JP2912211B2 - Semiconductor substrate material and method of manufacturing the same - Google Patents

Semiconductor substrate material and method of manufacturing the same

Info

Publication number
JP2912211B2
JP2912211B2 JP34798495A JP34798495A JP2912211B2 JP 2912211 B2 JP2912211 B2 JP 2912211B2 JP 34798495 A JP34798495 A JP 34798495A JP 34798495 A JP34798495 A JP 34798495A JP 2912211 B2 JP2912211 B2 JP 2912211B2
Authority
JP
Japan
Prior art keywords
particle group
powder
particles
semiconductor substrate
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34798495A
Other languages
Japanese (ja)
Other versions
JPH08288436A (en
Inventor
安直 甲斐
千秋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TANGUSUTEN KK
Original Assignee
NIPPON TANGUSUTEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TANGUSUTEN KK filed Critical NIPPON TANGUSUTEN KK
Priority to JP34798495A priority Critical patent/JP2912211B2/en
Publication of JPH08288436A publication Critical patent/JPH08288436A/en
Application granted granted Critical
Publication of JP2912211B2 publication Critical patent/JP2912211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集積回路用に適し
た半導体基板材料、とくに、WあるいはMoのような高
融点金属粉末の焼結体中に、CuあるいはAgのような
充填金属を溶浸した半導体基板材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting a filler metal such as Cu or Ag in a semiconductor substrate material suitable for an integrated circuit, in particular, a sintered body of a high melting point metal powder such as W or Mo. about the semiconductor substrate materials soaked.

【0002】[0002]

【従来の技術】従来、集積回路用の半導体基板(ヒート
シンク)として、Cu系、MoあるいはW系のものがあ
り、いずれもNiメッキを施してセラミックス製パッケ
ージ部品あるいは半導体素子と接合される。
2. Description of the Related Art Conventionally, as a semiconductor substrate (heat sink) for an integrated circuit, there is a Cu-based, Mo-based or W-based one, all of which are plated with Ni and joined to a ceramic package component or a semiconductor element.

【0003】ところが、Cu製の基板は熱伝導性が高く
優れた放熱性を有するが、セラミックス製の外囲器材料
又は半導体素子との熱膨張係数が数倍大きく、半導体素
子を搭載する場合には、熱膨張の違いによる歪みがろう
付部の劣化を促進してしまうという欠点がある。一方、
WあるいはMo製の基板は熱膨張係数が比較的低く、ろ
う付に際しての信頼性に優れた材料ではあるが、熱伝導
率が低く放熱性に劣るという欠点がある。そのため、C
uとWあるいはMoと複合化して、それぞれの利点を活
かした優れた特性を有する半導体基板材料を得る試みが
行われるようになった。
However, a Cu substrate has high heat conductivity and excellent heat dissipation, but has a coefficient of thermal expansion several times larger than that of a ceramic envelope material or a semiconductor element. However, there is a disadvantage that distortion due to a difference in thermal expansion promotes deterioration of a brazed portion. on the other hand,
A substrate made of W or Mo has a relatively low coefficient of thermal expansion and is a material excellent in reliability at the time of brazing, but has a drawback that thermal conductivity is low and heat radiation is poor. Therefore, C
Attempts have been made to combine u with W or Mo to obtain a semiconductor substrate material having excellent characteristics utilizing the respective advantages.

【0004】このCuとWあるいはMoとを複合化させ
る方法として、粉末冶金の手法である溶浸法によってW
あるいはMo粉末焼結体中にCuを溶浸する方法、ある
いは、クラッドにより接合する方法がある。ところが、
後者のクラッドにより接合する方法は、寸法精度が出な
いために精密な機械加工を要し、信頼性の高い接合は望
めない上にコスト高を招き、また、WあるいはMoの焼
結インゴットからの圧延に際して長尺材を得るのが難し
く、さらには、強固な酸化物膜の存在のためCuとの機
械的接合は困難となるという欠点があるため、例えば、
特公平3−36304号公報、特公平3−36305号
公報、特開平6−13494号公報に記載されているよ
うに、溶浸法が広く採用されるようになった。
As a method of compounding Cu and W or Mo, W is infiltrated by a technique of powder metallurgy.
Alternatively, there is a method of infiltrating Cu into a Mo powder sintered body, or a method of joining with a clad. However,
The latter method of joining with a clad requires precise machining because the dimensional accuracy is not obtained, a highly reliable joining cannot be expected, and the cost is high, and the W or Mo ingot from the sintered ingot is used. It is difficult to obtain a long material at the time of rolling, and furthermore, there is a drawback that mechanical bonding with Cu becomes difficult due to the presence of a strong oxide film.
As described in JP-B-3-36304, JP-B-3-36305, and JP-A-6-13494, the infiltration method has been widely adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、溶浸法
の適用は工程が複雑な上に、Cuの含有量が20重量%
以下の場合には圧粉体では必要な密度が得られず焼結に
際しての収縮によって密度を調整する必要がある。この
場合、加熱条件の制御が難しく所定の収縮状態を得るの
が困難であり、収縮後の密度と寸法にバラツキを生じ、
熱膨張係数、熱伝導率に影響し、これが品質上のバラツ
キとなる。
However, the application of the infiltration method requires a complicated process and a Cu content of 20% by weight.
In the following cases, the required density cannot be obtained with the green compact, and it is necessary to adjust the density by shrinkage during sintering. In this case, it is difficult to control the heating conditions and it is difficult to obtain a predetermined shrink state, and the density and dimensions after shrinkage vary,
It affects the coefficient of thermal expansion and the thermal conductivity, which causes variations in quality.

