JPH07102970B2 - Oxide superconductor composition and method for producing the same - Google Patents

Oxide superconductor composition and method for producing the same

Info

Publication number
JPH07102970B2
JPH07102970B2 JP1077192A JP7719289A JPH07102970B2 JP H07102970 B2 JPH07102970 B2 JP H07102970B2 JP 1077192 A JP1077192 A JP 1077192A JP 7719289 A JP7719289 A JP 7719289A JP H07102970 B2 JPH07102970 B2 JP H07102970B2
Authority
JP
Japan
Prior art keywords
superconducting
composition
oxide superconductor
producing
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1077192A
Other languages
Japanese (ja)
Other versions
JPH02255529A (en
Inventor
隆志 真子
祐一 島川
佳実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1077192A priority Critical patent/JPH07102970B2/en
Publication of JPH02255529A publication Critical patent/JPH02255529A/en
Publication of JPH07102970B2 publication Critical patent/JPH07102970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の超伝導応用装置や超伝導素子に使用さ
れる酸化物超伝導材料に関するものである。
Description: TECHNICAL FIELD The present invention relates to an oxide superconducting material used in various superconducting application devices and superconducting elements.

(従来の技術) 超伝導材料として現在実用化されているものとして、金
属・合金系超伝導材料、化合物超伝導材料などがある。
超伝導材料はショセフソン素子などのエレクトロニクス
デバイスや超伝導磁石用のコイルなどを作るのに用いら
れ、特にジョセフソン接合の高感度性、高精度性、低雑
音性を利用したSQUIDや精密計測への応用の他、ジョセ
フソン接合の高速応答性と低消費電力性に着目した電子
計算機への応用が期待されている。
(Prior Art) Materials that are currently in practical use as superconducting materials include metal / alloy-based superconducting materials and compound superconducting materials.
Superconducting materials are used to make electronic devices such as Shosefson elements and coils for superconducting magnets, and especially for SQUID and precision measurement utilizing the high sensitivity, high accuracy, and low noise of Josephson junctions. In addition to applications, it is expected to be applied to electronic computers that focus on the high-speed response and low power consumption of Josephson junctions.

超伝導材料の超伝導転移温度Tcは、できるだけ高いこと
が望まれるが、30KのTcを持つLa−Ba−Cu−O系酸化物
超伝導体の発見以来、90K級のBa−Y−Cu−O系、110K
級のBi−Sr−Ca−Cu−O系、120K級のTl−Ba−Ca−Cu−
O系などが相次いで発見されてきた。液体窒素温度をは
るかに越えたTcをもつ材料の発見は、実用材料としての
期待をますます高めている。
The superconducting transition temperature Tc of the superconducting material is desired to be as high as possible, but since the discovery of the La-Ba-Cu-O-based oxide superconductor having a Tc of 30K, 90K-class Ba-Y-Cu- O type, 110K
Grade Bi-Sr-Ca-Cu-O system, 120K grade Tl-Ba-Ca-Cu-
O-types have been discovered one after another. The discovery of materials with Tc well above the liquid nitrogen temperature has further raised expectations as practical materials.

(発明が解決しようとする課題) 超伝導転移温度Tcは物質に固有のものであり、磁場をか
けない場合には常にほぼ一定の値である。構成元素の組
成比を変化させると見かけ上超伝導転移温度が下がるが
これは、超伝導に転移する体積分率が減少し、転移が鈍
化するためである。任意の温度で、全体積がシャープに
超伝導転移する物質を得ることができれば、温度センサ
ーをはじめとする多くの応用が開けてくる。
(Problems to be Solved by the Invention) The superconducting transition temperature Tc is unique to a substance and has a substantially constant value when no magnetic field is applied. When the composition ratio of the constituent elements is changed, the superconducting transition temperature apparently decreases, but this is because the volume fraction of transition to superconductivity decreases and the transition slows down. If we can obtain a substance that undergoes a superconducting transition with a sharp total volume at any temperature, we can open many applications, including temperature sensors.

そこで本発明の目的は、40K以下の任意の温度で、鋭い
超伝導転移を示す酸化物超伝導体組成物及びその作製方
法を提供することにある。
Therefore, an object of the present invention is to provide an oxide superconductor composition that exhibits a sharp superconducting transition at an arbitrary temperature of 40 K or less, and a method for producing the same.

(問題点を解決するための手段) 本発明は、TlBa1+xLa1-xCuOyなる組成式で−0.2≦x0.6
なる組成を800℃〜910℃で焼結すればTcを連続的に変え
ることができること、及び、焼結の際にプレス成形体を
金箔で包むことにより上記組成物の特性がさらに向上す
ることを見いだしたものである。
(Means for Solving Problems) The present invention has a composition formula of TlBa 1 + x La 1-x CuOy of −0.2 ≦ x0.6.
Tc can be continuously changed by sintering the composition of 800 ° C. to 910 ° C., and the properties of the composition can be further improved by wrapping the press-molded body with gold foil during sintering. It is something I found.

(作用) 例えばTlBa1.3La0.7CuOyなる組成物は39Kで、TlBa1.1La
0.9CuOyなる組成物は30Kでそれぞれシャープな超伝導転
移を示し、転移後はほとんど全体積が超伝導状態になっ
ていることが確認された。
(Function) For example, the composition of TlBa 1.3 La 0.7 CuOy is 39 K, and the composition of TlBa 1.1 La
It was confirmed that the composition of 0.9 CuOy showed a sharp superconducting transition at 30 K, and almost the entire volume was in the superconducting state after the transition.

(実施例) 以下実施例により、本発明を具体的に説明する。出発原
料として純度99.9%以上の酸化タリウム(Tl2O3)、酸
化バリウム(BaO)、酸化ランタン(La2O3)、酸化第2
銅(CuO)を使用し第1表に示す配合比になるように各
々秤量した。つぎに秤量した各材料を乳鉢でよく混合し
た後、プレスして5mm×10mm×1mmのプレス体を作成し
た。このプレス体を、酸素雰囲気中で800℃〜910℃で1
〜10時間焼成した。また一部の試料については金箔で包
んで焼成した。
(Example) The present invention will be specifically described with reference to the following examples. As a starting material, thallium oxide (Tl 2 O 3 ), barium oxide (BaO), lanthanum oxide (La 2 O 3 ) with a purity of 99.9% or more, second oxide
Copper (CuO) was used and weighed so that the compounding ratios shown in Table 1 were obtained. Next, the weighed materials were thoroughly mixed in a mortar and then pressed to prepare a pressed body of 5 mm × 10 mm × 1 mm. This pressed body is heated at 800 ° C to 910 ° C in an oxygen atmosphere for 1 hour.
Baked for ~ 10 hours. Some samples were wrapped in gold foil and fired.

第1表の範囲の焼結体について抵抗率、超伝導体積分率
の測定を行い超伝導特性を評価した。
The resistivity and the superconductor integral ratio of the sintered body within the range of Table 1 were measured to evaluate the superconducting property.

抵抗率測定は直流4端子法によって行った。電極は金を
スパッタリング法にて取り付けリードとして錫メッキ銅
線を用いた。
The resistivity was measured by the DC 4-terminal method. Gold was attached to the electrode by a sputtering method, and a tin-plated copper wire was used as a lead.

超伝導体積分率は交流帯磁率測定より求めた。The superconductor volume fraction was determined by measuring the AC magnetic susceptibility.

交流帯磁率はコイルの中にサンプルをいれコイルのLの
変化を測定することによって行った。体積分率は、同体
積、同じ形状の鉛の4.2KにおけるΔLを100として算出
した。抵抗測定は室温から抵抗が0になる温度まで、帯
磁率測定は室温から4.2Kまで行った。
The AC susceptibility was measured by putting a sample in the coil and measuring the change in L of the coil. The volume fraction was calculated assuming that ΔL of lead having the same volume and the same shape at 4.2K is 100. The resistance was measured from room temperature to the temperature at which the resistance became zero, and the magnetic susceptibility was measured from room temperature to 4.2K.

第1表に配合比と抵抗が0になる臨界温度4.2Kでの超伝
導相の割合を示す。プレス成形体を金箔で包まずに焼成
した場合は焼成中にTlが消失するため、組成ずれが生
じ、体積分率が若干低下する。xの範囲については、x
が−0.2未満、及びxが0.6より大きい範囲では、室温か
ら4.2Kまで超伝導を示さなくなるため本発明の目的には
不適当である。焼結温度については800℃未満では反応
が進まず優れた超伝導特性は得られない。また910℃を
越えると分解が起こるため体積分率が低下する。
Table 1 shows the composition ratio and the ratio of the superconducting phase at the critical temperature of 4.2K at which the resistance becomes zero. When the press-molded body is fired without being wrapped with gold foil, Tl disappears during firing, resulting in compositional deviation and a slight decrease in volume fraction. For the range of x, x
Is less than -0.2 and x is greater than 0.6, superconductivity is not exhibited from room temperature to 4.2K, which is unsuitable for the purpose of the present invention. If the sintering temperature is less than 800 ° C, the reaction does not proceed and excellent superconducting properties cannot be obtained. Further, when the temperature exceeds 910 ° C, decomposition occurs, so that the volume fraction decreases.

(発明の効果) 第1表に示すごとく、本発明の組成物はxの値により連
続的にTcが変化し、しかも鋭い超伝導転移を示すため、
超伝導材料として非常に実用性の高いものである。
(Effects of the invention) As shown in Table 1, the composition of the present invention continuously changes Tc depending on the value of x and exhibits a sharp superconducting transition.
It is a very practical material as a superconducting material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/12 ZAA C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 39/12 ZAA C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】TlBa1+xLa1-xCuOyと表わしたときに、−0.
2≦x≦0.6なる範囲にあることを特徴とする酸化物超伝
導体組成物。
1. When expressed as TlBa 1 + x La 1-x CuOy, −0.
An oxide superconductor composition characterized by being in the range of 2 ≦ x ≦ 0.6.
【請求項2】Tl2O3,BaO,La2O3,CuO粉末を特許請求の範
囲第1項記載の組成となるように混合し、プレス成形し
た後、800℃から910℃の温度範囲で熱処理することを特
徴とする酸化物超伝導体組成物の製造方法。
2. Tl 2 O 3 , BaO, La 2 O 3 and CuO powders are mixed so as to have the composition described in claim 1, press-molded, and then the temperature range from 800 ° C. to 910 ° C. A method for producing an oxide superconductor composition, which comprises heat-treating.
JP1077192A 1989-03-28 1989-03-28 Oxide superconductor composition and method for producing the same Expired - Fee Related JPH07102970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077192A JPH07102970B2 (en) 1989-03-28 1989-03-28 Oxide superconductor composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077192A JPH07102970B2 (en) 1989-03-28 1989-03-28 Oxide superconductor composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02255529A JPH02255529A (en) 1990-10-16
JPH07102970B2 true JPH07102970B2 (en) 1995-11-08

Family

ID=13626955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077192A Expired - Fee Related JPH07102970B2 (en) 1989-03-28 1989-03-28 Oxide superconductor composition and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07102970B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528117B2 (en) * 1987-04-15 1996-08-28 日本電信電話株式会社 Superconductor manufacturing method
JPH026329A (en) * 1988-06-24 1990-01-10 Mitsubishi Petrochem Co Ltd Superconducting material composition

Also Published As

Publication number Publication date
JPH02255529A (en) 1990-10-16

Similar Documents

Publication Publication Date Title
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH07102970B2 (en) Oxide superconductor composition and method for producing the same
JP2679124B2 (en) Oxide superconductor composition
JP2636057B2 (en) Manufacturing method of oxide superconductor
JPH07115922B2 (en) Oxide superconductor composition and method for producing the same
EP0368210B1 (en) An oxide superconductor composition and a process for the production thereof
JPH0521851B2 (en)
JPH0521849B2 (en)
JP2819883B2 (en) Method for producing thallium-based oxide superconductor
JPH0521850B2 (en)
JPH07102971B2 (en) Oxide superconductor composition and method for producing the same
JPH02129028A (en) Oxide superconductor composition and production thereof
JPH0521848B2 (en)
US5328892A (en) Oxide superconductor composition and a process for the production thereof
JPH0512288B2 (en)
JPH038755A (en) Oxide superconductor composition and production thereof
JPH02107556A (en) Production of oxide superconductor composition
JP2854338B2 (en) Copper oxide superconductor
JPH0543234A (en) Oxide superconductor and production thereof
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPH0662333B2 (en) Method for producing oxide superconductor composition
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2696690B2 (en) Oxide superconducting material
JPH04317457A (en) Production of oxide superconductor composition
JPS63297220A (en) Oxide superconductor composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees