JP2529269Y2 - Gas-liquid mixer - Google Patents

Gas-liquid mixer

Info

Publication number
JP2529269Y2
JP2529269Y2 JP9430490U JP9430490U JP2529269Y2 JP 2529269 Y2 JP2529269 Y2 JP 2529269Y2 JP 9430490 U JP9430490 U JP 9430490U JP 9430490 U JP9430490 U JP 9430490U JP 2529269 Y2 JP2529269 Y2 JP 2529269Y2
Authority
JP
Japan
Prior art keywords
ozone
nozzle
water
gas
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9430490U
Other languages
Japanese (ja)
Other versions
JPH0453437U (en
Inventor
彦一 西村
Original Assignee
新日本技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本技研工業株式会社 filed Critical 新日本技研工業株式会社
Priority to JP9430490U priority Critical patent/JP2529269Y2/en
Publication of JPH0453437U publication Critical patent/JPH0453437U/ja
Application granted granted Critical
Publication of JP2529269Y2 publication Critical patent/JP2529269Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 この考案は例えばオゾンガス又は酸素等を水に溶存さ
せる場合等に使用する気液混合器に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> This invention relates to a gas-liquid mixer used for dissolving ozone gas or oxygen in water, for example.

〈従来の技術〉 従来液体Lの流通路中で気体を供給して溶存させる混
合器としては、第2図(A)に示すようにベンチュリー
管のしぼり部分にガスノズルを開口させてガス(G)を
供給するベンチュリー型、同図(B)に示すように、オ
リフィス型のセンターノズル先端のしぼり部分にガスを
供給するオリフィス型、同図(C)に示すように単に流
通管内にガスノズルを挿入したノズル挿入型等が知られ
ており、混合器全体が一体的に形成されているものが多
い。
<Conventional technology> Conventionally, as a mixer for supplying and dissolving a gas in a flow path of a liquid L, as shown in FIG. 2 (A), a gas nozzle is opened at a squeezed portion of a Venturi tube to form a gas (G). Orifice type for supplying gas to the narrowed portion at the tip of the center nozzle of the orifice type as shown in FIG. (B), and a gas nozzle simply inserted into the flow pipe as shown in FIG. A nozzle insertion type or the like is known, and in many cases, the entire mixer is integrally formed.

〈考案が解決しようとする課題〉 しかし上記のような従来の混合器では、ガスと液体の
混合性はきわめて悪く、例えばオゾンガスを水に溶存さ
せる場合は常温水において、当該温度の溶存率が45%程
度以下ときわめて低いほか、前述したベンチュリー型の
混合器では給水圧(約2kg/cm2)より高いオゾン供給圧
を必要とする欠点があり、一般にオゾンの発生及び供給
には0.5kg/cm2以下であることが望ましい事情のもとで
は殆ど使用できないという問題がある。
<Problems to be Solved by the Invention> However, in the conventional mixer as described above, the mixing property of gas and liquid is extremely poor. For example, when ozone gas is dissolved in water, the dissolution rate at that temperature is 45 %, And the above-mentioned Venturi-type mixer has the drawback that it requires an ozone supply pressure higher than the feed water pressure (about 2 kg / cm 2 ). Generally, 0.5 kg / cm is required for generation and supply of ozone. There is a problem that it can hardly be used under circumstances where it is desirable that the number is 2 or less.

また、オリフィス型の混合器では、給水の圧力損失が
大きく、オリフィス型ノズル下流の水圧は約半減する等
の問題がある。さらにノズル挿入型の混合器では供給す
るオゾンの気泡が大き過ぎて混合率がさらに低下するほ
か、最も高いオゾン供給圧が要求される等の欠点があ
る。
Further, in the orifice type mixer, there is a problem that the pressure loss of feed water is large and the water pressure downstream of the orifice type nozzle is reduced by about half. Further, the mixer of the nozzle insertion type has the drawbacks that the ozone bubbles to be supplied are too large to further reduce the mixing ratio and that the highest ozone supply pressure is required.

〈課題を解決するための手段〉 上記のような問題点を解決するための本考案の混合器
は後端にらせん体18を収容し、所定圧で供給される液体
流を旋回流に変換する旋回室17を形成し、該旋回室17前
方の同芯上に、上記旋回流を直線状の旋回流にするノズ
ル孔19を形成したノズル部21を供えたノズル本体12と、
該ノズル本体12に前端に接続され、上記ノズル部21の先
端部を囲む所定の空間からなる混合室22を形成するとと
もに該混合室22の前方に前記旋回流を再度直線状に整え
る細径の整流孔24を同心的に設けてなる混合スリーブ13
と、該混合スリーブ13の混合室22に開口するように付設
されたガス供給ノズル23とからなることを特徴としてい
る。
<Means for Solving the Problems> The mixer of the present invention for solving the above problems accommodates a spiral body 18 at the rear end and converts a liquid flow supplied at a predetermined pressure into a swirling flow. A nozzle body 12 provided with a nozzle portion 21 having a swirl chamber 17 formed therein and a nozzle hole 19 formed on the same concentric front of the swirl chamber 17 to convert the swirl flow into a linear swirl flow;
A mixing chamber 22 which is connected to the front end of the nozzle body 12 and has a predetermined space surrounding the tip of the nozzle section 21 is formed. The mixing chamber 22 has a small diameter for straightening the swirling flow again in front of the mixing chamber 22. Mixing sleeve 13 with concentric rectifying holes 24
And a gas supply nozzle 23 provided so as to open to the mixing chamber 22 of the mixing sleeve 13.

〈作用〉 所定の供給圧で旋回室に送られて来た液体の流れは、
らせん体18によって旋回流に変えられるとともに、ノズ
ル孔19内において細径の直線状で高流速の旋回流として
形成されて、混合室22内で周壁の規則から開放される。
<Action> The flow of the liquid sent to the swirl chamber at a predetermined supply pressure is
While being changed into a swirling flow by the spiral body 18, the swirling flow is formed in the nozzle hole 19 as a small-diameter linear and high-speed swirling flow, and is released from the regulation of the peripheral wall in the mixing chamber 22.

開放された旋回流の外周には、ガス供給ノズル23から
ガスが低圧で供給され、そのガスは上記旋回流の渦に従
って液体中に巻込まれ、液体と混合されながら順次液体
中に溶解され、高いガス容存率の液体が旋回流を保ちな
がら下流側に送られる。
Gas is supplied at a low pressure from the gas supply nozzle 23 to the outer periphery of the opened swirling flow, and the gas is entrained in the liquid according to the swirl of the swirling flow, and is sequentially dissolved in the liquid while being mixed with the liquid. The liquid having the gas content is sent downstream while maintaining the swirling flow.

このとき液体は直線状の長い旋回流として管路の中心
に集中して進行するので、管路周面の摩擦抵抗の影響も
少なく、圧力損失も少ない。
At this time, since the liquid is concentrated on the center of the pipeline as a long straight swirling flow, the influence of the frictional resistance on the peripheral surface of the pipeline is small, and the pressure loss is small.

〈実施例〉 以下本考案の実施例をオゾンと水を混合してオゾン溶
存水(オゾン水)を生成し、気泡分離する場合について
説明すると、先ずオゾンを発生させるには、特開昭58-8
1422号,同59-160514号,同59-160515号,実開平1-1016
24号公報に示される方法及び装置等が使用され、大気中
の空気を吸着,分離及び濃縮した高濃度酸素の流量,圧
力等を安定的に設定し、これに印加電圧又は周波数を調
整することにより、必要なオゾン濃度(最高95%前後の
濃度のオゾンが安定的に得られる)のオゾンを得る。続
いて次に述べる混合・分離装置等により水にオゾンを混
合し、効率よく溶存オゾン濃度設定し、安定な活性オゾ
ン水を得る。
<Embodiment> An embodiment of the present invention will be described below with respect to a case where ozone and water are mixed to generate ozone-dissolved water (ozone water) and air bubbles are separated. 8
No. 1422, No. 59-160514, No. 59-160515, 1-1016
The method and apparatus disclosed in Japanese Patent Publication No. 24 are used to stably set the flow rate and pressure of high-concentration oxygen that adsorbs, separates and concentrates air in the atmosphere, and adjusts the applied voltage or frequency thereto. As a result, ozone having a required ozone concentration (ozone having a maximum concentration of about 95% can be stably obtained) is obtained. Subsequently, ozone is mixed with water by a mixing / separating device described below, etc., and the dissolved ozone concentration is set efficiently to obtain stable active ozone water.

さらに上記オゾン水を得るための装置について説明す
ると、前述した高濃度のオゾンは、第1図に示す混合・
分離装置により水と混合され且つ気泡分離して安全なオ
ゾン水として使用される。混合器11はスリーブ状のノズ
ル本体12と混合スリーブ13とを同芯上にねじ接合してな
り、ノズル本体12の基端部外周は給水管14とのねじ接合
部16を形成し、内周側は比較的大径の空間(穴)からな
る旋回室17を有している。
The device for obtaining the ozone water will be described. The high-concentration ozone is mixed and mixed as shown in FIG.
It is mixed with water by a separator and separated into bubbles to be used as safe ozone water. The mixer 11 is formed by concentrically screw-connecting a sleeve-shaped nozzle body 12 and a mixing sleeve 13 to each other. The outer periphery of the base end of the nozzle body 12 forms a screw joint 16 with a water supply pipe 14, and The side has a swirl chamber 17 composed of a space (hole) having a relatively large diameter.

上記旋回室17内には旋回室と略同径をなして1〜2ピ
ッチ程度のらせんを形成したらせん体18が収容され、給
水管14側から例えば2kg/cm2位の圧力で供給された水の
流れを、瞬間的に旋回流に変換する機構となっている。
上記旋回室17の前方中心には、順次円錐形に縮径された
後細径のノズル孔19が一定の長さ形成されてノズル部21
を構成し、上記水の旋回流はノズル孔19内で直進的な細
い旋回流に整えられ、細い直線状の旋回流となる。
A spiral body 18 having substantially the same diameter as the swirl chamber and forming a spiral of about 1 to 2 pitches is accommodated in the swirl chamber 17 and supplied at a pressure of, for example, about 2 kg / cm 2 from the water supply pipe 14 side. It is a mechanism that instantaneously converts the flow of water into a swirling flow.
At the front center of the swirl chamber 17, a nozzle hole 19 having a constant diameter is formed in a predetermined length after being sequentially reduced in a conical shape, and a nozzle portion 21 is formed.
The swirling flow of the water is adjusted into a thin straight swirling flow in the nozzle hole 19, and becomes a thin linear swirling flow.

該ノズル部21の外周には混合スリーブ13の基端部が螺
接されるとともに、ノズル部21の先端外周及び先端部側
にはノズル孔19からの旋回流の圧力を解放するような第
一混合室22が、ノズル部21の端部を囲む空間として形成
されるとともに、該第一混合室22の後方の周壁には、前
述したオゾン発生装置からのガス供給ノズル23が、ノズ
ル本体12軸芯(旋回流)方向に対して90°以下の角度で
交差するように接続開口されている。上記ノズル23から
は約0.5kg/cm2以下の低圧でオゾンが供給され、第一混
合室22内を通過している旋回流に吸引されて、水と混合
されながら旋回流とともに直進する。
The base end of the mixing sleeve 13 is screwed to the outer periphery of the nozzle portion 21, and the first outer periphery and the distal end side of the nozzle portion 21 release the pressure of the swirling flow from the nozzle hole 19. The mixing chamber 22 is formed as a space surrounding the end of the nozzle section 21, and a gas supply nozzle 23 from the above-described ozone generator is provided on the peripheral wall behind the first mixing chamber 22 with the nozzle body 12 shaft. The connection opening is formed so as to intersect at an angle of 90 ° or less with respect to the core (swirl flow) direction. Ozone is supplied from the nozzle 23 at a low pressure of about 0.5 kg / cm 2 or less, is sucked into the swirling flow passing through the first mixing chamber 22, and travels straight along with the swirling flow while being mixed with water.

第一混合室22の前方には、順次縮径されるテーパーを
なして、ノズル孔19よりやや大きい径の整流孔24が所定
長さ形成され、一旦混合室22において開放された旋回流
を再度直線的な旋回流に整え且つオゾンとの混合を一層
高める。さらに上記整流孔24の前方には前記混合室22と
略同径の穴からなる第二混合室26が形成され、該第二混
合室26の先端側外周は気泡分離器27側に接続される給水
管29と接合されている。
A straightening hole 24 having a diameter slightly larger than the nozzle hole 19 is formed in a predetermined length in front of the first mixing chamber 22 so as to form a taper whose diameter is sequentially reduced. It is arranged in a straight swirling flow and further enhances the mixing with ozone. Further, a second mixing chamber 26 having a hole having substantially the same diameter as that of the mixing chamber 22 is formed in front of the rectifying hole 24, and the outer periphery of the second mixing chamber 26 on the distal end side is connected to the bubble separator 27 side. The water supply pipe 29 is joined.

上記第二混合室26内では、整流孔24を出るまでに混合
し切れなかったオゾンが再度旋回流に巻込まれながら混
合される。上記のように混合器11内で形成された旋回流
は、第二混合室及び給水管29内に直線的且つ筋状の流れ
として、しかもその中心に集中して流れるので、給水管
29等の内周面に対する抵抗が少く圧力損失が減少すると
ともに流量が増大する。また水が各断面において渦を形
成して中心に集まって長い範囲で旋回流が形成されるの
で、水とオゾンとの撹拌,混合性が向上し、オゾンの溶
存率が高くなる。
In the second mixing chamber 26, the ozone that has not been completely mixed until it exits the rectifying hole 24 is mixed while being engulfed in the swirling flow again. The swirling flow formed in the mixer 11 as described above flows linearly and in a streak flow into the second mixing chamber and the water supply pipe 29 and is concentrated at the center thereof.
The resistance to the inner peripheral surface of 29 etc. is small, the pressure loss decreases and the flow rate increases. In addition, since water forms a vortex in each cross section and converges at the center to form a swirling flow in a long range, the stirring and mixing of water and ozone are improved, and the dissolution rate of ozone is increased.

なお、上記混合スリーブ13は必ずしもスリーブである
必要はなく、その形状はブロック状のものであっても差
支えはない。またノズル本体12と混合スリーブ13を別形
成した場合、ノズル本体側の旋回室17の寸法,形状等が
異なる多種類のものを用意することで、水の流量や、混
合比を自由に変更調整することが出来、さらにらせん体
18やノズル孔19を変更することで混合性能の異なるもの
を用意することが可能である。
The mixing sleeve 13 need not always be a sleeve, and its shape may be a block shape. When the nozzle body 12 and the mixing sleeve 13 are formed separately, various types of swirling chambers 17 on the nozzle body side having different dimensions and shapes are prepared to freely change and adjust the water flow rate and mixing ratio. Can be even more helical
By changing the nozzle 18 and the nozzle hole 19, it is possible to prepare a nozzle having a different mixing performance.

上述のようにオゾンを溶存させたオゾン溶存水(オゾ
ン水)に未溶存のオゾンガスが存在すると、人畜に危険
を及ぼすために、オゾン水中に浮遊するオゾンガスを除
去するための気泡分離器27が使用される。即ち、気泡分
離器27は、例えば内径100mm、高さ350mm前後のタンクか
らなる耐圧カップリング31と、その上方においてカップ
リング31の上端内部と連通しているエアベント32とから
構成され、カップリング31の略中間高さ位置の周壁に前
記給水管29が接続開口しており、反対側の周壁下方に
は、オゾン水を送り出す送水管33が接続されている。
If undissolved ozone gas is present in ozone-dissolved water (ozone water) in which ozone is dissolved as described above, a bubble separator 27 for removing ozone gas floating in the ozone water is used in order to endanger humans and livestock. Is done. That is, the bubble separator 27 is composed of a pressure-resistant coupling 31 composed of, for example, a tank having an inner diameter of 100 mm and a height of about 350 mm, and an air vent 32 communicating with the inside of the upper end of the coupling 31 above the coupling 31. The water supply pipe 29 is connected and opened to the peripheral wall at a substantially intermediate height position, and a water supply pipe 33 for sending out ozone water is connected below the peripheral wall on the opposite side.

前記給水管29と送水管33の開口部の略中心位置には、
カップリング31内下方を前後に仕切る仕切板34が立設さ
れ、しかも該仕切板34は給水管29から吐出された水の流
れを妨げるように、その高さはカップリング31の高さの
約2/3位にしてある。その結果給水されたオゾン水は、
上記仕切板34の上方まで上昇してこれを越流して、下方
の送水管33に向かって下降するように流れる。
At approximately the center of the opening of the water supply pipe 29 and the water supply pipe 33,
A partition plate 34 is provided upright to partition the lower part of the coupling 31 back and forth, and the height of the partition plate 34 is about the height of the coupling 31 so as to prevent the flow of water discharged from the water supply pipe 29. 2/3 place. As a result, the supplied ozone water is
It rises to the upper part of the partition plate 34, flows over the partition plate 34, and flows downward to the lower water supply pipe 33.

オゾン水中に浮遊するオゾンガスの気泡は、上記オゾ
ン水の上昇,起流,下降の過程で比重により上方に向か
って浮上し、カップリング31内の上方に集められ、エア
ベント32内にガスとして分離捕集され、エアベント32上
端の排気継手36により活性炭等を利用したオゾン処理装
置(図示しない)に送られる。
The bubbles of the ozone gas floating in the ozone water float upward due to the specific gravity in the process of rising, flowing, and descending the ozone water, are collected above the coupling 31, and are separated and captured as gas in the air vent 32. The collected air is sent to an ozone treatment device (not shown) using activated carbon or the like by an exhaust joint 36 at the upper end of an air vent 32.

エアベント32内底部には、カップリング31と通じる排
気孔37の開口部を塞ぐように一定重量のボールバルブ38
が載置され、カップリング31内上部に貯留されたオゾン
ガスが一定量になった時に自動的に開いて、ガスだけを
エアベント32に導き入される構造となっている。
A constant weight ball valve 38 is provided at the bottom of the air vent 32 so as to close the opening of the exhaust hole 37 communicating with the coupling 31.
Is mounted, and automatically opens when the amount of ozone gas stored in the upper portion of the coupling 31 reaches a certain amount, and only the gas is introduced into the air vent 32.

以上のような機構により送水管33より所要個所に送り
出されるオゾン水は、その時々の水温に対して90%以上
のオゾン溶存率を有し、NOX等を殆ど含まないきわめて
高濃度のオゾン水を供給することが出来る。
Above-described mechanism ozone water fed to the predetermined position from the water supply pipe 33 by has its occasional ozone dissolved more than 90% water temperature, very high concentrations of ozone water containing little NO X, etc. Can be supplied.

〈考案の効果〉 本考案の混合器は以上の如く構成される結果、オゾン
ガスを水に溶解させる場合のように、液体にガスを溶存
させる場合にガスの溶存率をきわめて高くすることがで
き、例えば水にオゾンを溶存させる場合、当該温度に対
して90%以上の溶存率を得ることが出来、各オゾン洗浄
による殺菌,消毒,脱臭,脱色等に際して従来のものに
比して安全できわめて高機能の高濃度オゾン水を得るこ
とが出来る。
<Effect of the Invention> As a result of the configuration of the mixer of the present invention as described above, when the gas is dissolved in the liquid, as in the case of dissolving ozone gas in water, the dissolution rate of the gas can be extremely increased. For example, in the case of dissolving ozone in water, a dissolution rate of 90% or more can be obtained with respect to the temperature, and it is safe and extremely high in sterilization, disinfection, deodorization, decolorization, etc. by each ozone cleaning as compared with the conventional one. High-concentration ozone water with high function can be obtained.

また混合器へのガスの供給圧も給液圧よりはるかに低
い圧力で足り、給水の圧力損失も少ないほか、混合後の
気泡が小さく且つその発生も少ないという利点がある。
In addition, the supply pressure of the gas to the mixer needs to be much lower than the supply liquid pressure, so that there is an advantage that the pressure loss of the supply water is small, and that bubbles after mixing are small and the generation thereof is small.

【図面の簡単な説明】[Brief description of the drawings]

図面は本考案の一実施例を示し、第1図は、オゾン水混
合器拡大断面図と気泡分離器の断面図、第2図は従来の
混合器の例を示す断面図である。 11:混合器、12:ノズル本体 13:混合スリーブ、17:旋回室 18:らせん体、19:ノズル孔 21:ノズル部、22:第一混合室 23:ガス供給ノズル、24:整流孔 26:第二混合室、29:給水管 31:圧力カップリング、32:エアベント 33:送水管、34:仕切板
The drawings show an embodiment of the present invention, FIG. 1 is an enlarged sectional view of an ozone water mixer and a sectional view of a bubble separator, and FIG. 2 is a sectional view showing an example of a conventional mixer. 11: Mixer, 12: Nozzle body 13: Mixing sleeve, 17: Swirling chamber 18: Spiral, 19: Nozzle hole 21: Nozzle part, 22: First mixing chamber 23: Gas supply nozzle, 24: Straightening hole 26: Second mixing chamber, 29: water supply pipe 31: pressure coupling, 32: air vent 33: water supply pipe, 34: partition plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 550 C02F 1/50 550C 1/78 1/78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C02F 1/50 550 C02F 1/50 550C 1/78 1/78

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】後端にらせん体(18)を収容し、所定圧で
供給される液体流を旋回流に変換する旋回室(17)を形
成し、該旋回室(17)前方の同芯上に、上記旋回流を直
線状の旋回流にするノズル孔(19)を形成したノズル部
(21)を供えたノズル本体(12)と、該ノズル本体(1
2)の前端に接続され、上記ノズル部(21)の先端部を
囲む所定の空間からなる混合室(22)を形成するととも
に該混合室(22)の前方に前記旋回流を再度直線状に整
える細径の整流孔(24)を同心的に設けてなる混合スリ
ーブ(13)と、該混合スリーブ(13)の混合室(22)に
開口するように付設されたガス供給ノズル(23)とから
なる気液混合器。
1. A swirl chamber (17) for accommodating a spiral body (18) at a rear end thereof and converting a liquid flow supplied at a predetermined pressure into a swirl flow is formed, and the concentric chamber in front of the swirl chamber (17) is formed. A nozzle body (12) provided with a nozzle portion (21) having a nozzle hole (19) formed therein for converting the swirling flow into a linear swirling flow;
A mixing chamber (22), which is connected to the front end of 2) and has a predetermined space surrounding the tip of the nozzle portion (21), is formed, and the swirling flow is linearly formed again in front of the mixing chamber (22). A mixing sleeve (13) having concentrically provided therein a small-diameter straightening hole (24), and a gas supply nozzle (23) provided so as to open to a mixing chamber (22) of the mixing sleeve (13). Gas-liquid mixer consisting of
JP9430490U 1990-09-07 1990-09-07 Gas-liquid mixer Expired - Lifetime JP2529269Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9430490U JP2529269Y2 (en) 1990-09-07 1990-09-07 Gas-liquid mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9430490U JP2529269Y2 (en) 1990-09-07 1990-09-07 Gas-liquid mixer

Publications (2)

Publication Number Publication Date
JPH0453437U JPH0453437U (en) 1992-05-07
JP2529269Y2 true JP2529269Y2 (en) 1997-03-19

Family

ID=31832155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9430490U Expired - Lifetime JP2529269Y2 (en) 1990-09-07 1990-09-07 Gas-liquid mixer

Country Status (1)

Country Link
JP (1) JP2529269Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814096B1 (en) * 2010-02-23 2018-01-02 아사히 유키자이 가부시키가이샤 In-line Fluid Mixing Device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749495B2 (en) * 1993-03-15 1998-05-13 長廣 仁蔵 High concentration ozone water production method and high concentration ozone water production device
JP4066468B2 (en) * 1997-02-17 2008-03-26 株式会社Ihi Air ozone mixer and ozone fog generator
JP2008086937A (en) * 2006-10-03 2008-04-17 Anemosu:Kk Fluid mixer, fluid mixing device, and nozzle member
JP5871740B2 (en) * 2012-07-27 2016-03-01 三菱電機株式会社 Ejector
JP5589170B1 (en) * 2013-04-22 2014-09-17 中村物産有限会社 Sterilization treatment apparatus and sterilization treatment method
JP5584869B1 (en) * 2013-12-06 2014-09-10 中村物産有限会社 Sterilization treatment apparatus and sterilization treatment method
JP6169749B1 (en) * 2016-04-12 2017-07-26 大生工業株式会社 Microbubble generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101814096B1 (en) * 2010-02-23 2018-01-02 아사히 유키자이 가부시키가이샤 In-line Fluid Mixing Device

Also Published As

Publication number Publication date
JPH0453437U (en) 1992-05-07

Similar Documents

Publication Publication Date Title
US6464210B1 (en) Fluid dissolution apparatus
US8567769B2 (en) Apparatus and method of dissolving a gas into a liquid
JPH084731B2 (en) Gas-liquid mixing device
JP2529269Y2 (en) Gas-liquid mixer
WO2001097958A9 (en) Fine air bubble generator and fine air bubble generating device with the generator
JP2009082903A (en) Microbubble generator
JP2009136864A (en) Microbubble generator
CN110064314A (en) A kind of novel controllable nano bubble generator
US6534023B1 (en) Fluid dynamic ozone generating assembly
JP2011115745A (en) Air bubble generating tube
JP2002059186A (en) Water-jet type fine bubble generator
WO2005030377A1 (en) Method and apparatus for mixing of two fluids
JP3287349B2 (en) Steam mixer
US6293529B1 (en) Bubble generating apparatus
US5885466A (en) Water aerator and method
JP3747261B2 (en) Dispersion method of gas-liquid mixed fluid and dispersion device used in the method
KR200497600Y1 (en) Connector for nano bubble generator
JP2001259395A (en) Aerator
JPH04322731A (en) Method and device for dissolution of gas
FI20000533A (en) Apparatus for dissolving solids contained in sludge
JP6968405B2 (en) Gas-liquid mixing nozzle
JPH10230150A (en) Aerator
JPH06285344A (en) Method and device for gas-liquid dissolution and mixing
JP2000300975A (en) Gas-liquid mixing nozzle
JP2000093772A (en) Micro-gas bubble liquid gas mixing and dissolving device