JP2011115745A - Air bubble generating tube - Google Patents

Air bubble generating tube Download PDF

Info

Publication number
JP2011115745A
JP2011115745A JP2009277113A JP2009277113A JP2011115745A JP 2011115745 A JP2011115745 A JP 2011115745A JP 2009277113 A JP2009277113 A JP 2009277113A JP 2009277113 A JP2009277113 A JP 2009277113A JP 2011115745 A JP2011115745 A JP 2011115745A
Authority
JP
Japan
Prior art keywords
bubble generating
pressing
generating tube
tube
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009277113A
Other languages
Japanese (ja)
Inventor
Toyohiko Nakanishi
豊彦 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009277113A priority Critical patent/JP2011115745A/en
Publication of JP2011115745A publication Critical patent/JP2011115745A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air bubble generating tube generating fine air bubbles in a simple structure. <P>SOLUTION: The air bubble generating tube 1 includes a tube body, a first compressed part compressed in a flat shape (a horizontal compressed part 10) in a direction perpendicular to the axis of the tube body, a second compressed part (a vertical compressed part 20) compressed in a flat shape in a direction perpendicular to the axis of the tube body and different from that of the first compressed part, and a suction opening 30 installed either at the first compressed part or at the second compressed part. In the air bubble pipe 1, the first compressed part and the second compressed part are alternately formed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気泡発生管に関する。   The present invention relates to a bubble generating tube.

例えば、特許文献1には、内部に流路が形成された筒状に設けられ、液体中にナノバブルを発生させるためのノズルであって、軸線方向の一方の端部に液体を流入させる流入口が形成され、軸線方向の他方の端部にナノバブルが混入した液体を流出させる流出口が形成され、流路には、流入口から所定距離は同一の径を有する同一径部と、この同一径部から流出口に向けて、徐々に広がるテーパ部とが形成され、流路に気体を導入させる気体導入孔が同一径部と外部とを連通するように形成されているナノバブル発生用ノズルが開示されている。   For example, Patent Document 1 is a nozzle that is provided in a cylindrical shape with a flow path formed therein, and that generates nanobubbles in the liquid, and is an inlet that allows the liquid to flow into one end in the axial direction. Is formed, and an outlet is formed at the other end in the axial direction to allow the liquid mixed with nanobubbles to flow out, and the flow path has the same diameter portion having the same diameter at a predetermined distance from the inlet, and the same diameter. Disclosed is a nanobubble generating nozzle in which a taper portion that gradually spreads from a portion toward an outlet is formed, and a gas introduction hole that introduces gas into a flow path is formed to communicate the same diameter portion and the outside Has been.

特開2009−160530号公報JP 2009-160530 A

本発明は、簡単な構造で微細な気泡を発生させる気泡発生管を提供することを目的とする。   An object of the present invention is to provide a bubble generating tube that generates fine bubbles with a simple structure.

本発明に係る気泡発生管は、管本体と、この管本体の軸線に対してほぼ直交する方向に、扁平状に圧搾された第1の圧搾部と、前記管本体の軸線に対してほぼ直交する方向で、かつ、前記第1の圧搾部とは異なる方向に、扁平状に圧搾された第2の圧搾部と、前記第1の圧搾部又は前記第2の圧搾部のいずれかに設けられた吸気口とを有し、前記第1の圧搾部と前記第2の圧搾部とが、交互に形成されてなる。   The bubble generating tube according to the present invention includes a tube body, a first squeezed portion compressed in a flat shape in a direction substantially orthogonal to the axis of the tube body, and substantially orthogonal to the axis of the tube body. In a direction different from that of the first pressing unit, and is provided in either the second pressing unit compressed in a flat shape and either the first pressing unit or the second pressing unit. The first squeezing part and the second squeezing part are alternately formed.

好適には、前記第2の圧搾部は、前記第1の圧搾部に対してほぼ直交する方向に圧搾されてなる。   Suitably, the said 2nd pressing part is squeezed in the direction substantially orthogonal to the said 1st pressing part.

好適には、前記第1の圧搾部及び第2の圧搾部において最も狭い部分の内径は、0.5〜2.0mmである。   Suitably, the inner diameter of the narrowest part in the said 1st pressing part and a 2nd pressing part is 0.5-2.0 mm.

好適には、前記吸気口の直径は、1.0mm以上2.0mm以下であり、前記吸気口に最も近い圧搾部の最も狭い部分の内径は、0.5mm以上1.0mm以下であり、他の圧搾部の最も狭い部分の内径は、1.5mm以上2.0mm以下である。   Preferably, the diameter of the intake port is 1.0 mm or more and 2.0 mm or less, and the inner diameter of the narrowest portion of the compressed portion closest to the intake port is 0.5 mm or more and 1.0 mm or less. The inner diameter of the narrowest part of the compressed part is 1.5 mm or more and 2.0 mm or less.

好適には、前記第1の圧搾部及び前記第2の圧搾部は、合わせて少なくとも5個以上形成されてなる。   Preferably, at least five or more of the first pressing parts and the second pressing parts are formed.

本発明によれば、簡単な構造で微細な気泡を発生させることができる。   According to the present invention, fine bubbles can be generated with a simple structure.

気泡発生管1の使用状態を模式的に表す図である。It is a figure which represents typically the use condition of the bubble generation tube. 気泡発生管1の(A)上面図、(B)側面図、及び(C)正面図である。It is (A) top view, (B) side view, and (C) front view of the bubble generating tube 1. 気泡発生管1の一部断面を模式的に表す図である。2 is a diagram schematically showing a partial cross section of the bubble generating tube 1. FIG.

図1は、気泡発生管1の使用状態を模式的に表す図である。
図1に例示するように、気泡発生管1は、蛇口100に接続して、使用される。なお、気泡発生管1を接続されるものは、蛇口100に限定するものではなく、圧送された液体を流出するものであれば何でもよい。また、本実施例では、気泡発生管1は、ゴム管110を介して、蛇口100に接続されているが、気泡発生管1を蛇口1などに接続する手段は、これに限定するものではない。例えば、気泡発生管1は、蛇口100などの形状に嵌合又は被嵌などにより接合される、又は蛇口100などと一体的に形成される等して、蛇口100などに接続されればよい。
蛇口100から流出した水は、気泡発生管1を通過する過程で、微細な気泡を含み、気泡発生管1から流出される。このとき、気泡発生管1から流出される水に含まれる微細な気泡は、マイクロバブルである。マイクロバブルは、直径10〜数十μm以下の気泡である。マイクロバブルを含む水は、気泡とのコロイドであり、物理化学的に通常の水と異なり、水質浄化作用、生理活性作用、及び殺菌作用などの性質を有し、さまざまな分野での応用が期待されている。
FIG. 1 is a diagram schematically illustrating the use state of the bubble generating tube 1.
As illustrated in FIG. 1, the bubble generating tube 1 is used by being connected to a faucet 100. In addition, what connects the bubble generation pipe | tube 1 is not limited to the faucet 100, What is necessary is just to flow out the pumped liquid. In the present embodiment, the bubble generating tube 1 is connected to the faucet 100 via the rubber tube 110, but means for connecting the bubble generating tube 1 to the faucet 1 and the like is not limited to this. . For example, the bubble generating tube 1 may be connected to the faucet 100 by being joined to the shape of the faucet 100 by fitting or fitting, or formed integrally with the faucet 100 or the like.
The water flowing out from the tap 100 contains fine bubbles in the process of passing through the bubble generating tube 1 and is discharged from the bubble generating tube 1. At this time, the fine bubbles contained in the water flowing out from the bubble generating tube 1 are microbubbles. Microbubbles are bubbles having a diameter of 10 to several tens of μm or less. Water containing microbubbles is a colloid with air bubbles, and unlike physical water in terms of physicochemical properties, it has properties such as water purification, bioactivity, and bactericidal action, and is expected to be applied in various fields. Has been.

以上説明したように、気泡発生管1は、蛇口100などに簡単に接続して使用される。これにより、使用者は、気泡発生管1から流出した微細な気泡を含む水を、この水が有する性質を活かして、農水産業用水、飲料水、食品加工用水、又は生活用水などに容易に使用することができる。   As described above, the bubble generating tube 1 is used by simply connecting to the faucet 100 or the like. As a result, the user can easily use the water containing fine bubbles flowing out from the bubble generating tube 1 as agricultural water, drinking water, food processing water, or water for daily life, utilizing the properties of the water. can do.

図2は、気泡発生管1の(A)上面図、(B)側面図、及び(C)正面図である。
図2に例示するように、気泡発生管1は、横型圧搾部10と、縦型圧搾部20と、吸気口30とを有する。
2A is a top view, FIG. 2B is a side view, and FIG. 2C is a front view of the bubble generating tube 1.
As illustrated in FIG. 2, the bubble generating tube 1 includes a horizontal pressing unit 10, a vertical pressing unit 20, and an intake port 30.

横型圧搾部10(第1の圧搾部)は、管の軸線に対して垂直に扁平状に管を圧搾した部分であり、扁平形状の内径を有する。横型圧搾部10における管内部の圧搾幅A(図3の内径の最狭部)は、通常、0.5〜2.0mmである。また、縦型圧搾部20(第2の圧搾部)は、横型圧搾部10に対して垂直に扁平状に管を圧搾した部分である。縦型圧搾部20における管内部の圧搾幅Aは、横型圧搾部10と同様に、通常、0.5〜2.0mmである。より具体的には、吸気口30が設けられた圧搾部の最も狭い部分の内径を、0.5〜1.0mmとし、他の圧搾部の最も狭い部分の内径を、1.5〜2.0mmとすることにより、吸気口30からの水の流出を抑制する。
このような、横型圧搾部10と縦型圧搾部20とは、気泡発生管1において、交互に形成される。このとき、隣り合う横型圧搾部10と縦型圧搾部20との間の圧搾間隔B(図3を参照)は、圧搾前の管の内径の1.0〜2.0倍の長さになることが好ましい。また、逆流防止のため、一部の圧搾間隔Bは、圧搾前の管の内径の3.0〜5.0倍の長さになることがより好ましい。
なお、横型圧搾部10及び縦型圧搾部20は、気泡発生管1から流出される水に含まれる気泡を十分に小さくするために、合わせて少なくとも5個以上形成されることが好ましい。また、横型圧搾部10及び縦型圧搾部20を形成される気泡発生管1の素材は、特に限定するものではなく、例えば、塩化ビニルなどの合成樹脂、又は、ステンレス、鉄、銅、若しくはアルミなどの金属である。銅管を用いる場合には、銅の易延展性、導電性や化学的性質が活かされ好適である。
The horizontal pressing part 10 (first pressing part) is a part obtained by pressing a pipe in a flat shape perpendicular to the axis of the pipe, and has a flat inner diameter. The pressing width A inside the pipe in the horizontal pressing unit 10 (the narrowest part of the inner diameter in FIG. 3) is usually 0.5 to 2.0 mm. Further, the vertical pressing unit 20 (second pressing unit) is a portion in which the tube is pressed in a flat shape perpendicular to the horizontal pressing unit 10. The squeezing width A inside the pipe in the vertical squeezing part 20 is usually 0.5 to 2.0 mm, as in the horizontal squeezing part 10. More specifically, the inner diameter of the narrowest portion of the compressed portion provided with the intake port 30 is set to 0.5 to 1.0 mm, and the inner diameter of the narrowest portion of the other compressed portions is set to 1.5 to 2. By setting it to 0 mm, the outflow of water from the intake port 30 is suppressed.
Such horizontal pressing parts 10 and vertical pressing parts 20 are alternately formed in the bubble generating tube 1. At this time, the pressing interval B (see FIG. 3) between the adjacent horizontal pressing unit 10 and the vertical pressing unit 20 is 1.0 to 2.0 times the inner diameter of the tube before pressing. It is preferable. Moreover, in order to prevent backflow, it is more preferable that a part of the pressing interval B is 3.0 to 5.0 times the inner diameter of the tube before pressing.
In addition, in order to make the bubble contained in the water which flows out of the bubble generation tube 1 sufficiently small, it is preferable that at least five or more horizontal compression units 10 and vertical compression units 20 are formed. Moreover, the raw material of the bubble generating tube 1 in which the horizontal squeezing part 10 and the vertical squeezing part 20 are formed is not particularly limited. For example, a synthetic resin such as vinyl chloride, or stainless steel, iron, copper, or aluminum Such as metal. In the case of using a copper tube, it is preferable because the easy spreadability, conductivity and chemical properties of copper are utilized.

このように形成されることにより、横型圧搾部10と縦型圧搾部20とが接続する部分(接続部)40は、横型圧搾部10及び縦型圧搾部20から、管内部の幅が徐々に広がるように形成される。   By being formed in this way, the width (inside of the connecting portion) 40 where the horizontal pressing portion 10 and the vertical pressing portion 20 are connected is gradually increased from the horizontal pressing portion 10 and the vertical pressing portion 20. It is formed to spread.

吸気口30は、管外部から管内部に空気を取り入れる孔であり、横型圧搾部10又は縦型圧搾部20のいずれかに設けられる。本実施例では、吸気口30は、気泡発生管1に流入した水が最初に通る横型圧搾部10に設けられている。なお、吸気口30の直径は、水漏れせず、十分に空気を取り入れられるように、通常、1.0〜2.0mmである。   The intake port 30 is a hole that takes air into the pipe from the outside of the pipe, and is provided in either the horizontal squeezing unit 10 or the vertical squeezing unit 20. In the present embodiment, the intake port 30 is provided in the horizontal squeezing unit 10 through which water that has flowed into the bubble generating tube 1 first passes. In addition, the diameter of the inlet 30 is 1.0-2.0 mm normally so that water may not leak and air can be taken in sufficiently.

図3は、気泡発生管1の一部断面を模式的に表す図である。
図3に例示するように、蛇口100から流出した水は、まず、吸気口30が設けられた横型圧搾部10において、流路を狭められることにより、流速を早める。このとき、ベルヌーイの定理に示される通り、管内部の水圧が下がり、吸気口30から空気が流入する。そして、蛇口100から流出した水と、吸気口30から流入した空気とが混合され、気泡発生管1を通る水は、気泡を含んだ状態となる。また、管内部の水圧が下がることにより、気泡発生管1を通る空気が、吸引され気泡となって発生する。
次に、気泡発生管1を通る水は、接続部40において、流路が広がることにより、流速を緩める。このとき、管内部の水圧が急速に上がっていく。これにより、気泡発生管1を通る水に含まれる気泡は、この急速に上がる水圧により、縮小し、細かく破壊される。また、気泡発生管1を通る水は、直交する次の縦型圧搾部20に向けて、乱流旋回し、さらに内部に含む気泡を細かく破壊する。
次に、気泡発生管1を通る水は、縦型圧搾部20において、流路を狭められることにより、流速を早める。このとき、管内部の水圧が下がり、気泡発生管1を通る水に含まれる気泡は、拡大する。さらに、気泡発生管1を通る空気が、吸引され気泡となって発生する。
このように、気泡発生管1を通る水は、横型圧搾部10、縦型圧搾部20、及び接続部40を繰り返し通ることにより、上述したような管内部の水圧低下/上昇及び乱流旋回の影響を繰り返し受ける。これにより、気泡発生管1から流出される水に含まれる気泡は、マイクロバブルと呼ばれる程に微細なものになる。
FIG. 3 is a diagram schematically showing a partial cross section of the bubble generating tube 1.
As illustrated in FIG. 3, the water flowing out of the faucet 100 first speeds up the flow rate by narrowing the flow path in the horizontal squeezing unit 10 provided with the air inlet 30. At this time, as indicated by Bernoulli's theorem, the water pressure inside the pipe decreases and air flows from the air inlet 30. And the water which flowed out from the tap 100 and the air which flowed in from the inlet port 30 are mixed, and the water which passes the bubble generating pipe 1 will be in the state containing a bubble. Further, when the water pressure inside the tube is lowered, air passing through the bubble generating tube 1 is sucked and generated as bubbles.
Next, the flow rate of the water passing through the bubble generating tube 1 is relaxed by expanding the flow path at the connection portion 40. At this time, the water pressure inside the pipe rises rapidly. Thereby, the bubbles contained in the water passing through the bubble generating tube 1 are reduced and finely broken by the rapidly increasing water pressure. Further, the water passing through the bubble generating tube 1 is turbulently swirled toward the next vertical squeezing unit 20 that is orthogonal, and further destroys the bubbles contained inside.
Next, the water passing through the bubble generating tube 1 has its flow velocity shortened by narrowing the flow path in the vertical compression unit 20. At this time, the water pressure inside the tube decreases, and the bubbles contained in the water passing through the bubble generating tube 1 expand. Further, air passing through the bubble generating tube 1 is sucked and generated as bubbles.
As described above, the water passing through the bubble generating tube 1 repeatedly passes through the horizontal squeezing unit 10, the vertical squeezing unit 20, and the connecting unit 40, thereby reducing the water pressure in the tube as described above / rising and turbulent swirling. Repeatedly affected. Thereby, the bubbles contained in the water flowing out from the bubble generating tube 1 become so fine that they are called microbubbles.

以上説明したように、気泡発生管1は、簡単な構造で微細な気泡を発生させることができる。これにより、気泡発生管1は、容易に管を変形加工することで安価に生産され、一般家庭等に幅広く普及することができる。   As described above, the bubble generating tube 1 can generate fine bubbles with a simple structure. Thereby, the bubble generating tube 1 can be produced at low cost by easily deforming the tube, and can be widely used in general households.

[具体例]
内径14mmの管を用いて、交互に形成される横型圧搾部10と縦型圧搾部20との間の圧搾間隔Bが、流入口側から45mm、15mm、15mm、及び30mmとなるように、気泡発生管1を形成したところ、気泡発生管1から流出される水に含まれる気泡の量が、好適となった。
[Concrete example]
Using a tube with an inner diameter of 14 mm, air bubbles are formed so that the pressing interval B between the horizontal pressing unit 10 and the vertical pressing unit 20 that are alternately formed is 45 mm, 15 mm, 15 mm, and 30 mm from the inlet side. When the generation tube 1 was formed, the amount of bubbles contained in the water flowing out from the bubble generation tube 1 became suitable.

1 気泡発生管
10 横型圧搾部
20 縦型圧搾部
30 吸気口
40 接続部
100 蛇口
110 ゴム管
DESCRIPTION OF SYMBOLS 1 Bubble generation pipe 10 Horizontal type compression part 20 Vertical type compression part 30 Inlet 40 Connection part 100 Faucet 110 Rubber pipe

Claims (5)

管本体と、
この管本体の軸線に対してほぼ直交する方向に、扁平状に圧搾された第1の圧搾部と、
前記管本体の軸線に対してほぼ直交する方向で、かつ、前記第1の圧搾部とは異なる方向に、扁平状に圧搾された第2の圧搾部と、
前記第1の圧搾部又は前記第2の圧搾部のいずれかに設けられた吸気口と
を有し、
前記第1の圧搾部と前記第2の圧搾部とが、交互に形成されてなる
気泡発生管。
A tube body;
A first squeezed portion squeezed in a flat shape in a direction substantially perpendicular to the axis of the tube body; and
A second squeezed portion compressed in a flat shape in a direction substantially perpendicular to the axis of the tube main body and in a direction different from the first squeezed portion;
An air inlet provided in either the first pressing part or the second pressing part,
The said 1st pressing part and the said 2nd pressing part are formed alternately The bubble generation tube.
前記第2の圧搾部は、前記第1の圧搾部に対してほぼ直交する方向に圧搾されてなる
請求項1に記載の気泡発生管。
The bubble generating tube according to claim 1, wherein the second pressing unit is compressed in a direction substantially orthogonal to the first pressing unit.
前記第1の圧搾部及び第2の圧搾部において最も狭い部分の内径は、0.5mm以上2.0mm以下である
請求項1に記載の気泡発生管。
The bubble generating tube according to claim 1, wherein an inner diameter of a narrowest portion in the first pressing portion and the second pressing portion is 0.5 mm or more and 2.0 mm or less.
前記吸気口の直径は、1.0mm以上2.0mm以下であり、
前記吸気口に最も近い圧搾部の最も狭い部分の内径は、0.5mm以上1.0mm以下であり、
他の圧搾部の最も狭い部分の内径は、1.5mm以上2.0mm以下である
請求項1に記載の気泡発生管。
The diameter of the air inlet is 1.0 mm or more and 2.0 mm or less,
The inner diameter of the narrowest portion of the compressed portion closest to the intake port is 0.5 mm or more and 1.0 mm or less,
The bubble generating tube according to claim 1, wherein an inner diameter of the narrowest portion of the other compressed portion is 1.5 mm or more and 2.0 mm or less.
前記第1の圧搾部及び前記第2の圧搾部は、合わせて少なくとも5個以上形成されてなる
請求項1から4のいずれかに記載の気泡発生管。
The bubble generating tube according to any one of claims 1 to 4, wherein at least five or more of the first pressing unit and the second pressing unit are formed.
JP2009277113A 2009-12-06 2009-12-06 Air bubble generating tube Pending JP2011115745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277113A JP2011115745A (en) 2009-12-06 2009-12-06 Air bubble generating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277113A JP2011115745A (en) 2009-12-06 2009-12-06 Air bubble generating tube

Publications (1)

Publication Number Publication Date
JP2011115745A true JP2011115745A (en) 2011-06-16

Family

ID=44281722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277113A Pending JP2011115745A (en) 2009-12-06 2009-12-06 Air bubble generating tube

Country Status (1)

Country Link
JP (1) JP2011115745A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086076A (en) * 2011-10-21 2013-05-13 Panasonic Corp Microbubble generation nozzle
JP2017035643A (en) * 2015-08-06 2017-02-16 国立大学法人神戸大学 Fine particle dispersion method
JP2017176924A (en) * 2016-03-28 2017-10-05 ミクニ総業株式会社 Micro-nanobubble generator and pipe washing method
WO2018021182A1 (en) * 2016-07-26 2018-02-01 国立大学法人 鹿児島大学 Air bubble generation device, tubular member, air bubble generation method, and method for manufacturing air bubble generation device
JP2019055373A (en) * 2017-09-21 2019-04-11 ミクニ総業株式会社 Micro nano-bubble generator and pipe washing method
JP6863540B1 (en) * 2020-07-29 2021-04-21 日本製鉄株式会社 Ultrasonic processing equipment and fine bubble supply method
KR20210114243A (en) * 2020-03-10 2021-09-23 중앙대학교 산학협력단 Apparatus for generating nano bubble

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086076A (en) * 2011-10-21 2013-05-13 Panasonic Corp Microbubble generation nozzle
JP2017035643A (en) * 2015-08-06 2017-02-16 国立大学法人神戸大学 Fine particle dispersion method
JP2017176924A (en) * 2016-03-28 2017-10-05 ミクニ総業株式会社 Micro-nanobubble generator and pipe washing method
WO2018021182A1 (en) * 2016-07-26 2018-02-01 国立大学法人 鹿児島大学 Air bubble generation device, tubular member, air bubble generation method, and method for manufacturing air bubble generation device
JPWO2018021182A1 (en) * 2016-07-26 2019-05-16 国立大学法人 鹿児島大学 Bubble generation device, tubular member, bubble generation method, and method of manufacturing bubble generation device
US11110414B2 (en) 2016-07-26 2021-09-07 Kagoshima University Bubble generation device, tubular member, bubble generation method, and method for manufacturing bubble generation device
JP2019055373A (en) * 2017-09-21 2019-04-11 ミクニ総業株式会社 Micro nano-bubble generator and pipe washing method
KR20210114243A (en) * 2020-03-10 2021-09-23 중앙대학교 산학협력단 Apparatus for generating nano bubble
KR102492887B1 (en) * 2020-03-10 2023-01-31 중앙대학교 산학협력단 Apparatus for generating nano bubble
JP6863540B1 (en) * 2020-07-29 2021-04-21 日本製鉄株式会社 Ultrasonic processing equipment and fine bubble supply method
WO2022024271A1 (en) * 2020-07-29 2022-02-03 日本製鉄株式会社 Ultrasonic processing device and fine bubble supply method

Similar Documents

Publication Publication Date Title
JP2011115745A (en) Air bubble generating tube
WO2001036105A1 (en) Micro-bubble generating nozzle and application device therefor
JP2005305219A (en) Gas-liquid mixed bubble generating apparatus
CN205803105U (en) The double shower nozzle self-excited pulse water jet aerator device of a kind of two-stage
KR101840868B1 (en) Apparatus for producing micro bubbles by using a venturi pipe with porous tube therein
SG155861A1 (en) Ejector
TWI694860B (en) Micro-bubble acquisition device
JP2011194390A (en) Gas/liquid mixer, gas/liquid mixing system, and method of producing gas constituent-containing water using gas/liquid mixing system
TWM552842U (en) Micro-bubble generator
CN207632551U (en) A kind of Hydrodynamic cavitation equipment
JP2018058038A (en) Fine bubble generating device
JP2012120997A (en) Method for producing microbubble and device therefor
TWI690364B (en) Progressive-perforation-type crushing and refining structure
WO2024120105A1 (en) Air suction protection structure of microbubble device
KR200446903Y1 (en) Shower device with air bubble producer
KR101134312B1 (en) the free mixture unit of a water-purifying system in Bernoulli&#39;s theorem
JPWO2002036252A1 (en) Two-fluid mixing device
JP2008023502A (en) Nozzle for generating fine bubble and liquid jetting device
JP3158341U (en) Ultra-fine bubble generator
JP2009106918A (en) Fine bubble generator
JP3145914U (en) Water faucet mounted type micro bubble generator
JP2013139024A (en) Microbubble generation device
US20060065987A1 (en) Two-stage injector-mixer
JP2003112024A (en) Apparatus for producing ozone water
EP3170490B1 (en) Micro bubbles generating device for hydrotherapy systems