【0006】本発明における解決課題は、集積回路用に
適した半導体基板材料、とくに、WあるいはMoのよう
な高融点金属粉末の焼結体中に、CuあるいはAgのよ
うな充填金属を溶浸した半導体基板材料における熱放散
効率と熱膨張率、それに密度の均一性と寸法精度の改善
にある。
The problem to be solved in the present invention is to infiltrate a filler metal such as Cu or Ag into a semiconductor substrate material suitable for an integrated circuit, in particular, a sintered body of a high melting point metal powder such as W or Mo. It is an object of the present invention to improve the heat dissipation efficiency and the coefficient of thermal expansion, the uniformity of the density, and the dimensional accuracy of the semiconductor substrate material.

【0007】[0007]

【課題を解決するための手段】本発明は、高融点金属の
大粒子群と小粒子群、あるいは、大粒子群と中粒子群と
小粒子群との組合せからなり、この大粒子群と小粒子群
が相互に分散した焼結体に充填金属を溶浸した複合材料
からなる半導体基板材料である
SUMMARY OF THE INVENTION The present invention is directed to a high melting point metal.
Large particles and small particles, or large particles and medium particles
It consists of a combination of small particles and large particles and small particles.
Material in which filler metal is infiltrated into a sintered body in which the particles are mutually dispersed
A semiconductor substrate material consisting of

【0008】この高融点金属粉の粒度構成は、平均粒子
径7〜15μmの大粒子群の粉末を70〜85容量%と
残部が平均粒子径0.5〜1.0μmの小粒子群の粉末
とするか、あるいは平均粒子径7〜15μmの大粒子群
の粉末を60〜80容量%と平均粒子径0.5〜1.0
μmの小粒子群の粉末を10〜25容量%、残部を平均
粒子径2〜4μmの中粒子群の粉末群からなる構成とす
ることによって、充填率が理論密度の60〜80%の圧
粉体とする。
[0008] The particle size configuration of the high-melting-point metal powder, the powder 70 to 85% by volume and the balance of the large element group having an average particle diameter 7~15μm of small children groups having an average particle size of 0.5~1.0μm powder It means either, or large child group <br/> of powder having an average particle size of 7~15μm and 60-80% by volume and the particle diameter 0.5-1.0
10-25 volume% of powder of small children groups [mu] m, by a structure comprising the remainder of the powder group Chutsubu element group having an average particle diameter of 2-4 [mu] m, the filling rate is 60-80% of the theoretical density pressure It shall be the powder.

【0009】高融点金属粉としては、W粉末あるいはM
o粉末、さらには粒度構成の違うWとMoの混合粉末あ
るいはそれらの金属が使用でき、また、溶浸用充填材と
しては、その融点が高融点金属よりはるかに低く、その
高融点金属と化合物を生成し難く、さらにその固溶度も
ほとんどない金属で、熱伝導性のよいCu、Ag、Al
あるいはこれらの合金が使用できる。大粒子の間の隙間
に小粒子が充填して圧粉体の密度を上げることができ、
さらに、中粒子を配合することによって焼結に際しての
収縮をさらに抑制して寸法精度を向上させることができ
る。
As the high melting point metal powder, W powder or M powder is used.
o powder, furthermore, a mixed powder of W and Mo having different particle sizes or their metals can be used. As a filler for infiltration, the melting point is much lower than that of the high melting point metal, and the high melting point metal and the compound are used. , Ag, Al with good thermal conductivity
Alternatively, these alloys can be used. Small particles can fill the gaps between the large particles and increase the density of the compact,
Further, by incorporating medium particles, shrinkage during sintering can be further suppressed, and dimensional accuracy can be improved.

【0010】[0010]

【発明の実施の形態】本発明の半導体基板は、前記配合
の高融点金属粉に粉末流動性改善のためのワックスを添
加したものを成形型中に充填し、圧縮成形して理論密度
の65%以上とし、これを800°Cで脱ワックス仮焼
し、さらに、1000〜1200°Cで2次仮焼した後
に1000〜1200°Cの溶浸用充填材が溶解する温
度で溶浸用充填材を2次仮焼結体中に溶浸することによ
って得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The semiconductor substrate of the present invention is prepared by filling a high-melting metal powder having the above-mentioned composition with a wax for improving powder fluidity in a molding die, and compression-molding the same to a theoretical density of 65%. %, And then calcined at 800 ° C for dewaxing, then calcined at 1000 to 1200 ° C, and then filled at 1000 to 1200 ° C for infiltration at a temperature at which the infiltrating filler dissolves. It is obtained by infiltrating the material into the secondary pre-sintered body.

【0011】[0011]

【実施例】本実施例は、高融点金属としてWを、また、
充填用金属としてCuを使用して半導体基板の作成に適
用した例を示す。
EXAMPLE In this example, W was used as a high melting point metal,
An example in which Cu is used as a filling metal and applied to the production of a semiconductor substrate will be described.

【0012】実施例1 大粒子群として平均粒子径が8μmの大粒子の粉末80
容量%と、小粒子群として平均粒子径が1μmの小粒子
の粉末20容量%のW粉末に、パラフィンワックス1重
量%を添加して、混合機中で1時間混合した。得られた
粉末を粉末成形プレス機を用いて98、196及び29
4MPaの圧力で型押しして、縦40mm×横40mm
×厚み3mmの圧粉体を得た。図1はこの圧粉体の密度
を示すもので、横軸に平均粒度が1μmのW粉末と平均
粒度が8μmのW粉末の混合粉末中の1μmのW粉末の
含有量を、また、縦軸に得られた密度を理論密度に対す
る%によって示す。同図に示すように、この圧力98M
Paの圧粉体の密度は11.78g/cm3であり、理
論密度の61%であった。この圧粉体をH2気中で80
0°Cで脱ワックス仮焼し、さらに同じくH2気中で1
100°Cに加熱して2次仮焼した。この仮焼結体は収
縮や変形もなく、圧粉体成形時の密度を有するものであ
った。このままこの仮焼結体に溶浸するに十分な量の純
銅を乗せ、これをH2気中で1100°Cに加熱するこ
とにより純銅を溶浸した。得られた基板材の密度は1
5.25g/cm3であり、銅含有量は21%であっ
た。このバラツキは0.03g/cm3であり、σn-1
散は、0.0051であって、縦方向の寸法バラツキは
0.05mmであり、σn-1は0.0087であった。
Example 1 Large particle powder 80 having an average particle diameter of 8 μm as a large particle group
1% by weight of paraffin wax was added to 20% by volume of W powder of small particles having an average particle diameter of 1 μm as a small particle group, and mixed in a mixer for 1 hour. The obtained powder was subjected to 98, 196 and 29 using a powder molding press.
Emboss with pressure of 4MPa, length 40mm x width 40mm
A green compact having a thickness of 3 mm was obtained. FIG. 1 shows the density of this green compact. The horizontal axis represents the content of 1 μm W powder in the mixed powder of W powder having an average particle size of 1 μm and W powder having an average particle size of 8 μm, and the vertical axis represents the content. The obtained density is shown by% with respect to the theoretical density. As shown in FIG.
The density of the green compact of Pa was 11.78 g / cm 3 , which was 61% of the theoretical density. This green compact in H 2 gas-80
0 to ° C shall dewaxing calcined 1 further also in in H 2 gas
It was heated to 100 ° C. and calcined secondarily. This temporary sintered body did not shrink or deform, and had a density at the time of compacting. Pure copper in an amount sufficient to infiltrate the pre-sintered body as it was was heated to 1100 ° C. in H 2 gas to infiltrate the pure copper. The density of the obtained substrate material is 1
5.25 g / cm 3 and the copper content was 21%. The variation was 0.03 g / cm 3 , the σ n-1 variance was 0.0051, the dimensional variation in the vertical direction was 0.05 mm, and the σ n-1 was 0.0087.

【0013】これに対して比較例として、粒子を従来通
り、平均粒子径3μmのW粉末を使用して製作した基板
材は、密度のバラツキが0.17g/cm3であり、σ
n-1は0.025であって、縦方向の寸法バラツキは
0.13mmであり、σn-1は0.025であった。
On the other hand, as a comparative example, the substrate material manufactured using W powder having an average particle diameter of 3 μm as in the past had a density variation of 0.17 g / cm 3 and a σ
n-1 was 0.025, the dimensional variation in the vertical direction was 0.13 mm, and σ n-1 was 0.025.

【0014】本発明は、プレス成形圧力を95〜300
MPaにすることにより、圧粉体の密度を理論密度の6
0〜80%に自由に調整できる。
According to the present invention, the press forming pressure is set to 95 to 300.
By setting to MPa, the density of the green compact is set to 6
It can be adjusted freely from 0 to 80%.

【0015】図2の顕鏡写真に本発明(a)と従来品で
ある比較例(b)との合金組織を示す。この顕鏡写真か
ら以下のことが判る。(a)はW粒子において大粒子間
に小粒子が入り込んだ緻密な充填状態を示しており、
(b)は充填のみで必要な充填を得ることができないた
めに、焼結の第2段階であるネック成長による密度上昇
を起こして、必要な密度を得ている。このため、(b)
は焼結後に数%以上の収縮が発生する。しかも、ネック
成長過程において、空孔が独立(クローズドポア)の発
生の可能性もあり、溶浸後の材料欠陥を引き起こすとい
う問題が出る可能性がある。本発明では、プレス状態が
保持されるので、このような問題も発生しない。
FIG. 2 is a microscopic photograph showing the alloy structures of the present invention (a) and the comparative example (b) which is a conventional product. The following can be seen from this microscopic photograph. (A) shows a densely packed state in which small particles enter between large particles in W particles,
In the case of (b), since the required filling cannot be obtained only by filling, the density is increased by neck growth, which is the second stage of sintering, and the required density is obtained. Therefore, (b)
After sintering, shrinkage of several percent or more occurs. Moreover, in the neck growth process, there is a possibility that vacancies may be independent (closed pores), which may cause a problem of causing material defects after infiltration. In the present invention, such a problem does not occur because the pressed state is maintained.

【0016】実施例2 大粒子群として平均粒子径が8μmの大粒径の粉末76
容量%と、小粒子群として平均粒子径が1μmの小粒径
粉末19容量%、これに中粒子群として平均粒子径が4
μmの中間粒子5容量%からなるW粉末にパラフィンワ
ックスを1重量%添加して、混合機中で1時間混合し
た。得られた粉末を粉末成形プレス機を用いて、294
MPaの圧力で型押しして縦40mm×横40mm×厚
み3mmの圧粉体を得た。図3はこの圧粉体の密度を示
すもので、横軸に粒子構成中の平均粒度が4μmの中間
粒子の含有量を、また、縦軸に得られた密度を理論密度
に対する%によって示す。同図に示すように、この圧粉
体の密度は、14.67g/cm3であり、理論密度の
76%であった。この圧粉体をH2気中で800°Cで
脱ワックス仮焼し、さらに、同じくH2気中で、120
0°Cに加熱して2次仮焼した。この仮焼結体は、収縮
や変形もなく、圧粉体成形時の密度を有するものであっ
た。そのまま、この仮焼結体に溶浸に十分な量の純銅を
乗せ、これをH2気中で1100°Cに加熱することに
より純銅を溶浸した。得られた基板材の密度は16.2
5g/cm3であり、銅含有量は15%であった。この
密度のバラツキは0.05g/cm3であり、σn-1
0.0059であって、縦方向の寸法バラツキは、0.
05mmでありσn-1は0.0084であった。
Example 2 A large particle size powder 76 having an average particle diameter of 8 μm as a large particle group.
% By volume, and 19% by volume of a small particle size powder having an average particle size of 1 μm as a small particle group, and 4% as an average particle size as a medium particle group.
1 wt% of paraffin wax was added to W powder composed of 5% by volume of μm intermediate particles, and mixed in a mixer for 1 hour. The obtained powder was converted to 294 using a powder molding press.
It was embossed with a pressure of MPa to obtain a green compact having a length of 40 mm, a width of 40 mm and a thickness of 3 mm. FIG. 3 shows the density of this green compact, in which the horizontal axis indicates the content of intermediate particles having an average particle size of 4 μm in the particle constitution, and the vertical axis indicates the obtained density in% of the theoretical density. As shown in the figure, the density of this green compact was 14.67 g / cm 3 , which was 76% of the theoretical density. The green compact was dewaxed calcined at 800 ° C in in H 2 gas, further, also with H 2 aerial, 120
It was heated to 0 ° C. and calcined secondarily. This temporary sintered body had no shrinkage or deformation and had a density at the time of compacting. Pure copper in an amount sufficient for infiltration was placed on the pre-sintered body as it was, and heated to 1100 ° C. in H 2 gas to infiltrate the pure copper. The density of the obtained substrate material is 16.2
It was 5 g / cm 3 and the copper content was 15%. The variation in the density is 0.05 g / cm 3 , the σ n-1 is 0.0059, and the dimensional variation in the vertical direction is 0.
05 mm and σ n-1 was 0.0084.

【0017】これに対して、比較例として、粒度を従来
通り粒度構成が平均粒子径3μmでほぼ正規分布をする
粉末を使用して製作した基板材は、密度のバラツキは
0.13g/cm3であり、σn-1は0.031であっ
て、縦方向の寸法バラツキは0.12mm、σn-1
0.024であった。
On the other hand, as a comparative example, in the case of a substrate material manufactured by using a powder whose particle size is substantially the same as the conventional one and has a mean particle size of 3 μm and a substantially normal distribution, the variation in density is 0.13 g / cm 3. Σ n-1 was 0.031, the dimensional variation in the vertical direction was 0.12 mm, and σ n-1 was 0.024.

【0018】実施例3 中粒子群として平均粒子径が3μmの粉末と、小粒子群
として平均粒子径が1μmの粉末とを等量の容量%とし
て、群として、平均粒子径が12μmの粉末の含有量を
変化させたW粉末にパラフィンワックスを1重量%添加
して、混合機中で1時間混合した。得られた粉末を粉末
成型プレス機を用いて、294μPaの圧力で型押しし
て、縦40mm、横40mm、厚み3mmの圧粉体を得
た。
Example 3 A powder having an average particle diameter of 3 μm as a medium particle group and a powder having an average particle diameter of 1 μm as a small particle group were set as an equal volume percentage of a powder having an average particle diameter of 12 μm. 1 wt% of paraffin wax was added to the W powder having the changed content, and mixed for 1 hour in a mixer. The obtained powder was stamped with a pressure of 294 μPa using a powder molding press to obtain a green compact having a length of 40 mm, a width of 40 mm and a thickness of 3 mm.

【0019】図3は、この圧粉体の密度を示すもので、
横軸に平均粒子径が12μmの大粒子粉末の含有量を、
また、縦軸は得られた密度を理論密度に対する%によっ
て示す。大粒子群の含有量が70容量%で、中粒子群と
小粒子群の含有量が、それぞれ、15容量%の場合に、
圧粉体の密度は15.2g/cm3、理論密度が79%
の最大密度を示した。
FIG. 3 shows the density of the green compact.
On the horizontal axis, the content of the large particle powder having an average particle diameter of 12 μm,
The vertical axis indicates the obtained density by% with respect to the theoretical density. When the content of the large particle group is 70% by volume, and the content of the medium particle group and the small particle group is 15% by volume, respectively,
The density of the green compact is 15.2 g / cm 3 and the theoretical density is 79%
The maximum density was shown.

【0020】この圧粉体を水素気流中、800°Cで脱
ワックスし、さらに、同じ水素気流中で、1200°C
で2次仮焼した。この仮焼体は収縮や変形がなく、圧粉
成形時の密度を有するものであった。そのまま、この仮
焼体に充分な量の純銅を載せて、これを、水素気中で、
1100°Cに加熱することで溶浸処理を施した。得ら
れた溶浸体の密度は17.1g/cm3であり、その密
度のバラツキは、±0.05g/cm3であり、σn-1
0.057であって、縦方向の寸法バラツキは0.05
mm、σn-1は0.0084であった。
The green compact was dewaxed at 800 ° C. in a hydrogen stream, and further depressed at 1200 ° C. in the same hydrogen stream.
Was calcined secondarily. This calcined body did not shrink or deform and had a density at the time of compacting. As it is, place a sufficient amount of pure copper on this calcined body, and put it in hydrogen
The infiltration treatment was performed by heating to 1100 ° C. The density of the obtained infiltrated body was 17.1 g / cm 3 , the variation in the density was ± 0.05 g / cm 3 , the σ n-1 was 0.057, and the vertical dimension Variation is 0.05
mm and σ n-1 were 0.0084.

【0021】次に、実施例1と2と3に用いた粉末を種
々の圧力で型押しして、銅含有量が溶浸後に10重量
%、15重量%、20重量%、30重量%および40重
量%となるような圧粉体とし、1次仮焼結、2次仮焼
結、溶浸条件は実施例と同じ条件で基板材を作製した。
Next, the powders used in Examples 1, 2 and 3 were embossed at various pressures so that the copper content after infiltration was 10%, 15%, 20%, 30% and A substrate material was prepared under the same conditions as those of the example, with a green compact of 40% by weight, and the conditions of primary temporary sintering, secondary temporary sintering and infiltration.

【0022】図4および図5は、上記方法によって得た
基板材の銅含有量と熱膨張係数および熱伝導率との関係
を示すものである。
FIG. 4 and FIG. 5 show the relationship between the copper content of the substrate material obtained by the above method and the thermal expansion coefficient and thermal conductivity.

【0023】比較例1として、1μm粒径のみのW粉末
で、圧力および仮焼結条件を変化させることによって、
銅含有量が溶浸後に、10重量%、15重量%、20重
量%、30重量%および40重量%となるような仮焼結
体とし、溶浸材と同じ条件で溶浸して基板材を作製し
た。
As Comparative Example 1, by changing the pressure and the preliminary sintering conditions with W powder having a particle size of only 1 μm,
After the infiltration, the pre-sintered body having a copper content of 10% by weight, 15% by weight, 20% by weight, 30% by weight and 40% by weight is infiltrated, and the substrate material is infiltrated under the same conditions as the infiltration material. Produced.

【0024】比較例2の従来例に用いた3μm粒径のW
粉末の場合も、上記と同様な方法より基板材を作製し
た。また、比較例3は、8μm粒径のみのW粉末で、種
々の圧力で型押しして得られた圧粉体に実施例と同じ条
件で1次仮焼結、2次仮焼結、溶浸して銅含有量が、2
0重量%、30重量%および40重量%の基板材を示
す。
W of 3 μm particle size used in the conventional example of Comparative Example 2
In the case of powder, a substrate material was prepared in the same manner as described above. In Comparative Example 3, the first temporary sintering, the second temporary sintering, and the sintering were carried out under the same conditions as in the example, using a W powder having a particle diameter of only 8 μm and being pressed under various pressures. Soaked copper content 2
0%, 30% and 40% by weight of the substrate material are shown.

【0025】これらの図から、本発明の実施例および比
較例を対比すると、1μm粒径は8μm粒径に比べ、熱
膨張係数および熱伝導率がいずれも小さいことが判る。
本発明の実施例と従来例の粒径の場合はその中間にあ
る。このことは、本発明品は熱膨張係数および熱伝導率
における大粒子を用いた基板材の特徴と小粒子を用いた
基板材の特徴とが加減されたためであり、大粒子を多く
用いれば熱膨張係数および熱伝導率が大きくなると考え
られる。したがって、大粒子の含有量比の高い実施例1
が本発明品の中では熱膨張係数および熱伝導率が最も大
きくなっている。実施例2と実施例3とでは、大粒子の
平均粒径と配合比が違うために一義的に比較することは
できないが、本件の比較においては粒子径の効果がやや
大きく影響したと思われ、実施例3の方が熱膨張係数お
よび熱伝導率が大きい傾向にある。
From these figures, it can be seen that when comparing the examples of the present invention and the comparative examples, the 1 μm particle size has a smaller thermal expansion coefficient and a smaller thermal conductivity than the 8 μm particle size.
In the case of the particle size of the embodiment of the present invention and the particle size of the conventional example, it is in the middle. This is because the characteristics of the substrate material using the large particles and the characteristics of the substrate material using the small particles in the thermal expansion coefficient and the thermal conductivity of the present invention were moderated. It is considered that the coefficient of expansion and the thermal conductivity increase. Therefore, Example 1 having a high content ratio of large particles
However, among the products of the present invention, the thermal expansion coefficient and the thermal conductivity are the largest. Example 2 and Example 3 cannot be uniquely compared due to the difference in the average particle diameter and the mixing ratio of the large particles, but it is considered that the effect of the particle diameter had a relatively large effect in the comparison in the present case. In Example 3, the thermal expansion coefficient and the thermal conductivity tend to be larger.

【0026】ところで、本発明の実施例と比較例を見た
場合、熱膨張係数の格差に比べ、熱伝導率の格差の方が
大きい。このことは、本発明品が従来品と同じ熱膨張に
合わせた組成としても、従来品よりも熱膨張率が高くな
ることを示し、より優れた状態であることを示してい
る。更に、大、中、小の粒子群の割合を調整することに
より、圧粉体の密度を理論密度の80%まで高めること
ができる。例えば、従来材料において銅含有量が20重
量%以上時の熱膨張係数が必要な場合は、本発明の実施
例1の方が熱伝導率に優れた基板材を得ることができ、
その一方で、本発明の実施例2は、本発明の実施例1で
製造困難な従来材料における15重量%〜20重量%時
の熱膨張係数が必要な場合において、さらに、実施例3
では、実施例2でも製造困難な従来材料における10重
量%〜15重量%時の熱膨張係数が必要な場合におい
て、従来例よりも熱伝導率が優れた基板材を得ることが
できる。
When the examples of the present invention and the comparative examples are viewed, the difference in the thermal conductivity is larger than the difference in the coefficient of thermal expansion. This indicates that the product of the present invention has a higher thermal expansion coefficient than the conventional product even when the composition is adjusted to the same thermal expansion as that of the conventional product, indicating a more excellent state. Further, by adjusting the ratio of the large, medium, and small particle groups, the density of the green compact can be increased to 80% of the theoretical density. For example, when a conventional material requires a coefficient of thermal expansion when the copper content is 20% by weight or more, Example 1 of the present invention can obtain a substrate material having better thermal conductivity,
On the other hand, Example 2 of the present invention further requires Example 3 when the thermal expansion coefficient at 15% by weight to 20% by weight of the conventional material difficult to manufacture in Example 1 of the present invention is required.
In the case where the thermal expansion coefficient is required at 10% by weight to 15% by weight of the conventional material which is difficult to manufacture even in Example 2, a substrate material having a higher thermal conductivity than the conventional example can be obtained.

【0027】[0027]

【発明の効果】本発明によって以下の効果を奏する。 (1)サイズ調整のための収縮焼結を必要とせず、圧粉
体に対しての溶浸後の収縮をほぼ0にすることができる
ので、仕上げのための機械加工を不要とすることもでき
る。 (2)圧粉体のプレスの段階で、密度(充填率)を制御
でき、製品の組成バラツキを小さくすることができる。 (3)大粒子を使うことによって熱膨係数数は若干大き
くなるものの、熱伝導率は大きくなり、結果として熱伝
導率のより良好な半導体基板を得ることができる。 (4)組成バラツキが小さいため、熱膨張係数、熱伝導
率のバラツキも小さくなり、高品質の半導体基板を得る
ことができる。
According to the present invention, the following effects can be obtained. (1) Shrinkage sintering for size adjustment is not required, and shrinkage after infiltration of the green compact can be reduced to almost zero, so that machining for finishing is not required. it can. (2) The density (filling rate) can be controlled at the stage of pressing the green compact, and the composition variation of the product can be reduced. (3) Although the number of thermal expansion coefficients is slightly increased by using large particles, the thermal conductivity is increased, and as a result, a semiconductor substrate having better thermal conductivity can be obtained. (4) Since the variation in the composition is small, the variation in the coefficient of thermal expansion and the variation in the thermal conductivity is also small, and a high-quality semiconductor substrate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 粒度構成と得られた圧粉体の密度との関係を
示すもので、大粒子群と小粒子群との組合せからなる粒
度構成の例を示す。
FIG. 1 shows the relationship between the particle size configuration and the density of an obtained green compact, and shows an example of a particle size configuration composed of a combination of a large particle group and a small particle group.

【図2】 (a)は、本発明の合金組織を示し、(b)
は比較例の合金組織を示す。
FIG. 2A shows an alloy structure of the present invention, and FIG.
Indicates the alloy structure of the comparative example.

【図3】 粒度構成と得られた圧粉体の密度との関係
を、大粒子群と中間粒子群と小粒子群との組合せからな
る粒度構成の例で示す。
FIG. 3 shows the relationship between the particle size configuration and the density of the obtained green compact by an example of a particle size configuration including a combination of a large particle group, an intermediate particle group, and a small particle group.

【図4】 得られた半導体基板の熱膨張係数を比較例と
共に示す。
FIG. 4 shows a thermal expansion coefficient of the obtained semiconductor substrate together with a comparative example.

【図5】 得られた半導体基板の熱伝導率を比較例と共
に示す。
FIG. 5 shows the thermal conductivity of the obtained semiconductor substrate together with a comparative example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高融点金属の大粒子群と小粒子群と組合
せからなり、この大粒子群と小粒子群が相互に分散した
仮焼結体に充填金属を溶浸した複合材料からなる半導体
基板材料であって、 融点金属がWあるいはMoあるいはWとMoより
填金属がCuあるいはAgあるいはAlあるいはこれ
らの合金であり 粒子群平均粒子径7〜15μmであり、 小粒子群平均粒子径0.5〜1.0μmの粉末であ
って、且つ、 大粒子群が60〜80容量%からなり、残部が小粒子群
であることを特徴とする半導体基板材料。
1. A refractory large particle group of metal and a small particle group and unions
The large particles and the small particles are mutually dispersed.
Presintered body filler metal to a semiconductor substrate material comprising a composite material infiltrated, the refractory metal is W Oh Rui I from M o Oh Rui W and Mo
Ri, Filling metal is Cu or Ag, or Al or an alloy, the average particle diameter of the large particle group is the 7~15Myu m, an average particle diameter of 0.5~1.0μm small particles powder And the large particle group is composed of 60 to 80 % by volume , and the balance is the small particle group
Semiconductor substrate materials, characterized in that it.
【請求項2】 高融点金属の大粒子群と中粒子群と小粒
子群との組合せからなり、この大粒子群と中粒子群と小
粒子群とが相互に分散した仮焼結体に充填金属を溶浸し
た複合材料からなる半導体基板材料であって、 融点金属がWあるいはMoあるいはWとMoより
填金属がCuあるいはAgあるいはAlあるいはこれ
らの合金であり 粒子群平均粒子径7〜15μmであり、 中粒子群平均粒子径2〜4μmであり、 そして、小粒子群平均粒子径0.5〜1.0μmで
あって、且つ、 大粒子群が60〜80容量%と小粒子群が10〜25容
量%を占め、残部が中粒子群からなることを特徴とする
半導体基板材料。
2. A combination of a large particle group, a medium particle group, and a small particle group of a high melting point metal,
A semiconductor substrate material of a composite material in which the particles infiltrated the filler metal to the temporary sintered dispersed in each other, the refractory metal is W Oh Rui I from M o Oh Rui W and Mo
Ri, Filling metal is Cu or Ag, or Al or an alloy, the average particle diameter of the large particle group is the 7~15Myu m, an average particle size of the medium particles is 2~4Myu m, and, the average particle diameter of the small particle group is a <br/> in 0.5~1.0Myu m, and, the large particle group 60 to 80 volume percent and a small particle group accounts for 10 to 25 volume%, the balance being A semiconductor substrate material comprising a group of medium particles.
JP34798495A 1995-02-17 1995-12-15 Semiconductor substrate material and method of manufacturing the same Expired - Fee Related JP2912211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34798495A JP2912211B2 (en) 1995-02-17 1995-12-15 Semiconductor substrate material and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-53516 1995-02-17
JP5351695 1995-02-17
JP34798495A JP2912211B2 (en) 1995-02-17 1995-12-15 Semiconductor substrate material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08288436A JPH08288436A (en) 1996-11-01
JP2912211B2 true JP2912211B2 (en) 1999-06-28

Family

ID=26394225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34798495A Expired - Fee Related JP2912211B2 (en) 1995-02-17 1995-12-15 Semiconductor substrate material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2912211B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114048A (en) * 1998-09-04 2000-09-05 Brush Wellman, Inc. Functionally graded metal substrates and process for making same
CN103681961A (en) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 Cleaning method of infrared detector chip

Also Published As

Publication number Publication date
JPH08288436A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
JP3315919B2 (en) Method for manufacturing a composite member composed of two or more different types of members
JPH06244330A (en) Heat-controlling composite material used in electronic circuit device, and manufacture thereof
US5049184A (en) Method of making a low thermal expansion, high thermal conductivity, composite powder metallurgy member and a member made thereby
CN109972004A (en) A kind of rare earth Sc Modification on Al-Si-Mg alloy and preparation method thereof
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JP4113971B2 (en) Low expansion material and manufacturing method thereof
JP2912211B2 (en) Semiconductor substrate material and method of manufacturing the same
US5886269A (en) Substrate and heat sink for a semiconductor and method of manufacturing the same
KR20010039716A (en) High performance Cu/Cr sputter targets for semiconductor application
US5878322A (en) Heat-dissipating substrate for micro-electronic devices and fabrication method
JPH05186804A (en) Tungsten multiple powder, tungsten composite sheet and their production
JP2004331993A (en) Copper alloy
JPH11323409A (en) Composite member and its production
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
JPS6230804A (en) Multi-layer sintering method for sintered hard material powder and ferrous metallic powder by powder hot press method
JP2004323953A (en) Copper-based low thermal expansion high thermal conduction member, and its production method
JP2679268B2 (en) Manufacturing method of brazing material
JPH0931587A (en) Solid-phase sintered tungsten-copper substrate and its production
JP2860427B2 (en) Method for producing sintered body made of amorphous alloy powder
JP2002356731A (en) Substrate for semiconductor
JP2820566B2 (en) Method of manufacturing heat dissipation member for semiconductor package
JPH0931586A (en) Solid-phase-sintered tungsten-copper alloy
JPH0347944A (en) Substrate material for heat radiation
JP2559085B2 (en) Composite sintered material and manufacturing method thereof
JP2910415B2 (en) Heat dissipation structural member made of tungsten-based sintered alloy for semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees