JP2528117B2 - Superconductor manufacturing method - Google Patents

Superconductor manufacturing method

Info

Publication number
JP2528117B2
JP2528117B2 JP62092851A JP9285187A JP2528117B2 JP 2528117 B2 JP2528117 B2 JP 2528117B2 JP 62092851 A JP62092851 A JP 62092851A JP 9285187 A JP9285187 A JP 9285187A JP 2528117 B2 JP2528117 B2 JP 2528117B2
Authority
JP
Japan
Prior art keywords
producing
solvolysis
superconductor
hydrolysis
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62092851A
Other languages
Japanese (ja)
Other versions
JPS63256519A (en
Inventor
道也 藤木
健 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62092851A priority Critical patent/JP2528117B2/en
Publication of JPS63256519A publication Critical patent/JPS63256519A/en
Application granted granted Critical
Publication of JP2528117B2 publication Critical patent/JP2528117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導体の製造方法に関するものである。The present invention relates to a method for manufacturing a superconductor.

(従来の技術) 従来,銅酸化物系を中心とした超伝導体の製造法に
は,()対応する金属酸化物あるいは金属炭酸塩を乳
鉢で微細に砕き,あるいは得られた微粉末をふるいにか
け、あるいは適当なバインダーとともに混練りし,800−
1200℃の高温で焼結する方法(Wu,M.K.ら,Phys.Rev.Let
t.58,908(1987))()対応する金属硝酸塩の均一水
溶液に炭酸ナトリウムを加え,生成した難溶性金属炭酸
塩を800℃で脱炭酸し,最終的に1100℃で焼結する方法
あるいは蓚酸塩の形で同様に脱炭酸させる方法(Capon
e,D.W.ら Appl. Phys.Lett.50,543(1987))等が知
られている. しかしながら,()の方法は,固相反応により対応
する種々の金属酸化物の固溶体を形成する過程を含み,
化学反応の常識からすると,均一な組成を持つ材料を合
成するには高温と長時間を要する。例えば,銅酸化物に
ついて言えば,2価の銅は1050℃以上の温度では1価の銅
に転化することが知られ,これは超伝導性を失うことに
通じる。一方,均一な組成の超伝導体を得るには,1100
℃以上の高温を必要とする。()の方法は水溶性金属
硝酸塩を出発原料にするため,金属塩の均一混合は室温
で行われる。しかしながら,800℃で脱炭酸を起こさせ12
00℃の高温で脱泡,焼結させる必要がある。これは超伝
導体内部に気泡やクラックを生じやすい。
(Prior Art) Conventionally, in the manufacturing method of a superconductor centered on a copper oxide system, () the corresponding metal oxide or metal carbonate is finely crushed in a mortar or the fine powder obtained is sieved. Or kneading with a suitable binder, 800-
Sintering at high temperature of 1200 ℃ (Wu, MK et al., Phys. Rev. Let
t.58,908 (1987)) () A method of adding sodium carbonate to a homogeneous aqueous solution of the corresponding metal nitrate, decarboxylating the resulting sparingly soluble metal carbonate at 800 ° C, and finally sintering at 1100 ° C or oxalate. In the same way as decarboxylation (Capon
e, DW et al. Appl. Phys. Lett. 50, 543 (1987)) are known. However, the method () includes the step of forming a solid solution of various corresponding metal oxides by a solid phase reaction,
From the common sense of chemical reactions, it takes a high temperature and a long time to synthesize a material having a uniform composition. For example, in the case of copper oxide, divalent copper is known to be converted to monovalent copper at a temperature of 1050 ° C or higher, which leads to loss of superconductivity. On the other hand, to obtain a superconductor with a uniform composition, 1100
It requires a high temperature above ℃. Since the method () uses a water-soluble metal nitrate as a starting material, the metal salts are uniformly mixed at room temperature. However, decarboxylation was performed at 800 ° C.
It is necessary to degas and sinter at a high temperature of 00 ℃. This tends to cause bubbles and cracks inside the superconductor.

(発明が解決しようとする問題点) 本発明はこの様な点を改良するために,低温でかつ均
一混合焼結を可能とする超伝導体の製造方法を与えるも
のである。
(Problems to be Solved by the Invention) In order to improve such points, the present invention provides a method for producing a superconductor which enables homogeneous mixed sintering at low temperature.

(問題点を解決するための手段) 本発明は,所望の各種金属イオンに対応する各種金属
が均一に混合された超伝導体を得るために,ハロゲン化
物あるいは金属硝酸塩を水あるいは有機溶剤に溶かした
均一な金属イオン混合物を水あるいは有機溶剤に可溶な
加水分解剤あるいは加溶媒分解剤により,対応する種々
の金属ヒドロゲルや金属オルガノゲルの混合物を生じさ
せる工程とこれにより生じた生成物を単離した後,該生
成物を酸素雰囲気下あるいは無酸素雰囲気下で加熱処理
して金属酸化物とする工程を含むことを特徴とする。こ
のとき,加水分解剤または加溶媒分解剤の効果を上げる
ため,または反応を十分に進行させることを目的に,適
宜加温することが出来る。
(Means for Solving the Problems) In the present invention, in order to obtain a superconductor in which various metals corresponding to various desired metal ions are uniformly mixed, a halide or a metal nitrate is dissolved in water or an organic solvent. Isolation of the resulting homogeneous metal ion mixture with a hydrolyzing or solvolyzing agent soluble in water or an organic solvent to form a mixture of various corresponding metal hydrogels and metal organogels and the resulting product After that, the step of heat-treating the product in an oxygen atmosphere or an oxygen-free atmosphere to form a metal oxide is characterized by being included. At this time, heating can be appropriately performed for the purpose of enhancing the effect of the hydrolyzing agent or the solvolytic agent or for the purpose of sufficiently proceeding the reaction.

第一の好ましい態様によれば,加水分解剤あるいは加
溶媒分解剤が特に超伝導性発現の妨害となりうるアルカ
リ金属を含まないことを特徴とし,このような加水分解
剤あるいは加溶媒分解剤を用いることで,超伝導転移温
度の高い超伝導体が得られる。
According to the first preferred embodiment, the hydrolyzing agent or solvolytic agent is characterized in that it does not contain an alkali metal which may particularly hinder the development of superconductivity, and such a hydrolyzing agent or solvolytic agent is used. As a result, a superconductor with a high superconducting transition temperature can be obtained.

第二の好ましい態様によれば,第一の態様においても
っとも好適に用いることができる加水分解剤あるいは加
溶媒分解剤として水溶液中あるいは有機溶剤中で水酸イ
オンやアルコキサイドイオンを発生する能力を有する有
機化合物を用いることが出来る。最も好ましくは,テト
ラアルキルアンモニウムヒドロキサイド,トリアルキル
スルフォニウムヒドリキサイド,ジアザビシクロウンデ
セン,ジメチルアミノピリジンが用いることができる。
According to the second preferred embodiment, the ability to generate a hydroxide ion or an alkoxide ion in an aqueous solution or an organic solvent as a hydrolyzing agent or a solvolytic agent most preferably used in the first embodiment An organic compound having can be used. Most preferably, tetraalkylammonium hydroxide, trialkylsulfonium hydroxide, diazabicycloundecene, dimethylaminopyridine can be used.

第三の好ましい態様によれば,加水分解あるいは加溶
媒分解時に,あらかじめ水酸基を2個以上有する有機物
質を加える。このような水酸基を2個以上有する有機物
質を加えることで,組成の均質性の高い超伝導体を得る
ことが出来る。
According to the third preferred embodiment, an organic substance having two or more hydroxyl groups is added in advance during hydrolysis or solvolysis. By adding such an organic substance having two or more hydroxyl groups, it is possible to obtain a superconductor having a highly uniform composition.

また、他の好ましい態様によれば,あらかじめあるい
は加水分解または加溶媒分解後に,ポリマーを添加し,
次いで生成物を酸素雰囲気中で加熱処理する。この態様
によれば,加水分解あるいは加溶媒分解した後,単離し
た生成物を酸素雰囲気下あるいは無酸素雰囲気下で加熱
処理する工程において超伝導体を任意の形状に成形加工
することが容易となる。
According to another preferred embodiment, the polymer is added in advance or after hydrolysis or solvolysis,
The product is then heat treated in an oxygen atmosphere. According to this aspect, after the hydrolysis or solvolysis, it is easy to mold the superconductor into an arbitrary shape in the step of heating the isolated product in an oxygen atmosphere or an oxygen-free atmosphere. Become.

本発明の加熱処理について概説すると,本発明の加熱
処理は,加水分解あるいは加溶媒分解により合成した混
合金属ヒドロあるいはオルガノゲルをその溶液中でさら
に加熱処理する事によって,直接微細な混合金属酸化物
のプリフォームを得る工程を含めてもよい。また,この
ようにして合成した混合金属ヒドロゲル,オルガノゲル
または微細な混合金属酸化物体微粒子を粒子間を連続さ
せるためにさらに高温でしかしながら2価銅が還元を起
こすには十分低い温度で加熱処理する工程も含む。ま
た,その焼結をより完全に行うため,加水分解時に小量
のポリマーを溶液中に共存させ,生成したゲルあるいは
溶液加熱処理で生じた金属酸化物微粒子を共存ポリマー
に吸着させ,あるいは,単離したゲル体あるいはその加
熱により生じた金属酸化物微粒子に小量のポリマーを吸
着させたものを焼結する工程を含めても良い。
The heat treatment of the present invention will be summarized. In the heat treatment of the present invention, a mixed metal hydro or organogel synthesized by hydrolysis or solvolysis is further heat treated in the solution to directly give a fine mixed metal oxide. You may include the process of obtaining a preform. In addition, a step of heating the mixed metal hydrogel, organogel or fine mixed metal oxide fine particles synthesized in this way at a higher temperature to make the particles continuous, but at a temperature low enough to cause reduction of divalent copper. Also includes. In order to perform the sintering more completely, a small amount of polymer is allowed to coexist in the solution at the time of hydrolysis, and the generated gel or the metal oxide fine particles generated by the heat treatment of the solution is adsorbed to the coexisting polymer. A step of sintering a separated gel body or a metal oxide fine particle generated by heating thereof in which a small amount of a polymer is adsorbed may be included.

本発明によれば,高温超伝導体を常温付近で所定の組
成に原子スケールで均一混合でき,これの加熱処理によ
り脱水あるいはアルキル部分解反応を完結させることが
でき,従って,金属イオンの最小限の拡散により超伝導
相を示す結晶構造を従来法に比べ低温で完結することが
できる。またアルカリ金属を含む塩基性物質による加水
分解で起こるこれらイオン類のゲルへの取り込みを完全
に抑えることができ,最終的にこれまで報告されている
焼結温度に比べ,高温焼結でありがちな2価銅の還元を
起こさずに比較的低温で超伝導体の製造が可能になると
言う点で大きな利点を有する。
According to the present invention, a high-temperature superconductor can be uniformly mixed in a predetermined composition at around room temperature on an atomic scale, and dehydration or an alkyl part decomposition reaction can be completed by heat treatment of this, and therefore, a minimum of metal ions can be obtained. The crystal structure showing the superconducting phase can be completed at a lower temperature as compared with the conventional method by diffusion of. In addition, it is possible to completely suppress the incorporation of these ions into the gel, which is caused by hydrolysis with a basic substance containing an alkali metal, and finally, the sintering temperature tends to be higher than the previously reported sintering temperature. This has a great advantage in that the superconductor can be manufactured at a relatively low temperature without reducing the divalent copper.

以下に,本発明の典型的実施例を示す。 Below, the typical example of this invention is shown.

(実施例1) YC130.2mol/1,BaCl20.2mol/1,CuCl20.2mol/1の各水溶
液を室温にて1:2:3の割合で混ぜた。これにテトラメチ
ルアンモニウムヒドロキサイド10%水溶液を徐々に添加
し,生じたヒドロゲルを吸引ろ過した。これを300−400
℃で仮焼結した。さらに,酸素雰囲気下,600−900℃で
焼結した。得られた粉末を400−600Kg/cm2でプレスし
た。このペレットをさらに酸素雰囲気下,920−1050℃で
焼結した。徐冷した試料を4端子交流法により導電率の
温度変化を求めた。結果を第1図に示す。絶対温度92K
で完全に超伝導に至り、試料の良否の目安である転移幅
がわずか0.2Kであった。
(Example 1) YC1 3 0.2 mol / 1, BaCl 2 0.2 mol / 1, and CuCl 2 0.2 mol / 1 were mixed at a ratio of 1: 2: 3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this, and the resulting hydrogel was suction filtered. This is 300-400
Temporarily sintered at ℃. Furthermore, sintering was performed at 600-900 ° C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. The results are shown in Fig. 1. Absolute temperature 92K
It reached superconductivity completely, and the transition width, which is a measure of the quality of the sample, was only 0.2K.

(実施例2) LaCl30.2mol/1,BaBr20.2mol/1,CuCl20.2mol/1の各エ
タノール溶液を室温にて1:2:3の割合で混ぜた。これに
テトラメチルアンモニウムヒドロキサイド10%メタノー
ル溶液を徐々に添加し,生じたゲルを吸引ろ過した。こ
れを300−400℃で仮焼結した。さらに,酸素雰囲気下,6
00−900℃で焼結した。得られた粉末を400−600Kg/cm2
でプレスした。このペレットをさらに酸素雰囲気下,920
−1050℃で焼結した。徐冷した試料を4端子交流法によ
り導電率の温度変化を求めた。絶対温度37Kで完全に超
伝導に至り,試料の良否を目安である転移幅はわずか0.
2Kであった。
(Example 2) LaCl 3 0.2 mol / 1, BaBr 2 0.2 mol / 1, CuCl 2 0.2 mol / 1 ethanol solutions were mixed at a ratio of 1: 2: 3 at room temperature. Tetramethylammonium hydroxide 10% methanol solution was gradually added to this, and the resulting gel was suction filtered. This was pre-sintered at 300-400 ° C. Furthermore, under oxygen atmosphere, 6
Sintered at 00-900 ° C. The obtained powder is 400-600 Kg / cm 2
Pressed. The pellets were further subjected to oxygen atmosphere at 920
Sintered at -1050 ° C. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. Complete superconductivity is reached at an absolute temperature of 37K, and the transition width, which is a guideline for the quality of the sample, is only 0.
It was 2K.

(実施例3) YC130.2mol/1,BaCl20.2mol/1,CuCl20.2mol/1の各水溶
液を室温にて6:4:1の割合で混ぜた。これにテトラメチ
ルアンモニウムヒドロキサイド10%水溶液を徐々に添加
し,生じたヒドロゲルを吸引ろ過した。これを300−400
℃で仮焼結した。さらに,酸素雰囲気下,600−900℃で
焼結した。得られた粉末を400−600Kg/cm2でプレスし
た。このペレットをさらに酸素雰囲気下,920−1050℃で
焼結した。徐冷した試料を4端子交流法により導電率の
温度変化を求めた。絶対温度83Kで完全に超伝導に至
り,転移幅はわずか0.5Kであった。
(Example 3) YC1 3 0.2mol / 1, BaCl 2 0.2mol / 1, CuCl 2 each aqueous solution of 0.2 mol / 1 at room temperature 6: 4: mixed at a ratio of 1. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this, and the resulting hydrogel was suction filtered. This is 300-400
Temporarily sintered at ℃. Furthermore, sintering was performed at 600-900 ° C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. Fully superconducting was achieved at an absolute temperature of 83K, and the transition width was only 0.5K.

(実施例4) LaCl30.2mol/1,SrCl20.2mol/1,CuCl20.2mol/1の各水
溶液を室温にて9:1:4の割合で混ぜた。これにテトラメ
チルアンモニウムヒドロキサイド10%水溶液を徐々に添
加し,生じたヒドロゲルを吸引ろ過した。これを300−4
00℃で仮焼結した。さらに,酸素雰囲気下,600−900℃
で焼結した。得られた粉末を400−600Kg/cm2でプレスし
た。このペレットをさらに酸素雰囲気下,920−1050℃で
焼結した。徐冷した試料を4端子交流法により導電率の
温度変化を求めた。絶対温度37Kで完全に超伝導に至
り,転移幅は2.5Kであった。
(Example 4) LaCl 3 0.2 mol / 1, SrCl 2 0.2 mol / 1, and CuCl 2 0.2 mol / 1 aqueous solutions were mixed at a ratio of 9: 1: 4 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this, and the resulting hydrogel was suction filtered. This is 300-4
It was temporarily sintered at 00 ° C. Furthermore, under oxygen atmosphere, 600-900 ℃
Sintered. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. It reached superconductivity completely at an absolute temperature of 37K and the transition width was 2.5K.

(実施例5) YCl30.2mol/1,BaBr20.2mol/1,CuCl20.2mol/1の各グリ
セリン溶液を室温にて1:2:3の割合で混ぜた。これにテ
トラメチルアンモニウムヒドロキサイド10%メタノール
溶液を徐々に添加し,生じたゲルを吸引ろ過した。これ
を300−400℃で仮焼結した。さらに,酸素雰囲気下,600
−900℃で焼結した。得られた粉末を400−600Kg/cm2
プレスした。このペレットをさらに酸素雰囲気下,920−
1050℃で焼結した。徐冷した試料を4端子交流法により
導電率の温度変化を求めた。結果を第1図に示す。絶対
温度92Kで完全に超伝導に至り,試料の良否の目安であ
る転移幅がわずか0.2Kであった。
(Example 5) YCl 3 0.2 mol / 1, BaBr 2 0.2 mol / 1, and CuCl 2 0.2 mol / 1 were mixed at a ratio of 1: 2: 3 at room temperature. Tetramethylammonium hydroxide 10% methanol solution was gradually added to this, and the resulting gel was suction filtered. This was pre-sintered at 300-400 ° C. Furthermore, under oxygen atmosphere, 600
Sintered at -900 ° C. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further subjected to an oxygen atmosphere at 920-
Sintered at 1050 ° C. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. The results are shown in Fig. 1. It reached superconductivity completely at an absolute temperature of 92K, and the transition width, which is a measure of the quality of the sample, was only 0.2K.

(実施例6) YC130.2mol/1,BaCl20.2mol/1,CuCl20.2mol/1の各水溶
液を室温にて1:2:3の割合で混ぜた。これにKOH水溶液を
徐々に添加し,生じたヒドロゲルを吸引ろ過した。純水
で十分に洗浄した後これを300−400℃で仮焼結した。さ
らに,酸素雰囲気下,600−900℃で焼結した。得られた
粉末を400−600Kg/cm2でプレスした。このペレットをさ
らに酸素雰囲気下,920−1050℃で焼結した。徐冷した試
料を4端子交流法により導電率の温度変化を求めた。絶
対温度86Kで完全に超伝導に至り,試料の良否の目安で
ある転移幅は0.9Kであった。
(Example 6) YC1 3 0.2 mol / 1, BaCl 2 0.2 mol / 1, CuCl 2 0.2 mol / 1 aqueous solutions were mixed at a ratio of 1: 2: 3 at room temperature. Aqueous KOH solution was gradually added to this, and the resulting hydrogel was suction filtered. After thoroughly washing with pure water, this was pre-sintered at 300-400 ° C. Furthermore, sintering was performed at 600-900 ° C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. Complete superconductivity was reached at an absolute temperature of 86K, and the transition width, which is a measure of the quality of the sample, was 0.9K.

(実施例7) YCl30.2mol/1,BaCl20.2mol/1,CuCl20.2mol/1の各水溶
液を室温にて1:2:3の割合で混ぜた。これにテトラメチ
ルアンモニウムヒドロキサイド10%水溶液を徐々に添加
し,生じたヒドロゲルをさらに溶液中で加温処理を施
し,生じた黒色沈澱を吸引ろ過した。これを300−400℃
で仮焼結した。さらに,酸素雰囲気下,600−900℃で焼
結した。得られた粉末を400−600Kg/cm2でプレスした。
このペレットをさらに酸素雰囲気下,920−1050℃で焼結
した。徐冷した試料を4端子交流法により導電率の温度
変化を求めた。絶対温度90Kで完全に超伝導に至り,試
料の良否の目安である転移幅は0.6Kであった。
(Example 7) YCl 3 0.2 mol / 1, BaCl 2 0.2 mol / 1, and CuCl 2 0.2 mol / 1 were mixed at a ratio of 1: 2: 3 at room temperature. Tetramethylammonium hydroxide 10% aqueous solution was gradually added thereto, and the resulting hydrogel was further heated in the solution, and the resulting black precipitate was suction filtered. This is 300-400 ℃
Was temporarily sintered in. Furthermore, sintering was performed at 600-900 ° C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg / cm 2 .
The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. Full superconductivity was reached at an absolute temperature of 90K, and the transition width, which is a measure of the quality of the sample, was 0.6K.

(実施例8) YNO30.2mol/1,BaNO30.2mol/1,CuNO20.2mol/1の各水溶
液を室温にて1:2:3の割合で混ぜた。これにテトラメチ
ルアンモニウムヒドロキサイド10%水溶液を徐々に添加
し,生じたヒドロゲルを吸引ろ過した。これを空気中30
0−400℃で仮焼結した。さらに,酸素雰囲気下,600−90
0℃で焼結した。得られた粉末を400−600Kg/cm2でプレ
スした。このペレットをさらに酸素雰囲気下,920−1050
℃で焼結した。徐冷した試料を4端子交流法により導電
率の温度変化を求めた。結果を第1図に示す。絶対温度
92Kで完全に超伝導に至り,試料の良否の目安である転
移幅がわずか0.2Kであった。
(Example 8) YNO 3 0.2 mol / 1, BaNO 3 0.2 mol / 1, and CuNO 2 0.2 mol / 1 were mixed at a ratio of 1: 2: 3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this, and the resulting hydrogel was suction filtered. This in the air 30
Pre-sintered at 0-400 ° C. Furthermore, under oxygen atmosphere, 600-90
Sintered at 0 ° C. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further subjected to an oxygen atmosphere at 920-1050.
Sintered at ° C. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. The results are shown in Fig. 1. Absolute temperature
Full superconductivity was reached at 92K, and the transition width, which is a measure of the quality of the sample, was only 0.2K.

(実施例9) YCl30.2mol/1,BaCl20.2mol/1,CuCl20.2mol/1の各水溶
液を室温にて1:2:3の割合で混ぜた。これにポリビニル
アルコール水溶液を小量添加し,テトラメチルアンモニ
ウムヒドロキサイド10%水溶液を徐々に添加し,生じた
ヒドロゲルを吸引ろ過した。これを300−400℃で仮焼結
した。さらに,酸素雰囲気下,600−900℃で焼結した。
得られた粉末を400−600Kg/cm2でプレスした。このペレ
ットをさらに酸素雰囲気下,920−1050℃で焼結した。徐
冷した試料を4端子交流法により導電率の温度変化を求
めた。絶対温度93Kで完全に超伝導に至り,試料の良否
の目安である転移幅がわずか0.3Kであった。
(Example 9) YCl 3 0.2 mol / 1, BaCl 2 0.2 mol / 1, CuCl 2 0.2 mol / 1 aqueous solutions were mixed at a ratio of 1: 2: 3 at room temperature. A small amount of an aqueous solution of polyvinyl alcohol was added to this, and a 10% aqueous solution of tetramethylammonium hydroxide was gradually added, and the resulting hydrogel was suction filtered. This was pre-sintered at 300-400 ° C. Furthermore, sintering was performed at 600-900 ° C in an oxygen atmosphere.
The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed sample was determined by the 4-terminal AC method. It reached superconductivity completely at an absolute temperature of 93K, and the transition width, which is a measure of the quality of the sample, was only 0.3K.

(実施例10) YCl30.2mol/1,BaCl20.2mol/1,CuCl20.2mol/1の各水溶
液を室温にて1:2:3の割合で混ぜた。これにテトラメチ
ルアンモニウムヒドロキサイド10%水溶液を徐々に添加
し,さらに加温処理して生じた黒色沈澱を吸引ろ過し
た。これを小量のポリビニルアルコール溶液と混練り
し,300−400℃で仮焼結した。
(Example 10) YCl 3 0.2 mol / 1, BaCl 2 0.2 mol / 1, and CuCl 2 0.2 mol / 1 were mixed at a ratio of 1: 2: 3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this, and the resulting black precipitate was suction filtered by heating. This was kneaded with a small amount of polyvinyl alcohol solution and pre-sintered at 300-400 ℃.

さらに、酸素雰囲気下,600−900℃で焼結した。得ら
れた粉末を400−600Kg/cm2でプレスした。このペレット
をさらに酸素雰囲気下,920−1050℃で焼結した。徐冷し
た資料を4端子交流方により導電率の温度変化を求め
た。絶対温度90Kで完全に超伝導に至り,試料の良否の
目安である転移幅がわずか0.4Kであった。
Further, it was sintered at 600-900 ° C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg / cm 2 . The pellets were further sintered at 920-1050 ° C under oxygen atmosphere. The temperature change of the conductivity of the annealed material was determined by a 4-terminal AC method. Fully superconducting was achieved at an absolute temperature of 90K, and the transition width, which is a measure of the quality of the sample, was only 0.4K.

以下同様にして、所定の組成に仕込んだY,Scおよびラ
ンタニド系元素、Baを初めとするアルカリ土類系元素、
そして銅のハロゲン化物、あるいは硝酸塩を原料にし
て、加水分解して、目的物質を得た。結果を次表にまと
める。
In the same manner, Y, Sc and lanthanide-based elements charged to a predetermined composition, alkaline earth elements such as Ba,
Then, using a copper halide or nitrate as a raw material, hydrolysis was carried out to obtain a target substance. The results are summarized in the table below.

(発明の効果) 以上説明したように、本発明の加水分解法あるいは加
溶媒分解を経由した低温製造法によれば、2価銅の還元
が起こらない温度で焼結でき、かつ低温でのヒドロゲル
の脱水、あるいはオルガノゲルのアルキル部の熱分解を
伴う仮焼結により転移幅のシャープな特性の良い高温超
伝導体を再現良く作製することができるという利点を有
する。高温超伝導体、特に絶対温度77Kの液体室素温度
以上で超伝導に至る材料は、ジョセフソン素子、電力輪
送、高磁場発生磁石等の幅広い工業的応用が期待され、
その素材加工上、本発明は低温プロセスで作製できると
いう点で極めて大きなインパクトを与える。
(Effects of the Invention) As described above, according to the low temperature production method via the hydrolysis method or solvolysis of the present invention, it is possible to sinter at a temperature at which the reduction of divalent copper does not occur and the hydrogel at a low temperature. It has the advantage that a high-temperature superconductor with a sharp transition width and good characteristics can be produced with good reproducibility by dehydration or by temporary sintering accompanied by thermal decomposition of the alkyl part of the organogel. High-temperature superconductors, especially materials that reach superconductivity above a liquid chamber temperature of 77K absolute, are expected to have a wide range of industrial applications such as Josephson devices, power transfer, and high magnetic field generating magnets.
In terms of material processing, the present invention has an extremely large impact in that it can be manufactured by a low temperature process.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法により作製されたY1.0Ba2.0Cu
3.0酸化物超伝導体の抵抗一温度特性を示す図である。
FIG. 1 shows Y 1.0 Ba 2.0 Cu produced by the method of the present invention.
FIG. 3 is a diagram showing resistance-temperature characteristics of a 3.0 oxide superconductor.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般組成式(M1)x(M2)y(M3)zOw(M
1は(B,A1,Ga,In,T1,Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,Yb,Lu)からなる群から選ばれた一また
は二以上の元素,M2は(Be,Mg,Ca,Sr,Ba,Ra,Sn,Pb)から
なる群から選ばれた一または二以上の元素,M3はCu,x,y,
z,wは任意の原子モル分率)で表される超伝導体の製造
方法に於て,M1,M2,M3のハロゲン化物あるいは硝酸塩を
加温または加温せずにアルカリ加水分解あるいは加溶媒
分解する工程とこれにより生じた生成物を単離した後,
該生成物を酸素雰囲気下あるいは無酸素雰囲気下で加熱
処理して金属酸化物とする工程を含むことを特徴とする
超伝導体の製造方法。
1. A general composition formula (M1) x (M2) y (M3) zOw (M
1 is (B, A1, Ga, In, T1, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu) one or more elements selected from the group consisting of (Be, Mg, Ca, Sr, Ba, Ra, Sn, Pb) One or more elements selected from, M3 is Cu, x, y,
(z, w are arbitrary atomic mole fractions) In the method for producing superconductors, alkali hydrolysis or solvent addition of M1, M2, M3 halides or nitrates with or without heating After degrading and isolating the resulting product,
A method for producing a superconductor, comprising the step of subjecting the product to a metal oxide by heat treatment in an oxygen atmosphere or an oxygen-free atmosphere.
【請求項2】アルカリ加水分解あるいは加溶媒分解する
ときの分解剤がアルカリ金属を含まないことを特徴とす
る特許請求の範囲第1項記載の超伝導体の製造方法。
2. The method for producing a superconductor according to claim 1, wherein the decomposing agent for alkali hydrolysis or solvolysis does not contain an alkali metal.
【請求項3】アルカリ加水分解あるいは加溶媒分解する
ときの分解剤が水溶液中あるいは有機溶剤中で水酸イオ
ンあるいはアルコキサイドイオンを発生する能力を有す
る有機化合物であることを特徴とする特許請求の範囲第
1項又は第2項記載の超伝導体の製造方法。
3. A decomposition agent for alkali hydrolysis or solvolysis is an organic compound having an ability to generate a hydroxide ion or an alkoxide ion in an aqueous solution or an organic solvent. 2. A method for producing a superconductor according to claim 1 or 2.
【請求項4】アルカリ加水分解あるいは加溶媒分解する
ときの分解剤がテトラアルキルアンモニウムヒドロキサ
イド,トリアルキルスルフォニウムヒドロキサイド,ジ
アザビシクロウンデセン,ジメチルアミノピリジンであ
ることを特徴とする特許請求の範囲第1項,第2項,第
3項いずれか記載の超伝導体の製造方法。
4. The decomposition agent for alkali hydrolysis or solvolysis is tetraalkylammonium hydroxide, trialkylsulfonium hydroxide, diazabicycloundecene, dimethylaminopyridine. 4. A method for producing a superconductor according to any one of the first, second and third aspects of the above.
【請求項5】加水分解あるいは加溶媒分解時に,あらか
じめ水酸基を2個以上有する有機物質を加えることを特
徴とする特許請求の範囲第1項,第2項,第3項,第4
項いずれか記載の超伝導体の製造方法。
5. An organic substance having two or more hydroxyl groups is previously added at the time of hydrolysis or solvolysis, wherein the first, second, third and fourth aspects are set forth.
Item 8. A method for producing a superconductor according to any one of the items.
【請求項6】あらかじめあるいは加水分解または加溶媒
分解後に,ポリマーを添加し,次いで生成物を酸素雰囲
気中で加熱処理する工程を含むことを特徴とする特許請
求の範囲第1項,第2項,第3項,第4項,第5項いず
れか記載の超伝導体の製造方法。
6. The method according to claim 1, further comprising the step of adding a polymer in advance or after hydrolysis or solvolysis, and then subjecting the product to heat treatment in an oxygen atmosphere. The method for producing a superconductor according to any one of paragraphs 3, 4, and 5.
JP62092851A 1987-04-15 1987-04-15 Superconductor manufacturing method Expired - Fee Related JP2528117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092851A JP2528117B2 (en) 1987-04-15 1987-04-15 Superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092851A JP2528117B2 (en) 1987-04-15 1987-04-15 Superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPS63256519A JPS63256519A (en) 1988-10-24
JP2528117B2 true JP2528117B2 (en) 1996-08-28

Family

ID=14065929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092851A Expired - Fee Related JP2528117B2 (en) 1987-04-15 1987-04-15 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP2528117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906375B2 (en) 2002-11-19 2005-06-14 E. I. Du Pont De Nemours And Company Divalent europium-containing compositions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102970B2 (en) * 1989-03-28 1995-11-08 日本電気株式会社 Oxide superconductor composition and method for producing the same
JPH07102971B2 (en) * 1989-06-05 1995-11-08 日本電気株式会社 Oxide superconductor composition and method for producing the same
US5300483A (en) * 1992-01-16 1994-04-05 Sinha Shome N Process for preparing shaped superconductor materials via nonequilibrium precursors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230523A (en) * 1987-03-19 1988-09-27 Asahi Chem Ind Co Ltd Superconductive material
JPS63252925A (en) * 1987-04-10 1988-10-20 Kazuo Fueki Production of superconductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906375B2 (en) 2002-11-19 2005-06-14 E. I. Du Pont De Nemours And Company Divalent europium-containing compositions

Also Published As

Publication number Publication date
JPS63256519A (en) 1988-10-24

Similar Documents

Publication Publication Date Title
CN1028390C (en) Improved process for making 90K superconductors
JP2528117B2 (en) Superconductor manufacturing method
JP2622117B2 (en) Superconductor manufacturing method
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
JP2622116B2 (en) Superconductor manufacturing method
US4996189A (en) Method of producing mixed metal oxide material, and of producing a body comprising the material
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JPS63259927A (en) Manufacture of thin film of superconductive matter
CN100519471C (en) Method for preparing barium - plumbum - bismuth - oxygen superconduct, and electronic material
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
JPH0574528B2 (en)
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JP2539451B2 (en) Method for manufacturing oxide superconductor
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JPH01108155A (en) Oxide superconducting material and production thereof
JPS63295415A (en) Production of superconductor
JP3164392B2 (en) Manufacturing method of oxide superconductor
JPH0238359A (en) Production of superconductor
JPH0214871A (en) Production of copper oxide superconductor
JP3115357B2 (en) Manufacturing method of oxide superconducting material
EP0494927A1 (en) Process for making supraconductors
JP2785263B2 (en) Superconductor manufacturing method
JPS63295466A (en) Composition for superconducting material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees