JP2534650B2 - Demodulator - Google Patents

Demodulator

Info

Publication number
JP2534650B2
JP2534650B2 JP60178503A JP17850385A JP2534650B2 JP 2534650 B2 JP2534650 B2 JP 2534650B2 JP 60178503 A JP60178503 A JP 60178503A JP 17850385 A JP17850385 A JP 17850385A JP 2534650 B2 JP2534650 B2 JP 2534650B2
Authority
JP
Japan
Prior art keywords
signal
phase error
circuit
output
error signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60178503A
Other languages
Japanese (ja)
Other versions
JPS6239944A (en
Inventor
泰玄 ▲吉▼田
正人 田原
学 八木
松浦  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60178503A priority Critical patent/JP2534650B2/en
Priority to EP86111275A priority patent/EP0212582B1/en
Priority to DE8686111275T priority patent/DE3687249T2/en
Priority to AU61198/86A priority patent/AU584555B2/en
Priority to CA000516027A priority patent/CA1262266A/en
Priority to US06/896,985 priority patent/US4757266A/en
Publication of JPS6239944A publication Critical patent/JPS6239944A/en
Application granted granted Critical
Publication of JP2534650B2 publication Critical patent/JP2534650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は多値直交振幅変調波(多値QAM変調波)から
基準搬送波を再生する搬送波再生回路を用いた復調回路
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a demodulation circuit using a carrier regenerating circuit that regenerates a reference carrier from a multilevel quadrature amplitude modulation wave (multilevel QAM modulation wave).

<従来の技術> すでに種々のマイクロ波ディジタル伝送方式が実用に
入っており,最近では16QAM方式にはじまる多値直交振
幅変調方式の開発実用化が進められている。このような
変調方式は高能率な情報伝送が可能であるが,外部より
受ける各種雑音に対しての余裕がますます少なくなって
いている。よって復調装置においては雑音相加の少ない
再生基準搬送波を用いた同期検波方式が不可欠であり,
更に基準搬送波を再生する際にはそれに含まれるジッタ
成分が極力少なくなるような回路構成を選択する必要が
ある。その1つに本発明者等の1人が特願昭56−015775
号(特開昭57−131151号)で提案した「搬送波再生回
路」がある。これは多値識別器の出力データを論理演算
することによって位相誤差信号を得る構成となってお
り,ジッタ成分の少ない再生基準搬送波を得ることがで
きる。
<Prior art> Various microwave digital transmission systems have already been put into practical use, and recently, the multilevel quadrature amplitude modulation system beginning with the 16QAM system has been developed and put to practical use. Such a modulation method enables highly efficient information transmission, but the margin for various external noises is becoming smaller and smaller. Therefore, in the demodulator, the synchronous detection method using the reproduction reference carrier with little noise addition is indispensable.
Furthermore, when reproducing the reference carrier wave, it is necessary to select a circuit configuration in which the jitter component contained in the reference carrier wave is minimized. One of them is the Japanese Patent Application No. 56-015775.
There is a "carrier wave recovery circuit" proposed in Japanese Patent Laid-Open No. 57-131151. This is configured to obtain a phase error signal by logically operating the output data of the multilevel discriminator, and it is possible to obtain a reproduced reference carrier wave with a small jitter component.

<発明が解決しようとする問題点> しかしながら高品質な再生基準搬送波を維持するため
には入力レベルは常に最適値に保つ必要があり,入力レ
ベルの変化に対して前述した基準搬送波対ジッタ成分比
特性は著しく劣化する。それは変調波の多値数が増す程
に大きくなる。通常この欠点に対しては厳密なAGC機能
を付加することで解決されるが,特殊条件下においては
この欠点が解決されない。即ち,搬送波再生回路の同期
確立過程において,AGC機能が十分に動作しない時あるい
は伝送路に同相干渉歪がある場合には,同期確立過程に
長い時間を要したり,最悪の場合は同期確立が不能とな
る。
<Problems to be Solved by the Invention> However, in order to maintain a high quality reproduction reference carrier, it is necessary to always keep the input level at an optimum value. The characteristics deteriorate significantly. It increases as the multi-valued number of modulated waves increases. Normally, this problem is solved by adding a strict AGC function, but under special conditions this problem cannot be solved. In other words, in the process of establishing synchronization of the carrier recovery circuit, if the AGC function does not operate sufficiently or if there is common-mode interference distortion in the transmission line, it will take a long time to establish the synchronization, or in the worst case, synchronization will not be established. It becomes impossible.

<問題点を解決するための手段> 本発明は上記欠点を除去した搬送波再生回路を有した
復調装置を提供するもので、64値もしくはそれ以上の値
の多値直交振幅変調波を基準搬送波で同期検波して第1
及び第2の復調信号を得、この第1及び第2の復調信号
から得られる位相誤差信号を用いて前記基準搬送波を再
生する搬送波同期回路を構成し、前記第1及び第2の復
調信号をレベル制御したのち多値識別して主データ信号
を含む複数データは信号例を出力する復調装置であっ
て、前記位相誤差信号が第1及び第2の移送誤差信号か
ら選択されたいずれか一方の位相誤差信号であり、第1
の位相誤差信号を得る手段が前記複数データ信号列を論
理演算する論理回路からなっており、而して前記第2の
位相誤差信号を得る手段が、第1及び第2の復調信号を
それぞれπ/4ラジアン移相する移相手段と、この移相手
段の出力を2値識別して位置判別を行う第1の位置判別
手段と、前記移相手段の出力の多値識別を行って4PSK波
と等価にみなせる信号領域の判別を行う領域判別手段
と、前記第1及び第2の復調信号を2値識別した信号及
び前記主データ信号の最上位ビットのうちのいずれか一
方の信号を用いて位置判別を行う第2の位置判別手段
と、前記第1及び第2の位置判別手段の出力信号、なら
びに前記領域判別手段の出力信号の間で論理操作をして
前記第2の位相誤差信号を得る論理手段とを有してお
り、且つ前記選択を行う手段が、前記レベル制御が正常
であり且つ前記搬送波同期回路が安定動作状態にある時
は前記第1の位相誤差信号を選択し、動作過渡期にある
ときは前記第2を移送誤差信号を選択するように構成さ
れている。
<Means for Solving the Problems> The present invention provides a demodulator having a carrier wave regenerating circuit in which the above-mentioned drawbacks are eliminated. A multi-valued quadrature amplitude modulation wave having 64 or more values is used as a reference carrier wave. Synchronous detection first
And a second demodulated signal, and a carrier synchronization circuit for reproducing the reference carrier by using the phase error signal obtained from the first and second demodulated signals, and constructing the first and second demodulated signals. A demodulator for outputting a signal example of a plurality of data including a main data signal after multi-level identification after level control, wherein the phase error signal is one of the first and second transfer error signals. Phase error signal, the first
The means for obtaining the phase error signal comprises a logic circuit for logically operating the plurality of data signal sequences, and the means for obtaining the second phase error signal outputs π for the first and second demodulated signals, respectively. / 4 radian phase shifting means, first position discriminating means for discriminating the position by binary discrimination of the output of the phase shifting means, and multi-level discrimination of the output of the phase shifting means for 4PSK wave. Using a region discriminating means for discriminating a signal region that can be regarded as equivalent to the signal, and a signal obtained by binary-discriminating the first and second demodulated signals and one of the most significant bits of the main data signal. A logical operation is performed between the second position discriminating means for discriminating the position, the output signals of the first and second position discriminating means, and the output signals of the area discriminating means to obtain the second phase error signal. And a means for making the selection. However, when the level control is normal and the carrier synchronizing circuit is in a stable operation state, the first phase error signal is selected, and when the operation is in transition, the second transfer error signal is selected. Is configured.

<実施例> 第1図(a)は本発明を64QAM変調波に適用した実施
例の構成を示す図である。1は直交位相検波器,2,3は可
変減衰器,4,5,9〜12はアナログ,ディジタル(A/D)変
換器,6,7は自動利得制御(AGC)回路,8は搬送波再生回
路用の論理回路,13は減算器,14は加算器,15はDタイプ
フリップフロップ(FF),16は選択回路,17は検葉回路,1
8は低減ろ波器,19は電圧制御発振器,20〜24は排他的論
理和(EX−OR)回路,25はOR回路,26はAND回路,27はNAND
回路である。
<Example> FIG. 1 (a) is a diagram showing a configuration of an example in which the present invention is applied to a 64QAM modulated wave. 1 is a quadrature detector, 2 and 3 are variable attenuators, 4, 5 and 9 to 12 are analog and digital (A / D) converters, 6 and 7 are automatic gain control (AGC) circuits, 8 is carrier wave regeneration Logic circuit for circuit, 13 is subtractor, 14 is adder, 15 is D type flip-flop (FF), 16 is selection circuit, 17 is leaf detection circuit, 1
8 is a reduction filter, 19 is a voltage controlled oscillator, 20 to 24 are exclusive OR (EX-OR) circuits, 25 is an OR circuit, 26 is an AND circuit, 27 is a NAND circuit.
Circuit.

ここで上記装置の動作について述べる。はじめに安定
動作的に用いられる搬送波同期回路系について説明す
る。入力である64QAM変調波は直交位相検波器1に入
り,電圧制御発振器19の出力である再生された基準搬送
波で同期検波され,復調信号P,Qに変換される。可変減
衰器2及び3はA/D変換器4,5の入力レベルを最適レベル
に保つように制御されており,その制御信号はAGC回路
6,7より供給されている。A/D変換器4,5は4ビットであ
り,上位3ビットは主データ信号の再生に用いられ,最
下位ビット(LSB)は誤差信号に使われる。
The operation of the above device will now be described. First, a carrier synchronization circuit system used for stable operation will be described. The 64QAM modulated wave which is the input enters the quadrature phase detector 1 and is synchronously detected by the reproduced reference carrier which is the output of the voltage controlled oscillator 19 and converted into demodulated signals P and Q. The variable attenuators 2 and 3 are controlled so that the input levels of the A / D converters 4 and 5 are kept at the optimum levels, and the control signal is the AGC circuit.
Sourced from 6,7. The A / D converters 4 and 5 have 4 bits, the upper 3 bits are used for reproducing the main data signal, and the least significant bit (LSB) is used for the error signal.

次に動作過渡期に用いられる搬送波同期回路系につい
て説明する。A/D変換器9〜12,減算器13,加算器14,EX−
OR回路20,23,24で構成される回路はよく知られた4位相
偏移キーイング(4PSK)波用のデジタルコスタス形位相
同期回路であり,例えば昭和52年度電子通信学会総合全
国大会で発表されたNo.1845「ベースバンド処理形搬送
波同期回路を用いた4PSK復調盤」にも記載されている。
減算器13,加算器14は復調信号P,Qをそれぞれπ/4ラジア
ン位相するためのものであり,A/D変換器11,12で2値識
別した出力L1をEX−OR回路23でEX−OR操作することによ
って位相判別信号S1が得られる。一方向復調信号PとQ
をA/D変換器9,10で2値識別した2つの信号,あるいはA
/D変換器4,5の出力である主データ信号D1を,EX−OR回路
20でEX−OR操作して出力する。なお前記の2つのD1出力
がA/D変換器9,10の出力とこの目的のために同等のもの
であることはいうまでもない。次いでEX−OR回路23と同
20の出力とをEX−OR回路24にてEX−OR操作すれば,EX−O
R回路24出力は4PSK波用位相誤差信号となる。
Next, the carrier synchronization circuit system used in the operation transition period will be described. A / D converters 9 to 12, subtractor 13, adder 14, EX-
The circuit composed of OR circuits 20, 23, and 24 is a well-known digital Costas type phase synchronization circuit for 4-phase shift keying (4PSK) waves, and was announced at the nationwide conference of the Institute of Electronics and Communication Engineers in 1977, for example. No. 1845 "4PSK demodulator using a baseband processing type carrier synchronization circuit" is also described.
Subtracter 13, the adder 14 is for each [pi / 4 radians phase demodulation signal P, Q, and the output L 1 was identified 2 values by the A / D converter 11 and 12 EX-OR circuit 23 The phase discrimination signal S 1 is obtained by the EX-OR operation. One-way demodulated signals P and Q
Of the two signals, which are binary-coded by the A / D converters 9 and 10, or A
The EX-OR circuit outputs the main data signal D 1
Perform EX-OR operation at 20 and output. It goes without saying that the above two D 1 outputs are equivalent to the outputs of the A / D converters 9 and 10 for this purpose. Then the same as the EX-OR circuit 23
If you use the EX-OR circuit 24 to perform an EX-OR operation on the output of 20 and EX-O
The output of the R circuit 24 becomes the phase error signal for the 4PSK wave.

ここで第2図(a)を参照すると,EX−OR回路24から
得られる位相誤差信号は,4PSK波と等価にみなせる信号
すなわちP0,Q0軸からπ/4ラジアンシフトしたP1軸,Q1
上の信号点から得られている。その時各信号点の振幅値
には無関係となっており,P1,Q1軸上であれば誤まった位
相誤差信号は作らず,P1,Q1軸から離れた時のみ正しい位
相誤差情報となる。このことはこの位相同期回路はレベ
ル変動に対して強いことを表わしている。但し,今入力
信号は64QAM変調波であり,P1,Q1軸上の信号点の他にた
くさん有り,これら信号点はP1Q1軸から離れており,こ
れらから正しい位相誤差情報がとり出せないばかりか,
逆にジッタを受けることになるので,P1,Q1軸付近に領域
を設けて,信号点がこの領域に入った時のみEX−OR回路
24の出力を用いる構成をとる。
Referring to FIG. 2 (a), the phase error signal obtained from the EX-OR circuit 24 is a signal that can be regarded as equivalent to a 4PSK wave, that is, a P 1 axis that is π / 4 radian-shifted from the P 0 and Q 0 axes, Q Obtained from the signal points on the 1st axis. At that time, it is irrelevant to the amplitude value of each signal point, and if it is on the P 1 and Q 1 axes, a wrong phase error signal is not created, and the correct phase error information is obtained only when it is separated from the P 1 and Q 1 axes. Becomes This means that this phase locked loop is resistant to level fluctuations. However, the input signal is now a 64QAM modulated wave, and there are many signal points on the P 1 and Q 1 axes, and these signal points are far from the P 1 Q 1 axis, and correct phase error information is obtained from these. Not only can you not give out,
Since will undergo jitter Conversely, by providing a region in the vicinity of P 1, Q 1 axis, only when the signal points are entered this area EX-OR circuit
It is configured to use 24 outputs.

A/D変換器11,12のL2出力のスレショールドレベルは第
2図(a)における±lに設定されており,EX−OR回路2
1,22の出力は各信号点が領域a1以外の時,“0"となる。
NAND回路27はこれら2つの信号を受けて領域判定信号S2
を発生する。よってAND回路26の出力には各信号点が領
域a1内に入った時,CLK信号が送出され,D型フリップフロ
ップFF15によってEX−OR回路24出力が読み出される。以
上の動作によって位相誤差情報はP1,Q1軸付近の信号点
よりとり出されるので,ジッタ成分の少ない基準搬送波
を再生することができる。
The threshold level of the L 2 output of the A / D converters 11 and 12 is set to ± l in Fig. 2 (a), and the EX-OR circuit 2
The output of 1, 22 has a respective signal point at a time other than the region a 1, a "0".
The NAND circuit 27 receives these two signals and receives the area determination signal S 2
Occurs. Therefore, when each signal point enters the area a 1 at the output of the AND circuit 26, the CLK signal is transmitted and the D-type flip-flop FF15 reads the output of the EX-OR circuit 24. By the above operation, the phase error information is extracted from the signal points near the P 1 and Q 1 axes, so that the reference carrier with less jitter component can be regenerated.

スレショールドレベル±lの設定値は小さくする程ジ
ッタ成分が少なくなるが,その時引込位相が第2図
(a)に示される状態でなく,この状態からある位相回
転をもった位置で安定するいわゆる疑似引込現象が生じ
るので,結局,lの値はP1,Q1軸上の信号点の他が含まれ
ない最大に設定するのが望ましいと言える。
The smaller the set value of the threshold level ± l is, the smaller the jitter component becomes, but at that time, the pull-in phase is not in the state shown in FIG. 2 (a) but is stable at a position having a certain phase rotation from this state. Since a so-called pseudo-pull-in phenomenon occurs, it can be said that it is desirable to set the value of l to the maximum value that does not include other signal points on the P 1 and Q 1 axes.

第1図(b)は,上記の領域判定信号S2を第1図
(a)以外の方法でも作成できる他の領域判定回路の構
成例を示す図であり,28はリードオンリメモリ(ROM)で
ある。第2図(b)において,領域a2に信号点が入った
時,ROM28出力に“1"を送出させるようにROMに書込めば
良い。
FIG. 1 (b) is a diagram showing a configuration example of another area determination circuit that can generate the area determination signal S 2 by a method other than that shown in FIG. 1 (a), and 28 is a read only memory (ROM). Is. In FIG. 2 (b), it is sufficient to write in the ROM so that when the signal point enters the area a 2 , "1" is sent to the output of the ROM 28.

上記の動作過渡期に用いられる搬送波同期回路は,入
力レベルに依存しない利点を有しているが,入力変調波
の信号点のうちの一部から誤差信号を検出しているた
め,再生搬送波に含まれるジッタ成分は従来の搬送波同
期回路によるそれと比較すると若干多くなる。よって搬
送波同期回路が確立した安定状態では,従来の搬送波同
期回路を用いた方が得策であり,これは多値数が増す程
に効果を発揮する。
The carrier synchronization circuit used in the above-mentioned operation transition period has the advantage that it does not depend on the input level, but since it detects an error signal from a part of the signal points of the input modulated wave, The included jitter component is slightly larger than that of the conventional carrier synchronization circuit. Therefore, in the stable state where the carrier wave synchronization circuit is established, it is better to use the conventional carrier wave synchronization circuit, and this becomes more effective as the number of multivalues increases.

第1図(a)における選択回路16は両者を切替えるも
ので,AGC回路6,7及び検出回路17からのアラーム信号ALM
が消失した時,即ち本復調装置が動作過渡期から安定動
作に入った時,論理回路8の出力する位相誤差信号が選
択回路16で選択され,低減波器18を介して電圧制御発
振器19に入力される。
The selection circuit 16 in FIG. 1 (a) switches between both, and the alarm signal ALM from the AGC circuits 6 and 7 and the detection circuit 17 is selected.
Disappears, that is, when the present demodulator enters stable operation from the transitional period of operation, the phase error signal output from the logic circuit 8 is selected by the selection circuit 16 and sent to the voltage controlled oscillator 19 via the reduction wave filter 18. Is entered.

定常動作時に用いられる搬送波同期回路の論理回路8
の動作は前述した特願昭56−015775号に詳述されている
ので,ここでは省略する。
Logic circuit 8 of carrier synchronization circuit used in steady operation
The operation of is described in detail in the above-mentioned Japanese Patent Application No. 56-015775, so it will be omitted here.

第3図(a)はAGC回路6,7の具体例で,第3図(b)
はその動作説明図であり,29は論理回路,30はフリップフ
ロップ(FF),31は検出回路である。論理回路29の出力
Sは第3図(b)における領域C0に信号点が入ったとき
“1"の出力を出力し,出力Rは領域C1に信号点が入った
時“1"の出力を出す。これら出力はフリップフロップFF
30を介して,第1図(a)の可変減衰器2,3の制御信号
となる。ここで,AGC回路が正常に動作していない時,即
ち信号点が領域C0あるいはC1のどちらか一方にのみ入り
込んでいる時には,FF30の出力はDCレベルとなる。又,
正常時にはマーク率1/2のデータ信号となる。よってこ
の両者の差を検出回路31にて検出して,異常時にALM信
号を送出するような構成となっでいる。
FIG. 3 (a) is a concrete example of the AGC circuits 6 and 7, and FIG.
Is an operation explanatory diagram thereof, 29 is a logic circuit, 30 is a flip-flop (FF), and 31 is a detection circuit. The output S of the logic circuit 29 outputs "1" when the signal point enters the area C 0 in FIG. 3 (b), and the output R outputs "1" when the signal point enters the area C 1 . Print the output. These outputs are flip-flops FF
It becomes a control signal of the variable attenuators 2 and 3 of FIG. Here, when the AGC circuit is not operating normally, that is, when the signal point enters only one of the areas C 0 and C 1 , the output of FF30 becomes DC level. or,
In the normal state, the data signal has a mark rate of 1/2. Therefore, the difference between the two is detected by the detection circuit 31, and the ALM signal is transmitted in the event of an abnormality.

第1図に説明を戻すと,フリップフロップFF15の出力
による搬送波同期回路は入力レベルに依存せず成立する
が,論理回路8の出力による搬送波同期回路は,入力レ
ベルに依存するため,フリップフロップFF15から論理回
路8の出力(位相誤差信号)に切替える際には,AGC回路
が正常に動作しているか否かを確認することが不可欠で
あり,そのため,選択回路16のCONT信号に本復調装置が
動作過渡期か安定動作時かの判定に搬送波同期回路アラ
ームすなわち検出期17の出力ALMに加えてAGC6,7のALM信
号を用いている。尚選択回路16のCONT信号には前述の他
に符号誤り率特性からの情報を用いることもできる。
Returning to FIG. 1, the carrier wave synchronizing circuit based on the output of the flip-flop FF15 is established independently of the input level, but the carrier wave synchronizing circuit based on the output of the logic circuit 8 depends on the input level. It is indispensable to confirm whether the AGC circuit is operating normally when switching from the output of the logic circuit 8 to the output of the logic circuit 8 (phase error signal). In addition to the output ALM of the carrier synchronization circuit alarm, that is, the detection period 17, the ALM signals of AGC6 and 7 are used to determine whether the operation is in transition or stable. Note that the CONT signal of the selection circuit 16 can use information from the code error rate characteristic other than the above.

以上第1図を用いて本発明を64QAMシステムに適用し
た場合について説明したが,本発明はこれに限定される
ものではなく,4QAM(4PSK)以上の多値直交振幅変調シ
ステムに適用可能である。なお第1図を64QAMシステム
以外のシステムに変更する場合は,A/D変換器4,5のビッ
ト数,リードオンリメモリ(ROM)28の記憶容量の変更
のみで良い。
The case where the present invention is applied to a 64QAM system has been described above with reference to FIG. 1, but the present invention is not limited to this and can be applied to a multilevel quadrature amplitude modulation system of 4QAM (4PSK) or more. . When changing FIG. 1 to a system other than the 64QAM system, only the number of bits of the A / D converters 4 and 5 and the storage capacity of the read only memory (ROM) 28 need be changed.

<発明の効果> 以上の説明から分るように,本発明によれば,入力信
号が多値直交振幅変調波であっても入力レベルに依存し
ない搬送波同期回路が構成でき,伝送系に同相干渉歪が
存在しても同期確立が不能になることもなく,且つ確立
スピードが速いという利点を有している。
<Effects of the Invention> As can be seen from the above description, according to the present invention, a carrier wave synchronizing circuit that does not depend on the input level can be configured even if the input signal is a multilevel quadrature amplitude modulated wave, and the common mode interference in the transmission system is achieved. It has the advantages that synchronization cannot be established even if there is distortion, and the establishment speed is fast.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明を64QAM変調波に適用した実施例
の構成を示す図,第1図(b)は領域判定回路の他の実
施例の構成を示す図,第2図(a)は64QAM変調波の信
号配置を示す図,第2図(b)は第2図(a)の動作説
明図,第3図(a)はAGC回路の具体例の構成を示す
図,第3図(b)は第3図(a)の動作説明図である。 記号の説明:1は直交位相検波器,2〜3は可変減衰器,4〜
5,9〜12はA/D変換器,6〜7はAGC,8は論理回路,13は減算
器,14は加算器,15はフロップFF,16は選択回路,17は検出
回路,18は低域3波器,19は電圧制御発振器,20〜24はEX
−OR回路,25はOR回路,26はAND回路,27はNAND回路,28はR
OM,29は論理回路,30はFF,31は検出回路である。
FIG. 1 (a) is a diagram showing a configuration of an embodiment in which the present invention is applied to a 64QAM modulated wave, FIG. 1 (b) is a diagram showing a configuration of another embodiment of the area determination circuit, and FIG. 2 (a). ) Is a diagram showing a signal arrangement of a 64QAM modulated wave, FIG. 2 (b) is an operation explanatory diagram of FIG. 2 (a), and FIG. 3 (a) is a diagram showing a configuration of a specific example of an AGC circuit. FIG. 3B is an operation explanatory view of FIG. 3A. Explanation of symbols: 1 is a quadrature detector, 2 to 3 are variable attenuators, 4 to
5, 9 to 12 are A / D converters, 6 to 7 are AGC, 8 is a logic circuit, 13 is a subtractor, 14 is an adder, 15 is a FF, 16 is a selection circuit, 17 is a detection circuit, and 18 is Low-pass 3-wave device, 19 is voltage controlled oscillator, 20 to 24 is EX
-OR circuit, 25 OR circuit, 26 AND circuit, 27 NAND circuit, 28 R
OM, 29 is a logic circuit, 30 is an FF, and 31 is a detection circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 学 東京都港区芝5丁目33番1号 日本電気 株式会社内 (72)発明者 松浦 徹 東京都港区芝5丁目33番1号 日本電気 株式会社内 (56)参考文献 特開 昭57−131151(JP,A) 特開 昭60−162337(JP,A) 昭和50年度電子通信学会全国大会講演 論文集〔分冊8〕論文No.1819 電気通信研究所研究実用化報告第30巻 第6号(1981年)PP.1415〜1427 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Manabu Yagi 5-33-1 Shiba, Minato-ku, Tokyo NEC Electric Co., Ltd. (72) Toru Matsuura 5-33-1-3 Shiba, Minato-ku, Tokyo NEC Incorporated (56) References JP 57-131151 (JP, A) JP 60-162337 (JP, A) Proceedings of the 50th National Conference of the Institute of Electronics and Communication Engineers [Separate Volume 8] Paper No. 1819 Research Institute of Communications Research Vol. 30, No. 6 (1981) PP. 1415-1427

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】64値もしくはそれ以上の値の多値直交振幅
変調波を基準搬送波で同期検波して第1及び第2の復調
信号を得、この第1及び第2の復調信号から得られる位
相誤差信号を用いて前記基準搬送波を再生する搬送波同
期回路を構成し、前記第1及び第2の復調信号をレベル
制御したのち多値識別して主データ信号を含む複数デー
タ信号例を出力する復調装置であって、前記位相誤差信
号が第1及び第2の位相誤差信号から選択されたいずれ
か一方の位相誤差信号であり、第1の位相誤差信号を得
る手段が前記複数データ信号列を論理演算する論理回路
からなっており、而して前記第2の位相誤差信号を得る
手段が、第1及び第2の復調信号をそれぞれπ/4ラジア
ン移相する移相手段と、この移相手段の出力を2値識別
して位置判別を行う第1の位置判別手段と、前記移相手
段の出力の多値識別を行って4PSK波と等価にみなせる信
号領域の判別を行う領域判別手段と、前記第1及び第2
の復調信号を2値識別した信号及び前記主データ信号の
最上位ビットのうちのいずれか一方の信号を用いて位置
判別を行う第2の位置判別手段と、前記第1及び第2の
位置判別手段の出力信号、ならびに前記領域判別手段の
出力信号の間で論理操作をして前記第2の位相誤差信号
を得る論理手段とを有しており、且つ前記選択を行う手
段が、前記レベル制御が正常であり且つ前記搬送同期回
路が安定動作状態にある時は前記第1の位相誤差信号を
選択し、動作過渡期にあるときは前記第2の位相誤差信
号を選択するように構成されている復調装置。
1. A multi-valued quadrature amplitude modulation wave having 64 or more values is synchronously detected with a reference carrier to obtain first and second demodulated signals, and the first and second demodulated signals are obtained. A carrier wave synchronizing circuit for reproducing the reference carrier wave by using a phase error signal is configured, and the first and second demodulated signals are level-controlled and then multivalued to output a plurality of data signal examples including a main data signal. In the demodulator, the phase error signal is one of the phase error signals selected from the first and second phase error signals, and the means for obtaining the first phase error signal outputs the plurality of data signal sequences. And a means for obtaining the second phase error signal, the means for obtaining the second phase error signal and the phase shift means for respectively shifting the first and second demodulated signals by π / 4 radians, and this phase shift The position is discriminated by binary-identifying the output of the means. A first position determining means, and area discrimination means for performing the multi-level decision discrimination of 4PSK wave to be equivalent regarded signal area by performing the output of said phase shifting means, said first and second
Second position discriminating means for discriminating the position by using one of the signal obtained by binary-discriminating the demodulated signal and the most significant bit of the main data signal, and the first and second position discriminating means. Means for performing a logical operation between the output signal of the means and the output signal of the area discriminating means to obtain the second phase error signal, and the means for performing the selection is the level control. Is normal and the carrier synchronization circuit is in a stable operation state, the first phase error signal is selected, and when the operation is in transition, the second phase error signal is selected. Demodulating device.
JP60178503A 1985-08-15 1985-08-15 Demodulator Expired - Lifetime JP2534650B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60178503A JP2534650B2 (en) 1985-08-15 1985-08-15 Demodulator
EP86111275A EP0212582B1 (en) 1985-08-15 1986-08-14 Demodulation system capable of establishing synchronization in a transient state
DE8686111275T DE3687249T2 (en) 1985-08-15 1986-08-14 DEMODULATION SYSTEM SUITABLE FOR SYNCHRONIZATION PRODUCTION IN A TRANSITIONAL STATE.
AU61198/86A AU584555B2 (en) 1985-08-15 1986-08-15 Demodulation system capable of establishing synchronization in a transient state
CA000516027A CA1262266A (en) 1985-08-15 1986-08-15 Demodulation system capable of establishing synchronization in a transient state
US06/896,985 US4757266A (en) 1985-08-15 1986-08-15 Demodulation system capable of establishing synchronization in a transient state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60178503A JP2534650B2 (en) 1985-08-15 1985-08-15 Demodulator

Publications (2)

Publication Number Publication Date
JPS6239944A JPS6239944A (en) 1987-02-20
JP2534650B2 true JP2534650B2 (en) 1996-09-18

Family

ID=16049601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60178503A Expired - Lifetime JP2534650B2 (en) 1985-08-15 1985-08-15 Demodulator

Country Status (1)

Country Link
JP (1) JP2534650B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587432B2 (en) * 1987-10-30 1997-03-05 日本電気株式会社 Effective area judgment signal detection circuit
JP2727926B2 (en) * 1993-08-13 1998-03-18 日本電気株式会社 Demodulator
JP2669322B2 (en) * 1993-12-01 1997-10-27 日本電気株式会社 Demodulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
昭和50年度電子通信学会全国大会講演論文集〔分冊8〕論文No.1819
電気通信研究所研究実用化報告第30巻第6号(1981年)PP.1415〜1427

Also Published As

Publication number Publication date
JPS6239944A (en) 1987-02-20

Similar Documents

Publication Publication Date Title
EP0486474B1 (en) Method for adapting a transversal equalizer, without carrier synchronism
US4528512A (en) Timing synchronizing circuit for demodulators
US4438524A (en) Receiver for angle-modulated carrier signals
JP2534650B2 (en) Demodulator
JPH0621992A (en) Demodulator
US4757266A (en) Demodulation system capable of establishing synchronization in a transient state
JP2526540B2 (en) Carrier wave synchronization circuit
JPS5855709B2 (en) phase demodulator
US4498050A (en) Demodulation device for composite PSK-PSK modulated waves
JPH0122787B2 (en)
JP2540958B2 (en) Digital modulation / demodulation system
JPH0746790B2 (en) Demodulation system
JPH0740679B2 (en) Digital demodulation system
JP3339093B2 (en) Clock recovery circuit and multi-level QAM demodulator
JPH0712178B2 (en) Digital modulation / demodulation system
JPH0234552B2 (en)
JP2871172B2 (en) Demodulator
JP3392771B2 (en) Frame synchronization signal detecting device and carrier reproducing device using the same
JP2553103B2 (en) Carrier wave regeneration circuit
JP3230018B2 (en) Clock recovery circuit of demodulator
JPH06291791A (en) Demodulator for phase modulation wave signal
JP2564840B2 (en) Digital demodulator
JPH082045B2 (en) Digital transmission system
JPH08307473A (en) Clock reproduction circuit for pi/4 shift qpsk demodulation
JPH0797746B2 (en) Automatic gain control circuit