characterized by the bonding material 13, and various well-known bonded bodies can be appropriately applied to other configurations.

[접합재][binder]

본 실시 형태의 접합재는, 은 분말이 소고된 소결체를 포함하고, 상기 소결체의 기공율이 8~30%이며, 접합면의 표면 조도(Ra)가, 500 nm 이상 3.3μm 이하이다. The bonding material of the present embodiment includes a sintered body in which silver powder is sintered, the porosity of the sintered body is 8 to 30%, and the surface roughness (Ra) of the bonding surface is 500 nm or more and 3.3 μm or less.

본 명세서에 있어서, 접합재란, 두 개의 물체를 접합시키는 것을 포함하고, 전형적으로는 도전체와 기판의 사이에 개재하여 이들을 접합시키는 것을 들 수 있다. In this specification, a bonding material includes a bonding material between two objects, and typically includes a bonding material interposed between a conductor and a substrate to bond them together.

본 실시 형태의 접합재가 포함하는 소결체의 기공율은, 8~30%이며, 바람직하게는 8~20%이며, 보다 바람직하게는 9~15%이다. The porosity of the sintered body included in the bonding material of the present embodiment is 8 to 30%, preferably 8 to 20%, more preferably 9 to 15%.

소결체의 기공율이 상기 범위 내이면, 예를 들면 도전체와 기판의 접합 강도(접합체의 쉬어 강도)를 뛰어난 것으로 할 수 있다. When the porosity of the sintered body is within the above range, for example, the bonding strength between the conductor and the substrate (shear strength of the bonding body) can be improved.

여기서, 쉬어 강도는 JIS Z 3198-7: 2003에 준거한 방법에 의해 측정된 것을 의미한다. 구체적인 측정 방법은 실시예에 있어서 후술한다. Here, shear strength means what was measured by the method based on JIS Z 3198-7:2003. A specific measurement method will be described later in the Examples.

본 명세서에 있어서, 소결체의 기공율은, 다음과 같이 측정한 것이다. In this specification, the porosity of the sintered body is measured as follows.

우선, 소결체를 물에 가라앉혀 소결체의 체적을 측정하고, 또한, 소결체의 질량을 측정한다. 또한, 그 질량에 상당하는 소결체가 기공을 가지지 않는 경우의 체적을, 이론상의 밀도에 근거하여 산출한다. 측정한 체적과, 기공을 가지지 않는 경우의 이론상의 체적으로부터, 소결체의 기공율을 산출한다. First, the sintered body is immersed in water, the volume of the sintered body is measured, and the mass of the sintered body is also measured. Further, the volume in case the sintered body corresponding to the mass does not have pores is calculated based on the theoretical density. The porosity of the sintered body is calculated from the measured volume and the theoretical volume in the case of not having pores.

본 실시 형태의 접합재가 포함하는 소결체의 기공율을 상기 범위 내로 제어하는 방법으로서는, 예를 들면, 은 분말의 종류 또는 입자 지름을 적절히 선택하는 방법, 소결시의 압력 조건을 적절히 설정하는 방법, 은 분말의 분산액을 이용하여 접합재를 제조할 때에는 당해 분산액의 용제량을 조정하는 방법 등을 들 수 있다. As a method of controlling the porosity of the sintered body included in the bonding material of the present embodiment within the above range, for example, a method of appropriately selecting the type or particle diameter of silver powder, a method of appropriately setting pressure conditions during sintering, silver powder When producing a bonding material using a dispersion of , a method of adjusting the amount of solvent in the dispersion may be used.

본 실시 형태의 접합재는, 접합체의 쉬어 강도를 충분한 것으로 할 수 가능한 한, 은 분말부터 형성된 소결체 이외의 물질을 포함해도 된다. The bonding material of the present embodiment may contain substances other than the sintered body formed from silver powder as long as the shear strength of the bonded body is sufficient.

본 실시 형태의 접합재의 형상으로서는, 특별히 한정되지 않고, 예를 들면, 원판, 직사각형판 등의 평판 형상; 원통상, 원주상, 다각 통상, 다각 주상(柱狀) 등의 봉상, 구상 등을 들 수 있다. It does not specifically limit as a shape of the bonding material of this embodiment, For example, flat plate shape, such as a disc shape and a rectangular plate; Cylindrical shape, columnar shape, polygonal shape, rod shape, such as polygonal columnar shape, spherical shape, etc. are mentioned.

또한, 본 실시 형태의 접합재는, 접합을 용이하게 하기 위해서, 1 mm 이하의 두꺼운(肉厚) 부분을 가지는 것이어도 된다. In addition, the bonding material of this embodiment may have a thick portion of 1 mm or less in order to facilitate bonding.

접합재의 크기는, 특별히 한정되지 않고, 기판 및 도전체의 사양에 따라서 적절히 조정하면 된다. 접합재의 형상이 원판상인 경우, 원판의 직경은, 0.5~50 mm인 것이 바람직하고, 2~30 mm인 것이 보다 바람직하다. 접합재의 형상이 직사각형 판상인 경우, 장변의 길이는, 0.5~50 mm인 것이 바람직하고, 2~30 mm인 것이 보다 바람직하다. The size of the bonding material is not particularly limited, and may be appropriately adjusted according to the specifications of the substrate and conductor. When the shape of the bonding material is disc-shaped, the diameter of the disc is preferably 0.5 to 50 mm, and more preferably 2 to 30 mm. When the shape of the bonding material is a rectangular plate, the long side length is preferably 0.5 to 50 mm, and more preferably 2 to 30 mm.

본 실시 형태의 접합재에 있어서의 접합면의 표면 조도(Ra)는, 500 nm 이상이며, 바람직하게는 800 nm 이상이며, 보다 바람직하게는 1.06μm 이상, 더욱 바람직하게는 1.4μm 이상이다. The surface roughness (Ra) of the bonding surface in the bonding material of the present embodiment is 500 nm or more, preferably 800 nm or more, more preferably 1.06 μm or more, still more preferably 1.4 μm or more.

또한, 본 실시 형태의 접합재에 있어서의 접합면의 표면 조도(Ra)는, 3.3μm 이하이며, 바람직하게는 3.1μm 이하이며, 보다 바람직하게는 2.9μm 이하, 더욱 바람직하게는 2.8μm 이하이다. In addition, the surface roughness (Ra) of the bonding surface in the bonding material of the present embodiment is 3.3 μm or less, preferably 3.1 μm or less, more preferably 2.9 μm or less, still more preferably 2.8 μm or less.

본 실시 형태의 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치 및 하한치는 임의로 조합하여도 된다. You may arbitrarily combine the upper limit value and the lower limit value of the surface roughness (Ra) of the bonding surface in the bonding material of this embodiment.

표면 조도(Ra)의 상한치 및 하한치의 조합은, 500 nm 이상 3.3μm 이하이며, 바람직하게는 800 nm 이상 3.3μm 이하이며, 보다 바람직하게는 1.06μm 이상 3.3μm 이하이며, 더욱 바람직하게는 1.4μm 이상 2.8μm 이하이다. The combination of the upper limit and the lower limit of the surface roughness (Ra) is 500 nm or more and 3.3 μm or less, preferably 800 nm or more and 3.3 μm or less, more preferably 1.06 μm or more and 3.3 μm or less, still more preferably 1.4 μm. More than 2.8 μm or less.

실시예에 있어서 후술하는 바와 같이, 접합면의 표면 조도(Ra)가, 상기 범위 내이면, 접합체의 쉬어 강도를 뛰어난 것으로 할 수 있다. As will be described later in Examples, when the surface roughness (Ra) of the bonding surface is within the above range, the shear strength of the bonded body can be made excellent.

본 실시 형태의 접합재에 있어서, 상술로 규정된, 소결체의 기공율 및 접합면의 표면 조도(Ra)의 수치 범위는, 임의로 조합해도 된다. In the bonding material of the present embodiment, the numerical ranges of the porosity of the sintered body and the surface roughness (Ra) of the bonding surface defined above may be combined arbitrarily.

소결체의 기공율 및 접합면의 표면 조도(Ra)의 조합은, 기공율이 8~30%이며, 또한, 표면 조도(Ra)가 500 nm 이상 3.3μm 이하이며, 바람직하게는 기공율이 8~30%이며, 또한, 표면 조도(Ra)가 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 기공율이 8~27%이며, 또한, 표면 조도(Ra)가 1.06μm 이상 2.8μm 이하이며, 더욱 바람직하게는 기공율이 8~27%이며, 또한, 표면 조도(Ra)가 1.4μm 이상 2.8μm 이하이다. The combination of the porosity of the sintered body and the surface roughness (Ra) of the bonding surface is a porosity of 8 to 30%, and a surface roughness (Ra) of 500 nm or more and 3.3 μm or less, preferably a porosity of 8 to 30% Further, the surface roughness (Ra) is 1.06 μm or more and 3.3 μm or less, more preferably the porosity is 8 to 27%, and the surface roughness (Ra) is 1.06 μm or more and 2.8 μm or less, still more preferably the porosity is 8 to 27%, and the surface roughness (Ra) is 1.4 μm or more and 2.8 μm or less.

표면 조도: Surface roughness:

접합재의 접합면의 표면 조도는, 다음과 같이 측정할 수 있다. 초심도 칼라 3D 형상 측정 현미경(키엔스, VK-9510)을 이용하고, 접합재 표면의 임의의 5개소에 대하여, 표면 조도를 측정하고, 평균치를 산출한다. The surface roughness of the bonding surface of the bonding material can be measured as follows. Using a super-depth color 3D shape measuring microscope (Keyence, VK-9510), the surface roughness is measured for five arbitrary locations on the surface of the bonding material, and an average value is calculated.

접합재의 접합면의 표면 조도(Ra)를 상기 범위 내로 제어하는 방법으로서는, 특별히 한정되지 않고, 예를 들면, 소결체의 표면을 연마하는 방법, 소결체의 표면에 도금을 입히는 방법 등을 들 수 있다. 도금의 종류로서는 특별히 한정되지 않지만, 은, 구리, 주석, 금 및 니켈로 이루어지는 군으로부터 선택되는 1종의 금속, 또는, 2종 이상으로 이루어지는 합금을 도금하는 것을 들 수 있다. 도금은 조성이 다른 2층 이상의 도금이 중첩된 것이어도 된다. The method of controlling the surface roughness (Ra) of the bonding surface of the bonding material within the above range is not particularly limited, and examples thereof include a method of polishing the surface of the sintered body and a method of plating the surface of the sintered body. Although it does not specifically limit as a type of plating, Plating of 1 type of metal selected from the group which consists of silver, copper, tin, gold, and nickel, or an alloy consisting of 2 or more types is mentioned. The plating may be obtained by overlapping two or more layers of plating having different compositions.

본 실시 형태의 접합재가, 소결체의 표면이 연마된 것인 경우, 접합재에 있어서의 접합면의 표면 조도(Ra)는, 500 nm 이상이며, 바람직하게는 1.06μm 이상이며, 보다 바람직하게는 1.5μm 이상이며, 더욱 바람직하게는 1.7μm 이상이다. When the bonding material of the present embodiment has a polished surface of a sintered body, the surface roughness (Ra) of the bonding surface in the bonding material is 500 nm or more, preferably 1.06 μm or more, and more preferably 1.5 μm. or more, more preferably 1.7 μm or more.

본 실시 형태의 접합재가, 소결체의 표면이 연마된 것인 경우, 접합재에 있어서의 접합면의 표면 조도(Ra)는, 3.3μm 이하이며, 바람직하게는 3.1μm 이하이며, 보다 바람직하게는 2.9μm 이하이며, 더욱 바람직하게는 2.8μm 이하이다. When the bonding material of the present embodiment has a polished surface of a sintered body, the surface roughness (Ra) of the bonding surface in the bonding material is 3.3 µm or less, preferably 3.1 µm or less, and more preferably 2.9 µm. or less, more preferably 2.8 μm or less.

접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치 및 하한치는 임의로 조합해도 된다. You may combine the upper limit value and the lower limit value of the surface roughness (Ra) of the bonding surface in a bonding material arbitrarily.

본 실시 형태의 접합재가, 소결체의 표면이 연마된 것인 경우, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치와 하한치의 조합은, 500 nm 이상 3.3μm 이하이며, 바람직하게는 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 1.5μm 이상 2.9μm 이하이며, 더욱 바람직하게는 1.7μm 이상 2.8μm 이하이다. When the bonding material of the present embodiment has a polished surface of a sintered body, the combination of the upper limit and the lower limit of the surface roughness (Ra) of the bonding surface in the bonding material is 500 nm or more and 3.3 μm or less, preferably 1.06 μm. 3.3 μm or less, more preferably 1.5 μm or more and 2.9 μm or less, still more preferably 1.7 μm or more and 2.8 μm or less.

본 실시 형태의 접합재에 있어서, 소결체의 표면이 연마된 것인 경우, 상술로 규정된, 소결체의 기공율 및 접합면의 표면 조도(Ra)의 수치 범위는, 임의로 조합해도 된다. In the bonding material of the present embodiment, when the surface of the sintered body is polished, the numerical ranges of the porosity of the sintered body and the surface roughness (Ra) of the bonding surface defined above may be arbitrarily combined.

본 실시 형태의 접합재가, 소결체의 표면이 연마된 것인 경우, 소결체의 기공율 및 접합면의 표면 조도(Ra)의 조합은, 기공율이 8~30%이며, 또한, 표면 조도(Ra)가 500 nm 이상 3.3μm 이하이며, 바람직하게는 기공율이 8~30%이며, 또한, 표면 조도(Ra)가 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 기공율이 8~27%이며, 또한, 표면 조도(Ra)가 1.5μm 이상 3.1μm 이하이며, 더욱 바람직하게는 기공율이 8~27%이며, 또한, 표면 조도(Ra)가 1.7μm 이상 2.8μm 이하이다. When the bonding material of the present embodiment has a polished surface of a sintered body, the combination of the porosity of the sintered body and the surface roughness (Ra) of the bonding surface is 8 to 30% in porosity, and the surface roughness (Ra) is 500%. nm or more and 3.3 μm or less, preferably the porosity is 8 to 30%, and the surface roughness (Ra) is 1.06 μm or more and 3.3 μm or less, more preferably the porosity is 8 to 27%, and the surface roughness (Ra) is 1.5 μm or more and 3.1 μm or less, more preferably, the porosity is 8 to 27%, and the surface roughness (Ra) is 1.7 μm or more and 2.8 μm or less.

본 실시 형태의 접합재가, 소결체의 표면에 도금을 입힌 것인 경우, 접합재에 있어서의 접합면의 표면 조도(Ra)는, 500 nm 이상이며, 바람직하게는 800 nm 이상이며, 보다 바람직하게는 1.06μm 이상이며, 더욱 바람직하게는 1.4μm 이상이다. 본 실시 형태의 접합재가, 소결체의 표면에 도금을 입힌 것인 경우, 접합재에 있어서의 접합면의 표면 조도(Ra)는, 3.3μm 이하이며, 바람직하게는 2.5μm 이하이며, 보다 바람직하게는 2.0μm 이하이며, 더욱 바람직하게는 1.8μm 이하이다. When the bonding material of the present embodiment is obtained by plating the surface of a sintered body, the surface roughness (Ra) of the bonding surface in the bonding material is 500 nm or more, preferably 800 nm or more, and more preferably 1.06 It is μm or more, more preferably 1.4 μm or more. When the bonding material of the present embodiment is one obtained by plating the surface of a sintered body, the surface roughness (Ra) of the bonding surface in the bonding material is 3.3 µm or less, preferably 2.5 µm or less, and more preferably 2.0 µm or less. It is μm or less, more preferably 1.8 μm or less.

접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치 및 하한치는 임의로 조합해도 된다. You may combine the upper limit value and the lower limit value of the surface roughness (Ra) of the bonding surface in a bonding material arbitrarily.

본 실시 형태의 접합재가, 소결체의 표면에 도금을 입힌 것인 경우, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치와 하한치의 조합은, 500 nm 이상 3.3μm 이하이며, 바람직하게는 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 1.06μm 이상 2.0μm 이하이며, 더욱 바람직하게는 1.4μm 이상 1.8μm 이하이다. When the bonding material of the present embodiment is one in which the surface of the sintered body is plated, the combination of the upper limit and the lower limit of the surface roughness (Ra) of the bonding surface in the bonding material is 500 nm or more and 3.3 μm or less, preferably 1.06 It is not less than 3.3 μm, more preferably not less than 1.06 μm and not more than 2.0 μm, and still more preferably not less than 1.4 μm and not more than 1.8 μm.

본 실시 형태의 접합재에 있어서, 소결체의 표면에 도금을 입힌 것인 경우, 상술로 규정된, 소결체의 기공율 및 접합면의 표면 조도(Ra)의 수치 범위는, 임의로 조합해도 된다. In the bonding material of the present embodiment, when the surface of the sintered body is plated, the numerical ranges of the porosity of the sintered body and the surface roughness (Ra) of the joint surface defined above may be arbitrarily combined.

본 실시 형태의 접합재가, 소결체의 표면에 도금을 입힌 것인 경우, 소결체의 기공율 및 접합면의 표면 조도(Ra)의 조합은, 기공율이 8~30%이며, 또한, 표면 조도(Ra)가 500 nm 이상 3.3μm 이하이며, 바람직하게는 기공율이 8~27%이며, 또한, 표면 조도(Ra)가 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 기공율이 9~15%이며, 또한, 표면 조도(Ra)가 1.06μm 이상 2.0μm 이하이며, 더욱 바람직하게는 기공율이 9~13%이며, 또한, 표면 조도(Ra)가 1.4μm 이상 1.8μm 이하이다. When the bonding material of the present embodiment is one in which the surface of the sintered body is plated, the combination of the porosity of the sintered body and the surface roughness (Ra) of the bonding surface is 8 to 30% in porosity, and the surface roughness (Ra) is 500 nm or more and 3.3 μm or less, preferably the porosity is 8 to 27%, and the surface roughness (Ra) is 1.06 μm or more and 3.3 μm or less, more preferably the porosity is 9 to 15%, and the surface The roughness (Ra) is 1.06 μm or more and 2.0 μm or less, more preferably the porosity is 9 to 13%, and the surface roughness (Ra) is 1.4 μm or more and 1.8 μm or less.

이상 설명한 본 실시 형태의 접합재는, 소결체의 기공율이 8~30%인 은 분말의 소결체를 포함하고, 또한, 접합면의 표면 조도(Ra)가 500 nm 이상 3.3μm 이하인 것이다. 이와 같이, 접합면의 표면 조도(Ra)가 특정의 범위에 있고, 특정의 기공율을 가지는 은 분말의 소결체를 채용하고 있기 때문에, 본 실시 형태의 접합재에 의하면, 종래보다도 뛰어난 접합 강도를 가지는 접합체를 제작할 수 있다. The bonding material of the present embodiment described above contains a sintered silver powder having a porosity of 8 to 30%, and has a surface roughness (Ra) of 500 nm or more and 3.3 µm or less of the bonding surface. In this way, since the surface roughness (Ra) of the bonding surface is in a specific range and the sintered body of silver powder having a specific porosity is employed, according to the bonding material of the present embodiment, a bonded body having superior bonding strength than before can be obtained. can be produced

추가로, 이러한 소결체는 은 분말의 융점보다 높은 온도 하에서도 용융 하지 않는다. 또한, 이 소결체를 포함하는 접합재를 이용하는 것에 의해, 벌크의 융점보다도 낮은 온도에서 접합할 수 있다. Additionally, this sintered body does not melt even under a temperature higher than the melting point of the silver powder. In addition, by using a bonding material containing this sintered body, bonding can be performed at a temperature lower than the melting point of the bulk.

[접합재의 제조 방법][Method of manufacturing bonding material]

본 실시 형태의 접합재의 제조 방법은, 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정을 가진다. The manufacturing method of the bonding material of this embodiment has the process of heating the coating film formed using the dispersion of a solvent and silver powder, and obtaining a sintered compact.

(용제) (solvent)

본 실시 형태의 분산액은, 용제에 은 분말이 분산하고 있는 것이다. In the dispersion liquid of this embodiment, silver powder is dispersed in a solvent.

여기서의 용제로서는, 예를 들면, 물, 알코올계 용제, 글리콜에테르계 용제, 테르피네올류 등을 들 수 있다. Examples of the solvent herein include water, alcohol solvents, glycol ether solvents, and terpineols.

알코올계 용제로서는 이소프로필알코올, 1,2-부탄디올, 이소보닐 시클로헥산올, 2,4-디에틸-1,5-펜탄디올, 2,2-디메틸-1,3-프로판디올, 2,5-디메틸-2,5-헥산디올, 2,5-디메틸-3-헥신-2,5-디올, 2,3-디메틸-2,3-부탄디올, 1,1,1-트리스(히드록시메틸)에탄, 2-에틸-2-히드록시메틸-1,3-프로판디올, 2,2'-옥시비스(메틸렌)비스(2-에틸-1,3-프로판디올), 2,2-비스(히드록시메틸)-1,3-프로판디올, 1,2,6-트리히드록시헥산, 비스[2,2,2-트리스(히드록시메틸)에틸]에테르, 1-에티닐-1-시클로헥산올, 1,4-시클로헥산디올, 1,4-시클로헥산디메탄올, 에리트리톨, 트레이톨, 구아야콜 글리세롤 에테르, 3,6-디메틸-4-옥틸-3,6-디올, 2,4,7,9-테트라메틸-5-데실-4,7-디올 등을 들 수 있다. Examples of the alcohol solvent include isopropyl alcohol, 1,2-butanediol, isobornyl cyclohexanol, 2,4-diethyl-1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,5 -Dimethyl-2,5-hexanediol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,3-dimethyl-2,3-butanediol, 1,1,1-tris(hydroxymethyl) Ethane, 2-ethyl-2-hydroxymethyl-1,3-propanediol, 2,2'-oxybis(methylene)bis(2-ethyl-1,3-propanediol), 2,2-bis(hydroxyl) Roxymethyl) -1,3-propanediol, 1,2,6-trihydroxyhexane, bis [2,2,2-tris (hydroxymethyl) ethyl] ether, 1-ethynyl-1-cyclohexanol , 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, erythritol, threitol, guayacol glycerol ether, 3,6-dimethyl-4-octyl-3,6-diol, 2,4, 7,9-tetramethyl-5-decyl-4,7-diol etc. are mentioned.

글리콜에테르계 용제로서는, 디에틸렌글리콜 모노-2-에틸헥실 에테르, 에틸렌글리콜 모노페닐 에테르, 2-메틸펜탄-2,4-디올, 디에틸렌글리콜 모노헥실 에테르, 디에틸렌글리콜 디부틸 에테르, 트리에틸렌글리콜 모노부틸 에테르 등을 들 수 있다.As the glycol ether solvent, diethylene glycol mono-2-ethylhexyl ether, ethylene glycol monophenyl ether, 2-methylpentane-2,4-diol, diethylene glycol monohexyl ether, diethylene glycol dibutyl ether, triethylene glycol monobutyl ether; and the like.

(은 분말)(silver powder)

여기서의 은 분말로는, 평균 입자 지름이 상위한 은 입자군을 조합하여 이용하는 것이 바람직하다. 평균 입자 지름이 상위한 것을 병용함으로써, 특정의 기공율(8~30%)을 가지는 접합재를 용이하게 제작할 수 있다. As the silver powder here, it is preferable to use a combination of silver particle groups having different average particle diameters. A bonding material having a specific porosity (8 to 30%) can be easily produced by using together those having different average particle diameters.

평균 입자 지름: Average Particle Diameter:

은 입자군의 평균 입자 지름은, 미디안 지름(D50)의 값을 채용한다. 본 발명에 있어서, 각 은 분말의 미디안 지름(D50)은, SALD-2300(시마즈 제작소 제)을 이용하고, 레이저 회절법에 의해 측정한 것(체적 평균 입자 지름)를 의미한다. The value of median diameter (D50) is employ|adopted as the average particle diameter of a group of silver particles. In the present invention, the median diameter (D50) of each silver powder means a value (volume average particle diameter) measured by a laser diffraction method using SALD-2300 (manufactured by Shimadzu Corporation).

평균 입자 지름이 상위한 은 입자군의 적합한 조합으로서는, 나노 오더의 은 입자군과, 마이크로 오더의 은 입자군의 조합을 들 수 있다. As a suitable combination of silver particle groups with different average particle diameters, a combination of a silver particle group of nano order and a silver particle group of micro order is mentioned.

예를 들면, 평균 입자 지름이 상위한 제1의 은 입자군과 제2의 은 입자군을 포함하고, 제1의 은 입자군의 평균 입자 지름이 50 nm 이상 1000 nm 미만이며, 제2의 은 입자군의 평균 입자 지름이 1μm 이상 20μm 미만인 것이 바람직하다. For example, including a first silver particle group and a second silver particle group having different average particle diameters, the average particle diameter of the first silver particle group is 50 nm or more and less than 1000 nm, and the second silver particle group It is preferable that the average particle diameter of a particle group is 1 micrometer or more and less than 20 micrometer.

제1의 은 입자군의 평균 입자 지름은, 50 nm 이상 1000 nm 미만이며, 바람직하게는 100 nm 이상 800 nm 이하이며, 보다 바람직하게는 200 nm 이상 500 nm 이하이다. The average particle diameter of the 1st silver particle group is 50 nm or more and less than 1000 nm, Preferably they are 100 nm or more and 800 nm or less, More preferably, they are 200 nm or more and 500 nm or less.

제2의 은 입자군의 평균 입자 지름은, 1μm 이상 20μm 미만이며, 바람직하게는 3μm 이상 15μm 이하이며, 보다 바람직하게는 3μm 이상 10μm 이하이다. The average particle diameter of the second silver particle group is 1 μm or more and less than 20 μm, preferably 3 μm or more and 15 μm or less, more preferably 3 μm or more and 10 μm or less.

이러한 제1의 은 입자군과 제2의 은 입자군의 병용에 의해, 특정의 기공율(8~30%)을 가지는 접합재를 용이하게 제작할 수 있고, 접합 강도가 높아진 접합체를 얻기 쉬워진다. By using the first silver particle group and the second silver particle group together, a bonding material having a specific porosity (8 to 30%) can be easily produced, and a bonded body with increased bonding strength is easy to obtain.

제1의 은 입자군의 은 입자의 형상은, 특별히 한정되지 않지만, 구상 및 비구상의 어느 하나이어도 된다. 비구상의 예로서는, 플레이크상, 침상, 각상(角狀), 수지상, 입상, 불규칙 형상, 누적상(漏滴狀), 판상, 극박 판상, 육각 판상, 주상, 봉상, 다공상, 섬유상, 괴상(塊狀), 해면상, 규각상(圭角狀), 라운드상(狀) 등을 들 수 있다. 이러한 형상 중에서도, 구상, 주상이 바람직하다. Although the shape of the silver particle of the 1st silver particle group is not specifically limited, Either spherical shape or non-spherical shape may be sufficient. Examples of non-spherical shape include flake shape, needle shape, angle shape, dendrite shape, granular shape, irregular shape, stacked shape, plate shape, ultra-thin plate shape, hexagonal plate shape, columnar shape, rod shape, porous shape, fibrous shape, and lumpy shape.狀, spongy, squiggly, round, etc. may be mentioned. Among these shapes, a spherical shape and a columnar shape are preferable.

제2의 은 입자군은 플레이크상 은 입자를 포함하는 것이 바람직하다. 이 경우, 제2의 은 입자군은, 은 입자의 과반수가 현미경 하에서 플레이크상(박편상(薄片狀) 또는 박편상(剝片狀))이라고 인정되는 것이면 된다. 전형적으로는, 제2의 은 입자군을 구성하는 입자(1차 입자)의 51 질량% 이상이 플레이크(박편(薄片) 또는 박편(剝片)) 형상을 가지고 있는 것을 말한다. 여기서, 플레이크상(박편상(薄片狀) 또는 박편상(剝片狀))의 입자란, 어스펙트비(가장 긴 장경/가장 짧은 단경의 비)가 5~300인 입자를 의미한다. It is preferable that the 2nd silver particle group contains flaky silver particles. In this case, as for the 2nd silver particle group, the majority of silver particles should just be recognized as flake shape (flaky shape or flaky shape) under a microscope. Typically, it means that 51% by mass or more of the particles (primary particles) constituting the second silver particle group have a flake (flake or flake) shape. Here, the flake-shaped (flaky or flaky) particles mean particles having an aspect ratio (longest major axis/shortest minor axis ratio) of 5 to 300.

본 실시 형태의 은 분말은, 추가로, 평균 입자 지름이 20μm 이상 60μm 미만인 제3의 은 입자군을 포함해도 된다. The silver powder of this embodiment may also contain the 3rd silver particle group whose average particle diameter is 20 micrometers or more and less than 60 micrometers further.

제3의 은 입자군의 평균 입자 지름은, 20μm 이상 60μm 미만이며, 바람직하게는 30μm 이상 50μm 이하이며, 보다 바람직하게는 35μm 이상 45μm 이하이다. The average particle diameter of the third silver particle group is 20 μm or more and less than 60 μm, preferably 30 μm or more and 50 μm or less, more preferably 35 μm or more and 45 μm or less.

제1의 은 입자군 및 제2의 은 입자군에 더하여 제3의 은 입자군을 추가로 병용함으로써, 특정의 기공율(8~30%)을 가지는 접합재를 보다 안정하게 제작할 수 있다. By using the third silver particle group in addition to the first silver particle group and the second silver particle group, a bonding material having a specific porosity (8 to 30%) can be produced more stably.

제3의 은 입자군의 은 입자의 형상은, 특별히 한정되지 않지만, 구상 및 비구상의 어느 하나이어도 된다. 비구상의 예로서는, 플레이크상, 침상, 각상, 수지상, 입상, 불규칙 형상, 누적상, 판상, 극박 판상, 육각 판상, 주상, 봉상, 다공상, 섬유상, 괴상, 해면상, 규각상, 라운드상 등을 들 수 있다. 이러한 형상 중에서도, 구상, 주상이 바람직하다. Although the shape of the silver particle of the 3rd silver particle group is not specifically limited, Either spherical shape or non-spherical shape may be sufficient. Examples of non-spherical shapes include flakes, needles, angular shapes, dendrites, granules, irregular shapes, stacked shapes, plates, ultrathin plates, hexagonal plates, columnar shapes, rods, porous shapes, fibrous shapes, lumpy shapes, spongy shapes, squarish shapes, round shapes, and the like. can Among these shapes, a spherical shape and a columnar shape are preferable.

또한, 제1의 은 입자군, 제2의 은 입자군, 제3의 은 입자군은, 각 은 입자군으로서 평균 입자 지름이 다른 2종 이상을 이용해도 된다. In addition, the 1st silver particle group, the 2nd silver particle group, and the 3rd silver particle group may use 2 or more types from which average particle diameters differ as each silver particle group.

본 실시 형태의 은 분말에 있어서는, 제2의 은 입자군으로서, 평균 입자 지름이 다른 2종 이상을 이용하는 것이 바람직하다. 예를 들면, 제2의 은 입자군으로서, 평균 입자 지름이 1μm 이상 10μm 미만인 은 입자군과, 평균 입자 지름이 10μm 이상 20μm 미만인 은 입자군을 조합하여 이용하는 것이 바람직하다. In the silver powder of this embodiment, it is preferable to use 2 or more types with different average particle diameters as a 2nd silver particle group. For example, as the second silver particle group, it is preferable to use a combination of a silver particle group having an average particle diameter of 1 µm or more and less than 10 µm and a silver particle group having an average particle diameter of 10 µm or more and less than 20 µm.

본 실시 형태의 은 분말로서, 평균 입자 지름이 상위한 은 입자군을 조합하여 이용하는 경우, 제1의 은 입자군의 비율은, 은 분말의 합계의 질량(100 질량%)에 대해서, 1~50 질량%인 것이 바람직하고, 1~30 질량%가 보다 바람직하고, 3~10 질량%가 더욱 바람직하다. As the silver powder of the present embodiment, when silver particle groups having different average particle diameters are used in combination, the ratio of the first silver particle group is 1 to 50 with respect to the total mass (100% by mass) of the silver powder. It is preferable that it is mass %, 1-30 mass % is more preferable, and 3-10 mass % is still more preferable.

제2의 은 입자군의 비율은, 은 분말의 합계의 질량(100 질량%)에 대해서, 30~99 질량%인 것이 바람직하고, 45~90 질량%가 보다 바람직하고, 50~90 질량%가 더욱 바람직하다. The ratio of the second silver particle group is preferably 30 to 99 mass%, more preferably 45 to 90 mass%, and 50 to 90 mass% with respect to the total mass (100 mass%) of the silver powder. more preferable

제3의 은 입자군을 추가로 병용하는 경우, 제3의 은 입자군의 비율은, 은 분말의 합계의 질량(100 질량%)에 대해서, 1~70 질량%인 것이 바람직하고, 1~50 질량%가 보다 바람직하고, 1~45 질량%가 더욱 바람직하다. 다만, 제1의 은 입자군, 제2의 은 입자군 및 제3의 은 입자군의 비율의 합은, 100 질량%를 넘지 않는다. When the third silver particle group is further used in combination, the ratio of the third silver particle group is preferably 1 to 70 mass%, and 1 to 50 mass% with respect to the total mass (100 mass%) of the silver powder. Mass % is more preferable, and 1-45 mass % is still more preferable. However, the sum of the ratios of the 1st silver particle group, the 2nd silver particle group, and the 3rd silver particle group does not exceed 100 mass %.

(분산액) (dispersion)

본 실시 형태에 있어서의, 상기 용제와 상기 은 분말의 분산액은, 당해 분산액 중의 상기 용제의 함유량이, 5 질량% 이상 25 질량% 이하인 것이 바람직하고, 보다 바람직하게는 5 질량% 이상 20 질량% 이하이며, 더욱 바람직하게는 5 질량% 이상 15 질량% 이하이며, 특히 바람직하게는 6 질량% 이상 10 질량% 이하이다. In the dispersion of the solvent and the silver powder in the present embodiment, the content of the solvent in the dispersion is preferably 5% by mass or more and 25% by mass or less, more preferably 5% by mass or more and 20% by mass or less , more preferably 5% by mass or more and 15% by mass or less, particularly preferably 6% by mass or more and 10% by mass or less.

분산액 중의 용제의 함유량을 5 질량% 이상 25 질량% 이하로 하는 것에 의해, 기공율이 8~30%인 소결체를 용이하게 얻을 수 있다. By setting the content of the solvent in the dispersion to 5% by mass or more and 25% by mass or less, a sintered body having a porosity of 8 to 30% can be easily obtained.

분산액을 소결할 때에, 분산액 중의 용제는 휘발하여, 소결체 중에 기공이 형성된다. 분산액 중의 용제의 함유량을 상기 범위 내로 하는 것에 의해, 소결체의 기공율을 8~30%로 할 수 있다. When the dispersion is sintered, the solvent in the dispersion is volatilized and pores are formed in the sintered body. By setting the content of the solvent in the dispersion within the above range, the porosity of the sintered body can be made 8 to 30%.

다음에, 본 실시 형태의 접합재의 제조 방법에 대하여 상세하게 설명한다. Next, the manufacturing method of the bonding material of this embodiment is explained in detail.

소결체를 얻는 공정: Process for obtaining a sintered body:

본 실시 형태에 있어서의, 소결체를 얻는 공정에서는, 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는다. In the step of obtaining a sintered body in this embodiment, a coated film formed using a solvent and a dispersion of silver powder is heated to obtain a sintered body.

우선, 상술의 분산액을 기대(基台) 상에 도공하여 도공막을 형성한다. 도공하는 방법으로서는, 특별히 한정되지 않지만, 디스펜스 도포, 인쇄 도포, 스프레이 도포, 솔칠, 주입 등을 들 수 있다. First, the above dispersion liquid is coated on a substrate to form a coated film. Although it does not specifically limit as a method of coating, Dispensing coating, printing coating, spray coating, brushing, pouring, etc. are mentioned.

기대의 재료로서는, 예를 들면, 유리, 석영, 실리콘, 금속 등을 들 수 있지만, 이것으로 한정되지 않는다. 실시예에 있어서 후술하듯이, 금속으로서는, 예를 들면, 황동을 이용할 수 있지만, 이것으로 한정되지 않는다.Examples of the base material include, but are not limited to, glass, quartz, silicon, and metal. As will be described later in the examples, as the metal, for example, brass can be used, but it is not limited thereto.

금속의 기대를 이용하는 경우, 미리 기대에 윤활 이형제를 도포해 두면, 소결체를 기대로부터 용이하게 벗길 수 있다. In the case of using a metal base, if a lubricating release agent is applied to the base in advance, the sintered body can be easily peeled off from the base.

다음에, 도공막을 가열하여 소결체를 얻는다. 가열의 온도로서는, 소결체를 얻을 수 있는 온도이면 적절히 설정할 수 있지만, 예를 들면, 150℃ 이상 300℃ 이하가 바람직하고, 200℃ 이상 250℃ 이하가 보다 바람직하다. Next, the coated film is heated to obtain a sintered body. The heating temperature can be appropriately set as long as it is a temperature at which a sintered body can be obtained. For example, 150°C or more and 300°C or less are preferable, and 200°C or more and 250°C or less are more preferable.

도공막을 가열하는 시간으로서는, 소결체를 얻을 수 있는 시간이면 적절히 설정할 수 있지만, 예를 들면, 15분간 이상 180분간 이하가 바람직하고, 30분간 이상 90분간 이하가 보다 바람직하다. The time for heating the coated film can be appropriately set as long as the sintered body can be obtained. For example, 15 minutes or more and 180 minutes or less are preferable, and 30 minutes or more and 90 minutes or less are more preferable.

본 실시 형태에 있어서의, 소결체를 얻는 공정에서는, 도공막에 가해지는 압력을, 바람직하게는 5 MPa 이하로 억제하는 것이 가능하고, 1 MPa 이하로 억제하는 것도 가능하고, 특별히는 무가압으로 하는 것도 가능하다. In the step of obtaining a sintered body in the present embodiment, it is possible to suppress the pressure applied to the coated film to preferably 5 MPa or less, and it is also possible to suppress it to 1 MPa or less. It is also possible.

다음에, 기판 및 도전체의 사양에 따라서, 얻어진 소결체를 절단해도 된다. 소결체의 절단에 이용하는 도구로서는, 특별히 한정되지 않고, 예를 들면, 가위, 다이아몬드 나이프, 페이퍼 커터 등을 들 수 있다. 본 명세서에 있어서, 상술의 절단한 소결체를 간단하게 소결체라고 부르는 경우가 있다. Next, the obtained sintered body may be cut according to the specifications of the substrate and conductor. The tool used for cutting the sintered body is not particularly limited, and examples thereof include scissors, a diamond knife, and a paper cutter. In this specification, there are cases where the above-described cut sintered body is simply referred to as a sintered body.

이상 설명한 접합재의 제조 방법으로서, 보다 구체적으로는, 이하에 나타내는 실시 형태가 적합하게 들 수 있다. As the manufacturing method of the bonding|jointing material demonstrated above, more specifically, the embodiment shown below is mentioned suitably.

실시 형태(i): 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정을 갖고, 상기 분산액 중의 상기 용제의 함유량이, 5 질량% 이상 25 질량% 이하인, 접합재의 제조 방법. Embodiment (i): A method for producing a bonding material comprising a step of obtaining a sintered body by heating a coated film formed using a dispersion of a solvent and silver powder, wherein the content of the solvent in the dispersion is 5% by mass or more and 25% by mass or less. .

실시 형태(i)에 의하면, 분산액 중의 상기 용제의 함유량을 특정의 비율과 함으로써, 기공율 8~30%의 소결체를 포함하는 접합재를 용이하게 제조할 수 있다. According to Embodiment (i), a bonding material containing a sintered body having a porosity of 8 to 30% can be easily manufactured by adjusting the content of the solvent in the dispersion to a specific ratio.

실시 형태(ii): 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정을 갖고, 상기 분산액 중의 상기 용제의 함유량이, 5 질량% 이상 25 질량% 이하이며, 상기 은 분말은, 평균 입자 지름이 상위한 제1의 은 입자군과 제2의 은 입자군으로 이루어지고, 상기 제1의 은 입자군의 평균 입자 지름이 50 nm 이상 1000 nm 미만이며, 상기 제2의 은 입자군의 평균 입자 지름이 1μm 이상 20μm 미만인, 접합재의 제조 방법. Embodiment (ii): A coating film formed using a dispersion of a solvent and silver powder is heated to obtain a sintered body, the content of the solvent in the dispersion is 5% by mass or more and 25% by mass or less, and the silver powder silver, it consists of a first silver particle group and a second silver particle group having different average particle diameters, the average particle diameter of the first silver particle group is 50 nm or more and less than 1000 nm, and the second silver particle group A method for producing a bonding material wherein the average particle diameter of the particle group is 1 μm or more and less than 20 μm.

상기 은 분말은, 예를 들면, 제1의 은 입자군의 비율이 1~50 질량%이며, 제2의 은 입자군의 비율이 50~99 질량%이어도 된다. The ratio of the 1st silver particle group of the said silver powder is 1-50 mass %, and the ratio of the 2nd silver particle group may be 50-99 mass %, for example.

상기 은 분말은, 예를 들면, 제1의 은 입자군의 비율이 5~30 질량%이며, 제2의 은 입자군의 비율이 70~95 질량%이어도 된다. The ratio of the 1st silver particle group of the said silver powder is 5-30 mass %, and the ratio of the 2nd silver particle group may be 70-95 mass %, for example.

상기 은 분말은, 예를 들면, 제1의 은 입자군의 비율이 5~15 질량%이며, 제2의 은 입자군의 비율이 85~95 질량%이어도 된다. The ratio of the 1st silver particle group of the said silver powder is 5-15 mass %, and the ratio of the 2nd silver particle group may be 85-95 mass %, for example.

상기 제1의 은 입자군 및 제2의 은 입자군의 비율은, 상기 은 분말의 합계의 질량(100 질량%)에 대한 비율이다. 또한, 상기 제1의 은 입자군 및 제2의 은 입자군의 비율의 합은, 100 질량%를 넘지 않는다. The ratio of the first silver particle group and the second silver particle group is a ratio with respect to the total mass (100% by mass) of the silver powder. Moreover, the sum of the ratio of the said 1st silver particle group and the 2nd silver particle group does not exceed 100 mass %.

실시 형태(ii)에 의하면, 특정의 평균 입자 지름을 가지는 은 입자군을 조합하여 이용함으로써, 기공율 8~30%의 소결체를 포함하는 접합재를 용이하게 제조할 수 있다. According to Embodiment (ii), the bonding material containing the sintered compact of 8 to 30% of porosity can be easily manufactured by combining and using the silver particle group which has a specific average particle diameter.

실시 형태(iii): 용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정을 갖고, 상기 분산액 중의 상기 용제의 함유량이, 5 질량% 이상 25 질량% 이하이며, 상기 은 분말은, 평균 입자 지름이 상위한 제1의 은 입자군과 제2의 은 입자군과 제3의 은 입자군으로 이루어지고, 상기 제1의 은 입자군의 평균 입자 지름이 50 nm 이상 1000 nm 미만이며, 상기 제2의 은 입자군의 평균 입자 지름이 1μm 이상 20μm 미만이며, 상기 제3의 은 입자군의 평균 입자 지름이 20μm 이상 60μm 미만인, 접합재의 제조 방법. Embodiment (iii): A coating film formed using a dispersion of a solvent and silver powder is heated to obtain a sintered body, wherein the content of the solvent in the dispersion is 5% by mass or more and 25% by mass or less, and the silver powder It consists of a first silver particle group, a second silver particle group, and a third silver particle group having different average particle diameters, and the average particle diameter of the first silver particle group is 50 nm or more and less than 1000 nm. wherein the average particle diameter of the second silver particle group is 1 μm or more and less than 20 μm, and the average particle diameter of the third silver particle group is 20 μm or more and less than 60 μm.

상술한 은 분말은, 예를 들면, 제1의 은 입자군의 비율이 1~50 질량%이며, 제2의 은 입자군의 비율이 30~98 질량%이며, 제3의 은 입자군의 비율이 1~69 질량%이어도 된다. The above-mentioned silver powder has, for example, the ratio of the first silver particle group is 1 to 50% by mass, the ratio of the second silver particle group is 30 to 98% by mass, and the ratio of the third silver particle group is This 1-69 mass % may be sufficient.

상술한 은 분말은, 예를 들면, 제1의 은 입자군의 비율이 1~30 질량%이며, 제2의 은 입자군의 비율이 30~90 질량%이며, 제3의 은 입자군의 비율이 5~60 질량%이어도 된다. The above-mentioned silver powder has, for example, the ratio of the first silver particle group is 1 to 30% by mass, the ratio of the second silver particle group is 30 to 90% by mass, and the ratio of the third silver particle group is This 5-60 mass % may be sufficient.

상술한 은 분말은, 예를 들면, 제1의 은 입자군의 비율이 3~8 질량%이며, 제2의 은 입자군의 비율이 45~72 질량%이며, 제3의 은 입자군의 비율이 20~50 질량%이어도 된다. The above-mentioned silver powder has, for example, the ratio of the first silver particle group is 3 to 8% by mass, the ratio of the second silver particle group is 45 to 72% by mass, and the ratio of the third silver particle group is This 20-50 mass % may be sufficient.

상술한 제1의 은 입자군, 제2의 은 입자군 및 제3의 은 입자군의 비율은, 은 분말의 합계의 질량(100 질량%)에 대한 비율이다. 또한, 제1의 은 입자군, 제2의 은 입자군 및 제3의 은 입자군의 비율의 합은, 100 질량%를 넘지 않는다. The ratio of the above-mentioned 1st silver particle group, 2nd silver particle group, and 3rd silver particle group is a ratio with respect to the mass (100 mass %) of the total of silver powder. Moreover, the sum of the ratios of a 1st silver particle group, a 2nd silver particle group, and a 3rd silver particle group does not exceed 100 mass %.

실시 형태(iii)에 의하면, 특정의 평균 입자 지름을 가지는 은 입자군을 조합하여 이용함으로써, 기공율 8~30%의 소결체를 포함하는 접합재를 용이하게 제조할 수 있다. According to Embodiment (iii), the bonding material containing the sintered compact of 8 to 30% of porosity can be easily manufactured by using combining the silver particle group which has a specific average particle diameter.

본 실시 형태의 접합재의 제조 방법은, 소결체를 얻는 공정에 더하여, 이것 이외의 공정을 가지고 있어도 된다. In addition to the process of obtaining a sintered compact, the manufacturing method of the bonding material of this embodiment may have processes other than this.

예를 들면, 얻어진 소결체 표면의 조도를 제어하기 위해서, 소결체를 얻는 공정의 후단 측에, 소결체의 표면을 연마하는 공정, 또는, 소결체의 표면에 은, 구리, 주석, 금 및 니켈로 이루어지는 군으로부터 선택되는 1종 이상의 도금을 입히는 공정을 추가로 가지고 있어도 된다. For example, in order to control the roughness of the surface of the obtained sintered body, a step of polishing the surface of the sintered body on the rear side of the process of obtaining the sintered body, or, from the group consisting of silver, copper, tin, gold and nickel on the surface of the sintered body You may further have the process of coating 1 or more types of plating selected.

본 실시 형태의 접합재의 제조 방법이, 상기의 소결체의 표면을 연마하는 공정, 또는, 상기 도금을 입히는 공정을 가지는 경우, 연마하는 공정 또는 도금을 입히는 공정에 의해서 얻을 수 있는 접합재에 있어서의 접합면의 표면 조도(Ra)는, 500 nm 이상이며, 바람직하게는 800 nm 이상이며, 보다 바람직하게는 1.06μm 이상, 더욱 바람직하게는 1.4μm 이상이다. When the manufacturing method of the bonding material of the present embodiment includes the step of polishing the surface of the sintered body or the step of applying the plating, the bonding surface of the bonding material obtained by the polishing step or the plating step. The surface roughness (Ra) of is 500 nm or more, preferably 800 nm or more, more preferably 1.06 μm or more, still more preferably 1.4 μm or more.

한편, 연마하는 공정 또는 도금을 입히는 공정에 의해서 얻을 수 있는 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한은, 3.3μm 이하이며, 바람직하게는 3.1μm 이하이며, 보다 바람직하게는 2.9μm 이하, 더욱 바람직하게는 2.8μm 이하이다. On the other hand, the upper limit of the surface roughness (Ra) of the joint surface in the bonding material obtained by the polishing step or the plating step is 3.3 μm or less, preferably 3.1 μm or less, more preferably 2.9 μm. or less, more preferably 2.8 μm or less.

연마하는 공정 또는 도금을 입히는 공정에 의해서 얻을 수 있는, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치 및 하한치는 임의로 조합해도 된다. The upper limit value and the lower limit value of the surface roughness (Ra) of the bonding surface in the bonding material obtained by the polishing process or the plating process may be arbitrarily combined.

연마하는 공정 또는 도금을 입히는 공정에 의해서 얻을 수 있는, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치와 하한치의 조합은, 500 nm 이상 3.3μm 이하이며, 바람직하게는 800 nm 이상 3.3μm 이하이며, 보다 바람직하게는 1.06μm 이상 3.3μm 이하이며, 더욱 바람직하게는 1.4μm 이상 2.8μm 이하이다. The combination of the upper limit and the lower limit of the surface roughness (Ra) of the joint surface in the bonding material obtained by the polishing step or the plating step is 500 nm or more and 3.3 μm or less, preferably 800 nm or more and 3.3 μm. or less, more preferably 1.06 μm or more and 3.3 μm or less, still more preferably 1.4 μm or more and 2.8 μm or less.

소결체의 표면을 연마하는 공정: Process of polishing the surface of the sintered body:

소결체의 표면을 연마하는 방법으로서는, 특별히 한정되지 않고, 예를 들면, 화학 연마, 전해 연마, 기계 연마 등을 들 수 있다. 실시예에 있어서 후술하듯이, 2000번의 연마지를 이용하여, 소결체의 표면을 연마하는 것에 의해, 충분한 접합 강도를 가지는 접합체를 제작할 수 있는 접합재를 얻을 수 있다. The method for polishing the surface of the sintered body is not particularly limited, and examples thereof include chemical polishing, electrolytic polishing, and mechanical polishing. As will be described later in the examples, by polishing the surface of the sintered body using abrasive paper of No. 2000, a bonding material capable of producing a bonded body having sufficient bonding strength can be obtained.

본 실시 형태의 접합재의 제조 방법이, 상기의 소결체의 표면을 연마하는 공정을 가지는 경우, 연마하는 공정에 의해서 얻을 수 있는 접합재에 있어서의 접합면의 표면 조도(Ra)는, 500 nm 이상이며, 바람직하게는 1.06μm 이상이며, 보다 바람직하게는 1.5μm 이상이며, 더욱 바람직하게는 1.7μm 이상이다. When the manufacturing method of the bonding material of the present embodiment has the step of polishing the surface of the sintered body described above, the surface roughness (Ra) of the bonding surface of the bonding material obtained by the polishing step is 500 nm or more, It is preferably 1.06 μm or more, more preferably 1.5 μm or more, and even more preferably 1.7 μm or more.

한편, 연마하는 공정에 의해서 얻을 수 있는 접합재에 있어서의 접합면의 표면 조도(Ra)는, 3.3μm 이하이며, 바람직하게는 3.1μm 이하이며, 보다 바람직하게는 2.9μm 이하이며, 더욱 바람직하게는 2.8μm 이하이다. On the other hand, the surface roughness (Ra) of the bonding surface in the bonding material obtained by the polishing step is 3.3 μm or less, preferably 3.1 μm or less, more preferably 2.9 μm or less, still more preferably It is 2.8 μm or less.

연마하는 공정에 의해서 얻을 수 있는, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치 및 하한치는 임의로 조합해도 된다. You may combine the upper limit value and the lower limit value of the surface roughness (Ra) of the joint surface in a bonding material obtained by the polishing process arbitrarily.

연마하는 공정에 의해서 얻을 수 있는, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치와 하한치의 조합은, 500 nm 이상 3.3μm 이하이며, 바람직하게는 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 1.5μm 이상 2.9μm 이하이며, 더욱 바람직하게는 1.7μm 이상 2.8μm 이하이다. The combination of the upper limit and the lower limit of the surface roughness (Ra) of the joint surface in the bonding material obtained by the polishing step is 500 nm or more and 3.3 μm or less, preferably 1.06 μm or more and 3.3 μm or less, more preferably It is preferably 1.5 μm or more and 2.9 μm or less, more preferably 1.7 μm or more and 2.8 μm or less.

소결체의 표면에 도금을 입히는 공정: Process of coating the surface of the sintered body with plating:

소결체의 표면에 도금을 입히는 방법으로서는, 특별히 한정되지 않고, 예를 들면, 전기 도금, 무전해 도금, 진공 도금 등을 들 수 있다. 도금의 종류로서는 특별히 한정되지 않지만, 은, 구리, 주석, 금 및 니켈로 이루어지는 군으로부터 선택되는 1종의 금속 또는, 2종 이상으로 이루어지는 합금을 도금하는 것을 들 수 있다. 도금을 입히는 공정은, 조성이 다른 2층 이상의 도금을 거듭하여 도금하는 것이어도 된다. The method of plating the surface of the sintered body is not particularly limited, and examples thereof include electroplating, electroless plating, and vacuum plating. The type of plating is not particularly limited, but examples include plating of one type of metal selected from the group consisting of silver, copper, tin, gold, and nickel, or an alloy composed of two or more types. The plating step may be performed by layering two or more layers of plating having different compositions.

예를 들면 접합 대상물의 한쪽이 구리 기판인 경우에는, 소결체의 표면에 구리 도금을 입혀도 된다. 이것에 의해, 접합재와 구리 기판의 친화성이 강해져, 접합 강도를 높이기 쉬워진다. For example, when one of the objects to be bonded is a copper substrate, the surface of the sintered body may be coated with copper plating. As a result, the affinity between the bonding material and the copper substrate is strengthened, and bonding strength is easily increased.

본 실시 형태의 접합재의 제조 방법이, 상기의 소결체의 표면에 도금을 입히는 공정을 가지는 경우, 도금을 입히는 공정에 의해서 얻을 수 있는 접합재에 있어서의 접합면의 표면 조도(Ra)는, 500 nm 이상이며, 바람직하게는 800 nm 이상이며, 보다 바람직하게는 1.06μm 이상이며, 더욱 바람직하게는 1.4μm 이상이다. When the manufacturing method of the bonding material of the present embodiment includes the step of coating the surface of the sintered body with plating, the surface roughness (Ra) of the bonding surface in the bonding material obtained by the plating process is 500 nm or more. , preferably 800 nm or more, more preferably 1.06 μm or more, still more preferably 1.4 μm or more.

한편, 도금을 입히는 공정에 의해서 얻을 수 있는 접합재에 있어서의 접합면의 표면 조도(Ra)는, 3.3μm 이하이며, 바람직하게는 2.5μm 이하이며, 보다 바람직하게는 2.0μm 이하이며, 더욱 바람직하게는 1.8μm 이하이다. On the other hand, the surface roughness (Ra) of the bonding surface of the bonding material obtained by the plating step is 3.3 μm or less, preferably 2.5 μm or less, more preferably 2.0 μm or less, still more preferably is 1.8 μm or less.

도금을 입히는 공정에 의해서 얻을 수 있는, 접합재에 있어서의 접합면의 표면 조도(Ra)의 상한치 및 하한치는 임의로 조합해도 된다. The upper limit value and the lower limit value of the surface roughness (Ra) of the bonding surface in the bonding material obtained by the plating step may be arbitrarily combined.

도금을 입히는 공정에 의해서 얻을 수 있는, 접합재에 있어서의 접합면의 표면 조도는, 500 nm 이상 3.3μm 이하이며, 바람직하게는 1.06μm 이상 3.3μm 이하이며, 보다 바람직하게는 1.06μm 이상 2.0μm 이하이며, 더욱 바람직하게는 1.4μm 이상 1.8μm 이하이다. The surface roughness of the joint surface of the bonding material obtained by the plating step is 500 nm or more and 3.3 μm or less, preferably 1.06 μm or more and 3.3 μm or less, more preferably 1.06 μm or more and 2.0 μm or less. and more preferably 1.4 μm or more and 1.8 μm or less.

접합재의 제조 방법이, 소결체를 얻는 공정의 실시 형태(i)의 후단 측에, 상기의 소결체의 표면을 연마하는 공정, 또는, 상기 도금을 입히는 공정을 가지는 경우, 얻을 수 있는 접합재는, 접합면의 표면 조도(Ra)가 특정의 범위에 있고, 소결체는 특정의 기공율을 가진다. When the manufacturing method of the bonding material has a process of polishing the surface of the sintered body or a process of applying the plating to the rear side of the step of obtaining the sintered body in embodiment (i), the bonding material obtained is The surface roughness (Ra) of is in a specific range, and the sintered body has a specific porosity.

접합재의 제조 방법이, 소결체를 얻는 공정의 실시 형태(ii)의 후단 측에, 상기의 소결체의 표면을 연마하는 공정, 또는, 상기 도금을 입히는 공정을 가지는 경우, 얻을 수 있는 접합재는, 접합면의 표면 조도(Ra)가 특정의 범위에 있고, 소결체는 특정의 기공율을 가지는 은 분말의 소결체가 얻어진다. When the manufacturing method of the bonding material has the process of polishing the surface of the sintered body or the process of applying the plating to the rear side of the step of obtaining the sintered body in embodiment (ii), the bonding material obtained is the bonding surface The surface roughness (Ra) of is in a specific range, and the sintered body of the silver powder having a specific porosity is obtained.

접합재의 제조 방법이, 소결체를 얻는 공정의 실시 형태(iii)의 후단 측에, 상기의 소결체의 표면을 연마하는 공정, 또는, 상기 도금을 입히는 공정을 가지는 경우, 얻을 수 있는 접합재는, 접합면의 표면 조도(Ra)가 특정의 범위에 있고, 소결체는 특정의 기공율을 가지는 은 분말의 소결체가 얻어진다. When the manufacturing method of the bonding material has the process of polishing the surface of the sintered body or the process of applying the plating to the rear end side of the step of obtaining the sintered body, the bonding material obtained is the joint surface The surface roughness (Ra) of is in a specific range, and the sintered body of the silver powder having a specific porosity is obtained.

[접합체][conjugate]

본 실시 형태의 접합체는, 도 1에 나타내는 바와 같이, 도전체와, 기판이, 상술한 접합재에 의해 접합되어 있는 것이다. As shown in Fig. 1, in the bonded body of the present embodiment, a conductor and a substrate are bonded by the bonding material described above.

도전체로서는, 콘덴서 및 저항 등의 칩 부품이나, 웨이퍼에 저항, 트랜지스터, 콘덴서, 및 집적회로 등의 반도체 소자를 형성한 후에 웨이퍼로부터 각 반도체 소자의 구획을 잘라낸 Si 칩, SiC 칩, GaN 등을 들 수 있다. As the conductor, chip components such as capacitors and resistors, Si chips, SiC chips, GaN, and the like obtained by forming semiconductor elements such as resistors, transistors, capacitors, and integrated circuits on a wafer, and then cutting out sections of each semiconductor element from the wafer, can be used. can be heard

기판으로서는, 회로 기판, 유리 섬유 강화 에폭시계 프린트 기판이나 폴리이미드계의 기판, 세라믹스 기판, 메탈 기판, Cu 리드 프레임 등을 들 수 있다. Examples of the substrate include a circuit board, a glass fiber reinforced epoxy printed circuit board, a polyimide substrate, a ceramic substrate, a metal substrate, and a Cu lead frame.

접합할 때의 온도로서는, 예를 들면, 150℃ 이상 400℃ 이하가 바람직하고, 200℃ 이상 300℃ 이하가 보다 바람직하다. As temperature at the time of joining, 150 degreeC or more and 400 degrees C or less are preferable, for example, 200 degrees C or more and 300 degrees C or less are more preferable.

상술한 접합재를 이용하여, 도전체와 기판을 접합하는 방법으로서는, 공지의 방법을 채용할 수 있다. As a method of bonding the conductor and the substrate using the bonding material described above, a known method can be employed.

접합할 때의 압력으로서는, 특별히 한정되지 않지만, 예를 들면, 0.1 MPa 이상 3 MPa 이하이어도 된다. Although it does not specifically limit as a pressure at the time of joining, For example, 0.1 MPa or more and 3 MPa or less may be sufficient.

접합시의 분위기는, 대기 중에서 수행되어도 되고, 질소 중에서 수행되어도 된다. The atmosphere at the time of joining may be in air or in nitrogen.

상술한 본 실시 형태의 접합체에 있어서는, 기공율이 8~30%인 은 분말의 소결체를 포함하고, 접합면의 표면 조도(Ra)가 500 nm 이상 3.3μm 이하인 접합재가 적용되고 있다. 이 때문에, 이러한 접합체는, 종래보다도 뛰어난 접합 강도를 가진다. In the bonded body of the present embodiment described above, a bonding material containing a sintered silver powder having a porosity of 8 to 30% and having a surface roughness (Ra) of 500 nm or more and 3.3 μm or less of the bonding surface is applied. For this reason, such a bonded body has superior bonding strength than before.

실시예Example

이하, 실시예에 의해 본 발명을 설명하지만, 본 발명은 이하의 실시예로 한정되는 것은 아니다. Hereinafter, the present invention will be described by examples, but the present invention is not limited to the following examples.

<사용한 원료><Ingredients Used>

은 분말로서, 이하에 나타내는 은 입자군을 이용했다. As silver powder, the silver particle group shown below was used.

은 입자군 1A: 평균 입자 지름 300nmSilver particle group 1A: average particle diameter = 300 nm

은 입자군 2A: 평균 입자 지름 4μmSilver particle group 2A: Average particle diameter = 4 μm

은 입자군 2B: 평균 입자 지름 10μmSilver particle group 2B: Average particle diameter = 10 μm

은 입자군 3: 평균 입자 지름 42μmSilver particle group 3: average particle diameter = 42 μm

은 입자군 1B: 평균 입자 지름 50nmSilver particle group 1B: average particle diameter = 50 nm

은 입자군 1A, 1B, 2A, 3의 은 입자의 형상은 구상이며, 은 입자군 2B의 은 입자의 형상은 플레이크상이었다. The shape of the silver particle of silver particle group 1A, 1B, 2A, and 3 was spherical, and the shape of the silver particle of silver particle group 2B was flake shape.

용제로서, 에틸렌글리콜을 이용했다. As a solvent, ethylene glycol was used.

상술한 평균 입자 지름은, 미디안 지름(D50)의 값을 채용했다. 본 발명에 있어서, 각 은 분말의 미디안 지름(D50)은, SALD-2300(시마즈 제작소 제)을 이용하고, 레이저 회절법에 의해 측정한 것(체적 평균 지름)을 의미한다. As the average particle diameter described above, the value of the median diameter (D50) was adopted. In the present invention, the median diameter (D50) of each silver powder means (volume average diameter) measured by a laser diffraction method using SALD-2300 (manufactured by Shimadzu Corporation).

<은 분말의 분산액의 조제><Preparation of Silver Powder Dispersion>

상술한 은 입자군과 용제를, 표 1에 나타내는 조성으로 혼합하여, 분산액 1~9를 조제했다. 표 1중, 은 입자군의 각각의 값은, 은 분말의 합계의 질량에 대한, 각 은 입자군의 질량의 비율(질량%)을 나타내다. 또한, 용제의 비율은, 은 분말과 용제의 합계의 질량에 대한, 용제의 질량의 비율(질량%)을 나타내다. The above-mentioned silver particle group and solvent were mixed with the composition shown in Table 1, and dispersion liquids 1-9 were prepared. In Table 1, each value of a silver particle group shows the ratio (mass %) of the mass of each silver particle group with respect to the total mass of silver powder. In addition, the ratio of the solvent represents the ratio (mass %) of the mass of the solvent to the total mass of the silver powder and the solvent.

Figure 112022029617340-pct00001
Figure 112022029617340-pct00001

<접합재의 제조><Manufacture of bonding material>

(실시예 1) (Example 1)

분산액 1을 이용하고, 황동의 기대 상에 도공막을 제작했다. Using the dispersion liquid 1, a coating film was produced on a base of brass.

황동으로서는, 65 질량%의 구리와, 35 질량%의 아연으로 이루어지는 것을 이용했다. As brass, what consists of 65 mass % of copper and 35 mass % of zinc was used.

소결체를 얻는 공정: Process for obtaining a sintered body:

제작한 도공막을, 200℃에서 30분간, 무가압으로 가열하여 소결체를 얻었다. 가위를 이용하여, 얻어진 소결체를, 소편(세로Х가로의 치수: 3mmХ3 mm)으로 절단했다. The produced coated film was heated at 200°C for 30 minutes without pressure to obtain a sintered body. Using scissors, the obtained sintered body was cut into small pieces (length Х width dimension: 3 mm Х 3 mm).

연마하는 공정: Polishing process:

얻어진 소편을, 2000번의 연마지(산쿄리카가쿠 제, 내수 연마지 시트)를 이용하여 소결체의 표면을 연마하여, 접합재를 얻었다. The surface of the sintered body of the obtained small pieces was polished using abrasive paper No. 2000 (a water-resistant abrasive paper sheet manufactured by Sankyo Rikagaku) to obtain a bonding material.

(실시예 2)(Example 2)

소결 조건을 250℃에서 30분간으로 변경한 이외는, 실시예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 1, except that the sintering conditions were changed to 250°C for 30 minutes.

(실시예 3)(Example 3)

분산액 1을 이용하고, 상술한 황동의 기대 상에 도공막을 제작했다. Using the dispersion 1, a coating film was produced on the base of the brass described above.

소결체를 얻는 공정: Process for obtaining a sintered body:

제작한 도공막을, 200℃에서 30분간, 무가압으로 가열하여 소결체를 얻었다. The produced coated film was heated at 200°C for 30 minutes without pressure to obtain a sintered body.

은도금을 입히는 공정: Silver plating process:

얻어진 소결체를, 2-에틸헥실아민에 아세토아세트산 은을 용해시킨 용액에 침지하고, 40℃에서 10분간, 정치했다. 이어서, 소결체를 혼합액으로부터 취출하고 건조시켰다. The obtained sintered body was immersed in a solution in which silver acetoacetate was dissolved in 2-ethylhexylamine, and left still at 40°C for 10 minutes. Then, the sintered body was taken out of the liquid mixture and dried.

(실시예 4) (Example 4)

소결 조건을 250℃에서 30분간으로 변경한 이외는, 실시예 3과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 3 except that the sintering conditions were changed to 250°C for 30 minutes.

(실시예 5) (Example 5)

이용하는 분산액을 분산액 2로 변경한 이외는, 실시예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 1 except that the dispersion liquid used was changed to dispersion liquid 2.

(실시예 6) (Example 6)

소결 조건을 250℃에서 30분간으로 변경한 이외는, 실시예 5와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 5, except that the sintering conditions were changed to 250°C for 30 minutes.

(실시예 7) (Example 7)

이용하는 분산액을 분산액 2로 변경한 이외는, 실시예 3과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 3 except that the dispersion liquid used was changed to the dispersion liquid 2.

(실시예 8) (Example 8)

소결 조건을 250℃에서 30분간으로 변경한 이외는, 실시예 7과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 7, except that the sintering conditions were changed to 250°C for 30 minutes.

(실시예 9) (Example 9)

이용하는 분산액을 분산액 3으로 변경한 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 3.

(실시예 10) (Example 10)

이용하는 분산액을 분산액 4로 변경한 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 4.

(실시예 11) (Example 11)

소결 조건을 250℃에서 90분간으로 변경한 이외는, 실시예 5와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 5, except that the sintering conditions were changed to 90 minutes at 250°C.

(실시예 12) (Example 12)

이용하는 분산액을 분산액 5로 변경한 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 5.

(실시예 13) (Example 13)

이용하는 분산액을 분산액 6으로 변경한 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 6.

(실시예 14) (Example 14)

분산액 2를 이용하고, 상술한 황동의 기대 상에 도공막을 제작했다. Using dispersion 2, a coating film was produced on the base of the brass described above.

소결체를 얻는 공정: Process for obtaining a sintered body:

제작한 도공막을, 250℃에서 30분간, 무가압으로 가열하여 소결체를 얻었다. The produced coated film was heated at 250°C for 30 minutes without pressure to obtain a sintered body.

구리 도금을 입히는 공정: Copper plating process:

얻어진 소결체를, 질소 분위기 중, 2-에틸헥실아민에 포름산 구리(II) 4수화물(와코 준야쿠 코교 카부시키가이샤 제, 제품번호: LKJ3210, 1차 평균 입자 지름: 20μm)을 용해시킨 용액에 침지하고, 140℃에서 10분간, 정치했다. 이어서, 소결체를 혼합액으로부터 취출하고 건조시켰다. The obtained sintered body was immersed in a solution in which copper (II) formate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd., product number: LKJ3210, primary average particle diameter: 20 μm) was dissolved in 2-ethylhexylamine in a nitrogen atmosphere. and left still at 140°C for 10 minutes. Then, the sintered body was taken out of the liquid mixture and dried.

(비교예 1) (Comparative Example 1)

이용하는 분산액을 분산액 7로 변경한 이외는, 실시예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 1 except that the dispersion liquid used was changed to dispersion liquid 7.

(비교예 2) (Comparative Example 2)

소결 조건을 250℃에서 30분간으로 변경하고, 소결시에 0.4 MPa로 가압하면서 소결한 이외는, 비교예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Comparative Example 1, except that the sintering conditions were changed to 30 minutes at 250°C and sintered while pressurizing at 0.4 MPa during sintering.

(비교예 3) (Comparative Example 3)

소결시에 0.4 MPa로 가압하면서 소결한 이외는, 비교예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Comparative Example 1 except that sintering was performed while pressing at 0.4 MPa during sintering.

(비교예 4) (Comparative Example 4)

소결 조건을 250℃에서 30분간으로 변경한 이외는, 비교예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Comparative Example 1 except that the sintering conditions were changed to 250°C for 30 minutes.

(비교예 5) (Comparative Example 5)

이용하는 분산액을 분산액 7로 변경하고, 소결체의 표면을 연마하지 않았던 이외는, 실시예 1과 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 1 except that the dispersion liquid used was changed to dispersion liquid 7 and the surface of the sintered body was not polished.

(비교예 6) (Comparative Example 6)

소결 조건을 250℃에서 30분간으로 변경한 이외는, 비교예 5와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Comparative Example 5, except that the sintering conditions were changed to 250°C for 30 minutes.

(비교예 7) (Comparative Example 7)

이용하는 분산액을 분산액 8로 변경하고, 소결체의 표면을 연마하지 않았던 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2, except that the dispersion liquid used was changed to dispersion liquid 8 and the surface of the sintered body was not polished.

(비교예 8) (Comparative Example 8)

이용하는 분산액을 분산액 8로 변경한 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 8.

(비교예 9) (Comparative Example 9)

이용하는 분산액을 분산액 9로 변경하고, 소결체의 표면을 연마하지 않았던 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 9 and the surface of the sintered body was not polished.

(비교예 10) (Comparative Example 10)

이용하는 분산액을 분산액 9로 변경한 이외는, 실시예 2와 동일하게 하여 접합재를 얻었다. A bonding material was obtained in the same manner as in Example 2 except that the dispersion liquid used was changed to dispersion liquid 9.

실시예 1~14, 비교예 1~10에 있어서 얻어진 각 접합재에 대해서, 다음에 나타내는 측정 방법에 의해서, 기공율과 표면 조도를 각각 측정했다. For each bonding material obtained in Examples 1 to 14 and Comparative Examples 1 to 10, the porosity and surface roughness were respectively measured by the measuring method shown below.

[기공율의 측정][Measurement of Porosity]

접합재를 물에 가라앉혀 접합재의 체적을 측정하고, 접합재의 질량을 측정했다. 또한, 그 질량에 상당하는 접합재가 기공을 가지지 않는 경우의 체적을, 이론상의 밀도에 근거하여 산출했다. 측정한 체적과, 기공을 가지지 않는 경우의 이론상의 체적으로부터, 기공율을 산출했다. The bonding material was immersed in water, the volume of the bonding material was measured, and the mass of the bonding material was measured. In addition, the volume in the case where the bonding material corresponding to the mass does not have pores was calculated based on the theoretical density. The porosity was calculated from the measured volume and the theoretical volume in the case of no porosity.

[표면 조도의 측정][Measurement of surface roughness]

초심도 칼라 3D 형상 측정 현미경(키엔스, VK-9510)을 이용하고, 접합재 표면의 임의의 5개소에 대하여, 표면 조도를 측정하고, 평균치를 산출했다. 측정 개소의 크기는, 1400μmХ1050μm였다. Using a super-depth color 3D shape measuring microscope (Keyence, VK-9510), surface roughness was measured for five arbitrary locations on the surface of the bonding material, and an average value was calculated. The size of the measurement location was 1400 µmХ1050 µm.

실시예 1~14, 비교예 1~10에 있어서 얻어진 각 접합재의, 소결 조건, 기공율, 표면 조도를 표 2에 나타내다. Table 2 shows the sintering conditions, porosity, and surface roughness of each bonding material obtained in Examples 1 to 14 and Comparative Examples 1 to 10.

Figure 112022029617340-pct00002
Figure 112022029617340-pct00002

은 분말이 은 입자군 1과 은 입자군 2를 포함하고, 분산액 중의 용제의 함유량이 5 질량% 이상 25 질량% 이하인 경우, 얻어진 실시예 1~14의 접합재의 소결체의 기공율은, 8~30%였다. When the silver powder contains silver particle group 1 and silver particle group 2, and the content of the solvent in the dispersion is 5% by mass or more and 25% by mass or less, the porosity of the sintered bodies of the bonding materials obtained in Examples 1 to 14 is 8 to 30% was

얻어진 소결체를 수지로 포매(包埋)한 후, 이온 밀링 장치 IM4000PLUS(카부시키가이샤 히타치 하이테크놀로지사 제)을 이용하여, 수지로 포매한 소결체를 절단하여, 평활화한 절편을 얻었다. 얻어진 절편을, 주사형 전자현미경(SEM)을 이용하여 관찰했다. 접합재 단면의 SEM에 의한 현미경상을 도 2에 나타냈다.After embedding the obtained sintered compact with resin, the sintered compact embedded with resin was cut|disconnected using the ion milling apparatus IM4000PLUS (made by Hitachi High-Technology Co., Ltd., Kabushiki Kaisha), and the smoothed slice was obtained. The obtained slice was observed using a scanning electron microscope (SEM). A microscopic image by SEM of the cross section of the bonding material is shown in FIG. 2 .

도 2a는, 실시예 2의 접합재 단면의 SEM에 의한 현미경상이다. 도 2b는, 실시예 6의 접합재 단면의 SEM에 의한 현미경상이다. 도 2c는, 비교예 4의 접합재 단면의 SEM에 의한 현미경상이다. 도 2d는, 실시예 9의 접합재 단면의 SEM에 의한 현미경상이다. 도 2e는, 실시예 10의 접합재 단면의 SEM에 의한 현미경상이다. 2A is a microscopic image by SEM of the cross section of the bonding material of Example 2. 2B is a microscope image by SEM of the cross section of the bonding material of Example 6. 2C is a microscopic image by SEM of the cross section of the bonding material of Comparative Example 4. 2D is a microscope image by SEM of the cross section of the bonding material of Example 9. 2E is a microscopic image by SEM of the cross section of the bonding material of Example 10.

그 결과, 실시예 2, 6, 9, 10의 접합재의 단면에는, 비교예 4의 접합재의 단면과 비교하여, 기공이 많이 인정되었다. As a result, many pores were recognized in the cross section of the bonding material of Examples 2, 6, 9, and 10 compared to the cross section of the bonding material of Comparative Example 4.

<접합체의 제조><Preparation of conjugate>

(실시예 21~34, 비교예 11~20) (Examples 21 to 34, Comparative Examples 11 to 20)

도전체로서, Si 칩 측으로부터 순서대로, Ti층(두께 40 nm) 및 Ag층(두께 1000 nm)이 스퍼터링에 의해 적층된 Si 칩(세로Х가로의 치수: 3mmХ3 mm)을 이용했다. 접합재로서, 실시예 1~14, 비교예 1~10의 각 접합재를 이용했다. 각 접합재의 두께는 100μm였다. 기판으로서, 구리 기판을 이용했다. As a conductor, a Si chip (vertical Х horizontal dimensions: 3 mm Х 3 mm) in which a Ti layer (thickness of 40 nm) and an Ag layer (thickness of 1000 nm) were laminated by sputtering in order from the Si chip side was used. As the bonding material, each bonding material of Examples 1 to 14 and Comparative Examples 1 to 10 was used. The thickness of each bonding material was 100 μm. As a substrate, a copper substrate was used.

기판, 접합재, 도전체를, 접합재의 연마한 면이 접합면이 되도록, 이 순서대로 쌓은 후, 대기 중에서 압력을 0.4 MPa로 설정하고, 온도 250℃에서 가열 처리를 행하는 것에 의해 접합하여, 접합체를 얻었다. 실시예 1~14, 비교예 1~10의 각 접합재를 이용하여, 실시예 21~34, 비교예 11~20의 접합체를 얻었다. After stacking the substrate, bonding material, and conductor in this order so that the polished surface of the bonding material becomes the bonding surface, they are bonded by heating in the air at a temperature of 250° C. under a pressure of 0.4 MPa to form a bonded body. Got it. Bonded bodies of Examples 21 to 34 and Comparative Examples 11 to 20 were obtained using the respective bonding materials of Examples 1 to 14 and Comparative Examples 1 to 10.

얻어진 실시예 21~34, 비교예 11~20의 접합체의 쉬어 강도를, 다음에 나타내는 측정 방법에 따라서 측정했다. 결과를 표 3에 나타내다. The shear strength of the obtained bonded bodies of Examples 21 to 34 and Comparative Examples 11 to 20 was measured according to the measurement method shown below. The results are shown in Table 3.

[쉬어 강도 시험][Sheer strength test]

실시예 21~34, 비교예 11~20의 각 접합체의 쉬어 강도(전단 강도)를 다음과 같이 측정했다. 측정 결과를 표 3에 나타내다. The shear strength (shear strength) of each bonded body of Examples 21 to 34 and Comparative Examples 11 to 20 was measured as follows. Table 3 shows the measurement results.

쉬어 강도 시험: Shear strength test:

얻어진 각 접합체에 대해서, 만능형 본드 테스터 Nordson DAGE Series 4000(Nordson Corporation제)를 사용하고, 실온(25℃) 조건하, JIS Z 3198-7:2003에 준거한 방법으로, Si 칩과 기판의 사이의 전단 강도(MPa)의 측정을 수행했다. 각 시료에 대하여 5회 측정을 수행하고, 전단 강도(MPa)의 평균치를 산출했다. For each bonded body obtained, a universal bond tester "Nordson DAGE" Series 4000 (manufactured by Nordson Corporation) was used, under room temperature (25 ° C.) conditions, by a method in accordance with JIS "Z" 3198-7: 2003, between the Si chip and the substrate. Measurements of the shear strength (MPa) of were performed. Measurements were performed 5 times for each sample, and the average value of shear strength (MPa) was calculated.

Figure 112022029617340-pct00003
Figure 112022029617340-pct00003

기공율이 8~30%인 실시예 1~14의 접합재를 이용했을 경우, 실시예 21~34의 접합체의 쉬어 강도는 충분했다. When the bonding materials of Examples 1 to 14 having a porosity of 8 to 30% were used, the shear strength of the bonded bodies of Examples 21 to 34 was sufficient.

접합면의 표면 조도(Ra)가 500 nm 이상 3.3μm 이하인 실시예 1~14의 접합재를 이용했을 경우, 얻어진 실시예 21~34의 접합체의 쉬어 강도는 충분했다. When the bonding materials of Examples 1 to 14 having a surface roughness (Ra) of 500 nm or more and 3.3 μm or less of the bonded surfaces were used, the shear strength of the obtained bonded bodies of Examples 21 to 34 was sufficient.

소결체의 표면을 연마하여 얻어진 실시예 1, 2, 5, 6, 9~13의 접합재를 이용했을 경우, 얻어진 실시예 21, 22, 25, 26, 29~33의 접합체의 쉬어 강도는 충분했다. When the bonding materials of Examples 1, 2, 5, 6, and 9 to 13 obtained by polishing the surface of the sintered body were used, the obtained bonded bodies of Examples 21, 22, 25, 26, and 29 to 33 had sufficient shear strength.

소결체의 표면에 도금을 입혀 얻어진 실시예 3, 4, 7, 8, 14의 접합재를 이용했을 경우, 얻어진 실시예 23, 24, 27, 28, 34의 접합체의 쉬어 강도는 충분했다. When the bonding materials of Examples 3, 4, 7, 8, and 14 obtained by plating the surface of the sintered bodies were used, the shear strength of the obtained bonded bodies of Examples 23, 24, 27, 28, and 34 was sufficient.

분산액 중의 용제의 함유량을 5 질량% 이상 25 질량% 이하의 범위 내에서 늘려, 얻어진 실시예 12, 13의 접합재를 이용하여 접합체를 얻은 경우, 실시예 32, 33의 접합체의 쉬어 강도는 충분했다. When bonded bodies were obtained using the bonding materials of Examples 12 and 13 obtained by increasing the content of the solvent in the dispersion within the range of 5 mass% or more and 25 mass% or less, the shear strength of the bonded bodies of Examples 32 and 33 was sufficient.

은 입자군 1B만을 포함하는 분산액을 이용하여 얻어진 비교예 1~6의 접합재는, 소결체의 기공율이 8% 미만이며, 이들을 이용한 비교예 11~16의 접합체의 쉬어 강도는 충분하지는 않았다. The bonding materials of Comparative Examples 1 to 6 obtained using the dispersion containing only the silver particle group 1B had a porosity of less than 8% of the sintered body, and the shear strength of the bonding bodies of Comparative Examples 11 to 16 using these was not sufficient.

용제의 함유량이 26%인 분산액을 이용한 비교예 7~10의 접합재는, 소결체의 기공율이 30%보다도 크고, 이들 접합재를 이용한 비교예 17~20의 접합체의 쉬어 강도는 충분하지는 않았다. The bonding materials of Comparative Examples 7 to 10 using a dispersion having a solvent content of 26% had a sintered porosity greater than 30%, and the shear strength of the bonding bodies of Comparative Examples 17 to 20 using these bonding materials was not sufficient.

소결체의 표면을 연마하지 않고, 또한, 도금을 입히지 않았던 비교예 5, 6, 7, 9의 접합재를 이용했을 경우, 얻어진 비교예 25, 26, 27, 29의 접합체의 쉬어 강도는 충분하지는 않았다. When the bonding materials of Comparative Examples 5, 6, 7, and 9 in which the surface of the sintered body was not polished and not plated were used, the shear strength of the obtained bonded bodies of Comparative Examples 25, 26, 27, and 29 was not sufficient.

또한, 이하에 기술하는 바와 같이, 실시예의 접합재와, 비교예의 접합재를, 조건(a) 및 조건(b) 하에서 대비하는 것에 의해, 다음에 나타내는 것이 분명하게 되었다. In addition, as described below, the following was made clear by contrasting the bonding materials of Examples and the bonding materials of Comparative Examples under conditions (a) and (b).

≪조건(a): 분산액에 있어서의 은 분말의 조성, 및 소결 조건이 동일한 것을 비교≫<<Condition (a): Comparison of the composition of the silver powder in the dispersion and the same sintering conditions>>

(1) 실시예 2의 접합재와, 비교예 8의 접합재와의 대비(1) Contrast between the bonding material of Example 2 and the bonding material of Comparative Example 8

(2) 실시예 6의 접합재와, 비교예 10의 접합재와의 대비(2) Contrast between the bonding material of Example 6 and the bonding material of Comparative Example 10

(3) 실시예 12의 접합재와, 비교예 10의 접합재와의 대비(3) Contrast between the bonding material of Example 12 and the bonding material of Comparative Example 10

(4) 실시예 13의 접합재와, 비교예 10의 접합재와의 대비(4) Contrast between the bonding material of Example 13 and the bonding material of Comparative Example 10

실시예 2의 접합재와, 비교예 8의 접합재와의 대비: Contrast between the bonding material of Example 2 and the bonding material of Comparative Example 8:

접합재를 제조할 때, 실시예 2에 대해서는 분산액 1, 비교예 8에 대해서는 분산액 8이 각각 이용되고 있고, 분산액에 있어서의 은 분말의 조성은, 모두, 은 입자군 1A/은 입자군 2A/은 입자군 2B = 10/40/50(질량%)이다. When manufacturing the bonding material, dispersion 1 for Example 2 and dispersion 8 for Comparative Example 8 were used, respectively, and the composition of the silver powder in the dispersion was silver particle group 1A/silver particle group 2A/silver Particle group 2B = 10/40/50 (% by mass).

소결 조건은, 모두, 소결시의 온도, 시간을 250℃, 30분간, 소결시의 압력을 무가압으로 설정하고, 소결체의 표면을 연마하고 있다. As for the sintering conditions, the temperature and time during sintering were set to 250°C for 30 minutes, and the pressure during sintering was set to no pressure, and the surface of the sintered body was polished.

접합재에 있어서의 표면 조도(μm)/기공율(%)/접합체의 쉬어 강도(MPa)는, 이하와 같았다. The surface roughness (μm) / porosity (%) / shear strength (MPa) of the bonded body in the bonding material were as follows.

실시예 2에 대해서, 2.79μm / 10.6% / 22.3 MPa (실시예 22) 2.79 μm / 10.6% / 22.3 MPa for Example 2 (Example 22)

비교예 8에 대해서, 2.75μm / 36.3% / 10.6 MPa (비교예 18)For Comparative Example 8, 2.75 μm / 36.3% / 10.6 MPa (Comparative Example 18)

실시예 6의 접합재와, 비교예 10의 접합재와의 대비: Contrast between the bonding material of Example 6 and the bonding material of Comparative Example 10:

접합재를 제조할 때, 실시예 6에 대해서는 분산액 2, 비교예 10에 대해서는 분산액 9가 각각 이용되고 있고, 분산액에 있어서의 은 분말의 조성은, 모두, 은 입자군 1A/은 입자군 2A/은 입자군 2B/은 입자군 3 = 5/20/25/50(질량%)이다. When manufacturing the bonding material, dispersion 2 for Example 6 and dispersion 9 for Comparative Example 10 were used, respectively, and the composition of the silver powder in the dispersion was all silver particle group 1A/silver particle group 2A/silver Particle group 2B/silver particle group 3 = 5/20/25/50 (% by mass).

소결 조건은, 모두, 소결시의 온도, 시간을 250℃, 30분간, 소결시의 압력을 무가압, 소결체의 표면을 연마하고 있다. As for the sintering conditions, the temperature and time at the time of sintering were 250°C for 30 minutes, and the pressure at the time of sintering was not applied, and the surface of the sintered body was polished.

접합재에 있어서의 표면 조도(μm)/기공율(%)/접합체의 쉬어 강도(MPa)는, 이하와 같았다. The surface roughness (μm) / porosity (%) / shear strength (MPa) of the bonded body in the bonding material were as follows.

실시예 6에 대해서, 2.36μm / 13.1% / 22.1 MPa (실시예 26) 2.36 μm / 13.1% / 22.1 MPa for Example 6 (Example 26)

비교예 10에 대해서, 2.68μm / 35.7% / 8.6 MPa (비교예 20)For Comparative Example 10, 2.68 μm / 35.7% / 8.6 MPa (Comparative Example 20)

실시예 12의 접합재와, 비교예 10의 접합재와의 대비: Contrast between the bonding material of Example 12 and the bonding material of Comparative Example 10:

접합재를 제조할 때, 실시예 12에 대해서는 분산액 5, 비교예 10에 대해서는 분산액 9가 각각 이용되고 있고, 분산액에 있어서의 은 분말의 조성은, 모두, 은 입자군 1A/은 입자군 2A/은 입자군 2B/은 입자군 3 = 5/20/25/50(질량%)이다. When manufacturing the bonding material, dispersion 5 for Example 12 and dispersion 9 for Comparative Example 10 were used, respectively, and the composition of the silver powder in the dispersion was all silver particle group 1A/silver particle group 2A/silver Particle group 2B/silver particle group 3 = 5/20/25/50 (% by mass).

소결 조건은, 모두, 소결시의 온도, 시간을 250℃, 30분간, 소결시의 압력을 무가압으로 설정하고, 소결체의 표면을 연마하고 있다. As for the sintering conditions, the temperature and time during sintering were set to 250°C for 30 minutes, and the pressure during sintering was set to no pressure, and the surface of the sintered body was polished.

접합재에 있어서의 표면 조도(μm)/기공율(%)/접합체의 쉬어 강도(MPa)는, 이하와 같았다. The surface roughness (μm) / porosity (%) / shear strength (MPa) of the bonded body in the bonding material were as follows.

실시예 12에 대해서, 2.76μm / 17.2% / 22.2 MPa (실시예 32)2.76 μm / 17.2% / 22.2 MPa for Example 12 (Example 32)

비교예 10에 대해서, 2.68μm / 35.7% / 8.6 MPa (비교예 20)For Comparative Example 10, 2.68 μm / 35.7% / 8.6 MPa (Comparative Example 20)

실시예 13의 접합재와, 비교예 10의 접합재와의 대비: Contrast between the bonding material of Example 13 and the bonding material of Comparative Example 10:

접합재를 제조할 때, 실시예 13에 대해서는 분산액 6, 비교예 10에 대해서는 분산액 9가 각각 이용되고 있고, 분산액에 있어서의 은 분말의 조성은, 모두, 은 입자군 1A/은 입자군 2A/은 입자군 2B/은 입자군 3 = 5/20/25/50(질량%)이다. When manufacturing the bonding material, dispersion 6 for Example 13 and dispersion 9 for Comparative Example 10 were used, respectively, and the composition of the silver powder in the dispersion was all silver particle group 1A/silver particle group 2A/silver Particle group 2B/silver particle group 3 = 5/20/25/50 (% by mass).

소결 조건은, 모두, 소결시의 온도, 시간을 250℃, 30분간, 소결시의 압력을 무가압으로 설정하고, 소결체의 표면을 연마하고 있다. As for the sintering conditions, the temperature and time during sintering were set to 250°C for 30 minutes, and the pressure during sintering was set to no pressure, and the surface of the sintered body was polished.

접합재에 있어서의 표면 조도(μm)/기공율(%)/접합체의 쉬어 강도(MPa)는, 이하와 같았다. The surface roughness (μm) / porosity (%) / shear strength (MPa) of the bonded body in the bonding material were as follows.

실시예 13에 대해서, 2.61μm / 26.3% / 21.7 MPa (실시예 33) 2.61 μm / 26.3% / 21.7 MPa for Example 13 (Example 33)

비교예 10에 대해서, 2.68μm / 35.7% / 8.6 MPa (비교예 20)For Comparative Example 10, 2.68 μm / 35.7% / 8.6 MPa (Comparative Example 20)

≪조건(b): 접합재의 표면 조도가 동일(1.06μm)인 것을 비교≫≪Condition (b): Comparison of bonding materials having the same surface roughness (1.06μm)≫

실시예 14의 접합재와, 비교예 1의 접합재와의 대비: Contrast between the bonding material of Example 14 and the bonding material of Comparative Example 1:

접합재에 있어서의 표면 조도(μm)/기공율(%)/접합체의 쉬어 강도(MPa)는, 이하와 같았다. The surface roughness (μm) / porosity (%) / shear strength (MPa) of the bonded body in the bonding material were as follows.

실시예 14에 대해서, 1.06μm / 11.6% / 18.5 MPa (실시예 34) 1.06 μm / 11.6% / 18.5 MPa for Example 14 (Example 34)

비교예 1에 대해서, 1.06μm / 5.3% / 12.5 MPa (비교예 11)For Comparative Example 1, 1.06 μm / 5.3% / 12.5 MPa (Comparative Example 11)

상기의 조건(a) 및 조건(b) 하에서의 대비로부터, 비록 접합면의 표면 조도가 동일한 정도이어도, 그 표면 조도가 특정의 범위(500 nm 이상 3.3μm 이하)이고, 또한, 소결체의 기공율이 수치 한정(8~30%)의 내와 외의 각각의 효과에 대해서, 접합체의 쉬어 강도의 점에서 현저한 차이가 있는 것이 분명하게 되었다. 더하여, 그 접합체의 쉬어 강도에 대해서, 기공율의 수치 범위(8~30%) 내의 전체에 걸쳐 현저성이 있는 것도 분명하게 되었다. From the comparison under the above condition (a) and condition (b), even if the surface roughness of the joint surface is about the same, the surface roughness is in a specific range (500 nm or more and 3.3 μm or less), and the porosity of the sintered body is a numerical value. It became clear that there is a significant difference in terms of the shear strength of the bonded body for each effect of the inside and outside of the limit (8 to 30%). In addition, with respect to the shear strength of the bonded body, it was also made clear that there was a significant effect throughout the numerical range (8 to 30%) of the porosity.

즉, 「소결체의 기공율 8~30%」과 「접합면의 표면 조도(Ra) 500 nm 이상 3.3μm 이하」를 조합한 경우, 쉬어 강도는 각별히 현저한 것이 되는 것이 분명하게 되었다. That is, when "porosity of the sintered body = 8 to 30%" and "surface roughness (Ra) of the joint surface = 500 nm or more and 3.3 μm or less" were combined, it became clear that the shear strength was particularly remarkable.

<은도금을 입힌 동판과 도전체와의 접합><Joint between silver-plated copper plate and conductor>

도전체와, 은도금한 동판을, 실시예 1의 접합재를 이용하여, 대기 중에서, 압력을 0.4 MPa 또는 1 MPa로 설정하고, 온도 200℃, 250℃, 300℃에서 각각 가열 처리를 가하는 것에 의해 접합하여, 접합체를 얻었다. A conductor and a silver-plated copper plate are joined by heat treatment in the air using the bonding material of Example 1 at 200°C, 250°C, and 300°C at a pressure of 0.4 MPa or 1 MPa, respectively. Thus, a conjugate was obtained.

도 3a는, 대기 중에서, 압력을 0.4 MPa로 설정하고, 온도 250℃에서 가열 처리를 가하는 것에 의해 접합하여 얻어진 접합체 단면의, SEM에 의한 현미경상이다. 도 3b는, 접합체의 쉬어 강도와, 소결시의 온도 및 압력의 관계를 나타내는 그래프이다. Fig. 3A is a microscopic image by SEM of a cross section of a bonded body obtained by bonding in the air by setting the pressure to 0.4 MPa and applying heat treatment at a temperature of 250°C. 3B is a graph showing the relationship between the shear strength of the bonded body and the temperature and pressure during sintering.

그 결과, 대기 중에서, 실시예 1의 접합재를 적용하여, 은도금한 동판과 도전체를 접합할 수 있었다. 소결시의 온도가 높을수록, 또한, 소결시의 압력이 높을수록, 쉬어 강도가 높아지는 것이 분명하게 되었다. As a result, it was possible to bond the silver-plated copper plate and the conductor by applying the bonding material of Example 1 in the air. It became clear that the higher the temperature at the time of sintering and the higher the pressure at the time of sintering, the higher the shear strength.

<도금이 입혀지지 않은 동판과 도전체와의 접합><Joint between copper plate without plating and conductor>

도전체와, 도금이 입혀지지 않은 동판(무구(無垢) 동판)을, 실시예 14의 접합재를 이용하여, 질소 중에서, 압력을 0.4 MPa 또는 1 MPa로 설정하고, 온도 250℃, 300℃, 350℃에서 각각 가열 처리를 가하는 것에 의해 접합하여, 접합체를 얻었다. Conductors and unplated copper plates (solid copper plates) were mixed with the bonding material of Example 14 in nitrogen at a pressure of 0.4 MPa or 1 MPa, and at temperatures of 250°C, 300°C, and 350°C. Bonding was performed by applying heat treatment at °C, respectively, to obtain a bonded body.

도 4a는, 질소 중에서, 압력을 0.4 MPa로 설정하고, 온도 300℃에서 가열 처리를 가하는 것에 의해 접합하여 얻어진 접합체 단면의, SEM에 의한 촬상 데이터이다. 도 4b는, 접합체의 쉬어 강도와, 소결시의 온도 및 압력의 관계를 나타내는 그래프이다. Fig. 4A is image pickup data by SEM of a cross section of a bonded body obtained by bonding in nitrogen by setting the pressure to 0.4 MPa and applying heat treatment at a temperature of 300°C. 4B is a graph showing the relationship between the shear strength of the bonded body and the temperature and pressure during sintering.

그 결과, 질소 중에서, 실시예 14의 접합재를 적용하고, 도금이 입혀지지 않은 동판과 도전체를 직접 접합할 수 있었다. 소결시의 온도가 높을수록, 또한, 소결시의 압력이 높을수록, 쉬어 강도가 높아지는 것이 분명하게 되었다.As a result, by applying the bonding material of Example 14 in nitrogen, it was possible to directly bond the unplated copper plate and the conductor. It became clear that the higher the temperature at the time of sintering and the higher the pressure at the time of sintering, the higher the shear strength.

본 발명에 의하면, 종래보다도 뛰어난 접합 강도를 가지는 접합체를 제작하기 위해서 이용되는 접합재, 그 접합재의 제조 방법, 그 접합재를 이용한 접합체를 제공할 수 있다. 본 발명의 접합재는, 종래의 접합재에서는 곤란했던 고온 하(예를 들면 300℃ 이상)에서의 사용이 가능하고, 탄화 규소(SiC)를 이용한 파워 반도체 등을 구비한 전자 부품용의 접합재로서 유용하다.According to the present invention, it is possible to provide a bonding material used for producing a bonded body having superior bonding strength than before, a manufacturing method of the bonding material, and a bonded body using the bonding material. The bonding material of the present invention can be used at high temperatures (eg, 300° C. or higher), which was difficult with conventional bonding materials, and is useful as a bonding material for electronic components including power semiconductors using silicon carbide (SiC). .

10…접합체, 12…도전체, 13…접합재, 14…기판10... conjugate, 12 . . . conductor, 13 . . . bonding material, 14 . . . Board

Claims (7)

은 분말이 소고(燒固)된 소결체를 포함하고, 하기 [소결체의 기공율의 측정]에 의해서 측정되는, 상기 소결체의 기공율이 8~30%이며,
접합면의 표면 조도(Ra)가, 1.06μm 이상 3.3μm 이하인, 접합재.
[소결체의 기공율의 측정]
우선, 소결체를 물에 가라앉혀 소결체의 체적을 측정하고, 또한, 소결체의 질량을 측정한다. 또한, 그 질량에 상당하는 소결체가 기공을 가지지 않는 경우의 체적을, 이론상의 밀도에 근거하여 산출한다. 측정한 체적과, 기공을 가지지 않는 경우의 이론상의 체적으로부터, 소결체의 기공율을 산출한다.
The silver powder includes a sintered body, and the porosity of the sintered body is 8 to 30%, as measured by the following [measurement of porosity of the sintered body],
A bonding material having a surface roughness (Ra) of the bonding surface of 1.06 µm or more and 3.3 µm or less.
[Measurement of Porosity of Sintered Body]
First, the sintered body is immersed in water, the volume of the sintered body is measured, and the mass of the sintered body is also measured. Further, the volume in case the sintered body corresponding to the mass does not have pores is calculated based on the theoretical density. The porosity of the sintered body is calculated from the measured volume and the theoretical volume in the case of not having pores.
용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정과,
상기 소결체의 표면에 은, 구리, 주석, 금 및 니켈로 이루어지는 군으로부터 선택되는 1종 이상의 도금을 입히는 공정을 갖고,
상기 분산액 중의 상기 용제의 함유량이, 5 질량% 이상 25 질량% 이하인, 접합재의 제조 방법.
obtaining a sintered body by heating a coated film formed using a dispersion of a solvent and silver powder;
A step of coating the surface of the sintered body with at least one type of plating selected from the group consisting of silver, copper, tin, gold and nickel;
The method for producing a bonding material, wherein the content of the solvent in the dispersion is 5% by mass or more and 25% by mass or less.
용제와 은 분말의 분산액을 이용하여 형성한 도공막을 가열하여 소결체를 얻는 공정과,
상기 소결체의 표면에 은, 구리, 주석, 금 및 니켈로 이루어지는 군으로부터 선택되는 1종 이상의 도금을 입히는 공정을 갖고,
상기 은 분말은, 평균 입자 지름이 상위한 제1의 은 입자군과 제2의 은 입자군을 포함하고,
상기 제1의 은 입자군의 평균 입자 지름이 50 nm 이상 1000 nm 미만이며,
상기 제2의 은 입자군의 평균 입자 지름이 1μm 이상 20μm 미만인, 접합재의 제조 방법.
obtaining a sintered body by heating a coated film formed using a dispersion of a solvent and silver powder;
A step of coating the surface of the sintered body with at least one type of plating selected from the group consisting of silver, copper, tin, gold and nickel;
The silver powder includes a first silver particle group and a second silver particle group having different average particle diameters;
The average particle diameter of the first silver particle group is 50 nm or more and less than 1000 nm,
The method for producing a bonding material, wherein the average particle diameter of the second group of silver particles is 1 μm or more and less than 20 μm.
청구항 3에 있어서,
상기 은 분말은, 추가로, 평균 입자 지름이 20μm 이상 60μm 미만인 제3의 은 입자군을 포함하는, 접합재의 제조 방법.
The method of claim 3,
The method for producing a bonding material, wherein the silver powder further includes a third group of silver particles having an average particle diameter of 20 μm or more and less than 60 μm.
청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
상기 소결체를 얻는 공정에 있어서, 상기 도공막에 가해지는 압력을 5 MPa 이하로 하면서, 상기 도공막을 가열하는, 접합재의 제조 방법.
The method according to any one of claims 2 to 4,
In the step of obtaining the sintered body, the coating film is heated while the pressure applied to the coating film is 5 MPa or less.
도전체와, 기판이, 청구항 1의 접합재에 의해 접합되어 있는, 접합체.A bonded body in which a conductor and a substrate are bonded by the bonding material according to claim 1. 삭제delete
KR1020227009180A 2019-10-15 2020-10-14 Bonding material, manufacturing method of bonding material and bonding body KR102469222B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2019-188913 2019-10-15
JP2019188913A JP6845444B1 (en) 2019-10-15 2019-10-15 Joining material, manufacturing method of joining material and joining body
PCT/JP2020/038781 WO2021075463A1 (en) 2019-10-15 2020-10-14 Joining material, production method for joining material, and joined body

Publications (2)

Publication Number Publication Date
KR20220041243A KR20220041243A (en) 2022-03-31
KR102469222B1 true KR102469222B1 (en) 2022-11-21

Family

ID=74860730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227009180A KR102469222B1 (en) 2019-10-15 2020-10-14 Bonding material, manufacturing method of bonding material and bonding body

Country Status (8)

Country Link
US (1) US20220347745A1 (en)
EP (1) EP4074436A4 (en)
JP (1) JP6845444B1 (en)
KR (1) KR102469222B1 (en)
CN (1) CN114450106B (en)
MY (1) MY195125A (en)
TW (1) TWI785399B (en)
WO (1) WO2021075463A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154655B2 (en) * 2019-05-29 2022-10-18 国立大学法人大阪大学 Bonded structure manufacturing method and bonded structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2014213325A (en) * 2013-04-22 2014-11-17 Dowaエレクトロニクス株式会社 Method of joining electronic component
WO2019026799A1 (en) 2017-07-31 2019-02-07 バンドー化学株式会社 Composition for metal bonding, metal bonded laminate and electric control device
WO2019092959A1 (en) 2017-11-13 2019-05-16 日東電工株式会社 Composition for sinter bonding, sheet for sinter bonding, and dicing tape with sheet for sinter bonding

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1514483B2 (en) * 1965-06-22 1971-05-06 Siemens AG, 1000 Berlin u 8000 München PRINT CONTACT SEMICONDUCTOR RECTIFIER
JP4025839B2 (en) * 1996-09-12 2007-12-26 Dowaエレクトロニクス株式会社 Silver powder and method for producing silver powder
JP3416594B2 (en) * 1999-05-10 2003-06-16 松下電器産業株式会社 PTC thermistor and method of manufacturing the same
JP2001098301A (en) * 1999-09-29 2001-04-10 Daido Steel Co Ltd Granulated powder for high density sintered body and sintered body using same
JP3947918B2 (en) * 2002-05-22 2007-07-25 大同特殊鋼株式会社 Metal sintered body and method for producing the same
JP2006041170A (en) * 2004-07-27 2006-02-09 Yamaha Corp Sintered body for heatsink, its manufacturing method, and semiconductor carrier
JP4876979B2 (en) 2007-03-05 2012-02-15 戸田工業株式会社 Joining member and joining method
JP5207782B2 (en) * 2008-03-10 2013-06-12 三菱電機株式会社 Gold plating film structure, gold plating film forming method, and glass ceramic wiring board
JP2010248617A (en) * 2009-03-26 2010-11-04 Nippon Handa Kk Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
JP5733678B2 (en) * 2010-12-24 2015-06-10 日立化成株式会社 Thermoelectric conversion module and manufacturing method thereof
JP6214273B2 (en) * 2013-08-08 2017-10-18 三菱電機株式会社 Bonding structure using metal nanoparticles and bonding method using metal nanoparticles
JP6245933B2 (en) * 2013-10-17 2017-12-13 Dowaエレクトロニクス株式会社 Silver sheet for bonding, method for manufacturing the same, and method for bonding electronic parts
JP6373066B2 (en) * 2014-05-30 2018-08-15 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
JP6575301B2 (en) * 2014-10-31 2019-09-18 三菱マテリアル株式会社 Sealing paste, brazing joint material and method for producing the same, sealing lid material and method for producing the same, and package sealing method
JP2016169411A (en) * 2015-03-12 2016-09-23 日立化成株式会社 Porous silver-made sheet and metallic member conjugate using the porous silver-made sheet
JP6750404B2 (en) * 2015-09-18 2020-09-02 三菱マテリアル株式会社 Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
KR101853420B1 (en) * 2016-10-13 2018-04-30 엘에스니꼬동제련 주식회사 Silver powder sintered at high temperature and method of manufacturing the same
JP7163631B2 (en) * 2017-07-05 2022-11-01 三菱マテリアル株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN107833651A (en) * 2017-10-25 2018-03-23 哈尔滨工业大学深圳研究生院 A kind of composite Nano silver paste and Fast Sintering method for packing
JP7227954B2 (en) * 2018-02-20 2023-02-22 日本碍子株式会社 Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
JP7112239B2 (en) 2018-04-20 2022-08-03 日本信号株式会社 Track circuit deterioration degree estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2014213325A (en) * 2013-04-22 2014-11-17 Dowaエレクトロニクス株式会社 Method of joining electronic component
WO2019026799A1 (en) 2017-07-31 2019-02-07 バンドー化学株式会社 Composition for metal bonding, metal bonded laminate and electric control device
WO2019092959A1 (en) 2017-11-13 2019-05-16 日東電工株式会社 Composition for sinter bonding, sheet for sinter bonding, and dicing tape with sheet for sinter bonding

Also Published As

Publication number Publication date
CN114450106B (en) 2023-06-06
WO2021075463A1 (en) 2021-04-22
CN114450106A (en) 2022-05-06
EP4074436A1 (en) 2022-10-19
MY195125A (en) 2023-01-11
EP4074436A4 (en) 2023-10-25
JP2021063274A (en) 2021-04-22
JP6845444B1 (en) 2021-03-17
KR20220041243A (en) 2022-03-31
TW202122188A (en) 2021-06-16
TWI785399B (en) 2022-12-01
US20220347745A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US8288924B2 (en) Ceramic electronic component
EP1981320A1 (en) Conductive paste, multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate
JP2746279B2 (en) Substrate material for semiconductor device and method of manufacturing the same
TWI729373B (en) Conductive paste and sintered body
JP2013251256A (en) Low silver content paste composition, and method of making conductive film from said low silver content paste composition
JP6713120B1 (en) Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
KR102469222B1 (en) Bonding material, manufacturing method of bonding material and bonding body
KR102307809B1 (en) Conductive paste, laminate, and bonding method of Cu substrate or Cu electrode and conductor
JP6170045B2 (en) Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
JP4812329B2 (en) Electronic components, ferrite cores and inductors
CN115023797A (en) Conductive bonding material, bonding member provided with same, and bonding method
TWI751730B (en) CONDUCTIVE PASTE, LAMINATE, AND METHOD OF JOINING Cu SUBSTRATE OR Cu ELECTRODE TO CONDUCTOR
Songping Termination of BME–MLCC Using Copper–Nickel Bimetallic Powder as Electrode Material
JP2014043382A (en) Semiconductor device and method of manufacturing the same
WO2023228888A1 (en) Circuit component
Lo et al. Comparative study of how additives affect sintered silver microstructure in die-attach applications
JP2022093965A (en) Metal material and joint body including metal material and base material
TW202231398A (en) Copper oxide paste and method for producing electronic parts capable of bonding a chip component and a substrate more firmly
JP2018168458A (en) Silver powder, method for producing silver powder, paste-like composition, method for producing joined body, and method for producing silver film

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant