JPS63295415A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPS63295415A
JPS63295415A JP62130375A JP13037587A JPS63295415A JP S63295415 A JPS63295415 A JP S63295415A JP 62130375 A JP62130375 A JP 62130375A JP 13037587 A JP13037587 A JP 13037587A JP S63295415 A JPS63295415 A JP S63295415A
Authority
JP
Japan
Prior art keywords
ions
superconductor
ion
producing
solvolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62130375A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62130375A priority Critical patent/JPS63295415A/en
Publication of JPS63295415A publication Critical patent/JPS63295415A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a superconductor sintered at low temp. and mixed uniformly by hydrolyzing or solvolyzing a uniform mixed soln. of halide, nitrate etc., of each element constituting a superconductor having a specified compsn. and treating thereafter the obtd. product with an oxidizing agent. CONSTITUTION:A superconductor expressed by the general formula: (M1)x(M2)y(M3)zOw (wherein M1 is at least one element selected from a group consisting of B, Al, Ga, In, Tl, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; M2 is at lease one element selected from a group consisting of Be, Mg, Ca, Sr, Ba, Ra, Sn, and Pb; M3 is Cu; each x, y, z, and w is optional atomic fraction of respective atom) is formed by a process described hereunder. Namely, each halide, nitrate, or perchlorate of M1, M2, and M3 is hydrolyzed with alkali or solvolyzed, and a product obtained by adding an oxidizing agent to the hydrolyzed or solvolyzed product is transformed to each metal oxide by heating the oxidized product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導体の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a superconductor.

(従来の技術) 従来、銅酸化物系を中心とした超伝導体の製造法には、
(i)対応する金属酸化物あるいは金属炭酸塩を乳鉢で
微細に砕き、あるいは得られた微粉末をふるいにかけ、
あるいは適当なバインダーとともに混練りし、800〜
1200°Cの高温で焼結する方法(Wu、M、に、 
 ら。
(Conventional technology) Conventionally, methods for producing superconductors mainly based on copper oxides include:
(i) Finely crush the corresponding metal oxide or metal carbonate in a mortar or sieve the resulting fine powder,
Or knead with a suitable binder and
A method of sintering at a high temperature of 1200 °C (Wu, M,
and others.

Phys、Rev、Lett、58.908(1987
))   (ii)対応する金属硝酸塩の均一水溶液に
炭酸ナトリウムを加え、生成した難溶性金属炭酸塩を8
00°Cで脱炭酸し、最終的に1100°Cで焼結する
方法あるいは蓚酸塩の形で同様に脱炭酸させる方法(C
apone。
Phys, Rev. Lett, 58.908 (1987
)) (ii) Sodium carbonate is added to a homogeneous aqueous solution of the corresponding metal nitrate, and the resulting sparingly soluble metal carbonate is
A method of decarboxylation at 00°C and finally sintering at 1100°C, or a method of decarboxylation in the form of oxalate (C
apone.

D、W、らAppl、Phys、Lett。D, W, et al. Appl, Phys, Lett.

50.543  (1987))等が知られている。50.543 (1987)) are known.

しかしながら、(i)の方法は、固相反応により対応す
る種々の金属酸化物の固溶体を形成する過程を含み、化
学反応の常識からすると。
However, method (i) involves a process of forming a solid solution of various metal oxides by solid phase reaction, which is common sense in chemical reactions.

均一な組成を持つ材料を合成するには高温と長時間を要
する0例えば、銅酸化物について言えば、2価の銅は1
050 ”C以上の温度では1価の銅に転化することが
知られ、これは超伝導性を失うことに通じる。一方、均
一な組成の超伝導体を得るには、1100℃以上の高温
を必要とする。(ii)の方法は水溶性金属硝酸塩を出
発原料にするため、金属塩の均一混合は室温で行われる
。しかしながら、800℃で脱炭酸を起こさせ1200
℃の高温で脱泡、焼結させる必要がある。これは超伝導
体内部に気泡やクラックを生じやすい。
Synthesizing a material with a uniform composition requires high temperatures and a long time.For example, in the case of copper oxide, divalent copper is
It is known that copper converts to monovalent copper at temperatures above 0.050"C, which leads to the loss of superconductivity. On the other hand, in order to obtain a superconductor with a uniform composition, a high temperature of 1100"C or above is required. Since method (ii) uses water-soluble metal nitrates as starting materials, uniform mixing of the metal salts is carried out at room temperature.However, decarboxylation occurs at 800°C and
It is necessary to degas and sinter at a high temperature of ℃. This tends to cause bubbles and cracks inside the superconductor.

(発明の解決しようとする問題点) 本発明はこの様な点を改良するために、低温でかつ均一
混合焼結を可能とする超伝導体の製造方法を与えるもの
である。
(Problems to be Solved by the Invention) In order to improve these points, the present invention provides a method for manufacturing a superconductor that enables uniform mixed sintering at low temperatures.

(問題点を解決するための手段) 本発明は、所望の各種金属イオンに対応する各種金属が
均一に混合された超伝導体を得るために、ハロゲン化物
あるいは金属硝酸塩を水あるいは有機溶剤に溶かした均
一な金属イオン混合物を水あるいは有機溶剤に可溶な加
水分解剤あるいは加溶媒分解剤により、対応する種々の
金属ヒドロゲルや金属オルガノゲルの混合物を生じさせ
る工程とこれにより生じた生成物にさらに酸化剤を加え
て混合金属酸化物としたした後、該生成物を酸素雰囲気
下あるいは無酸素雰囲気下で加熱処理する工程を含むこ
とを特徴とする。このとき、加水分解剤または加溶媒分
解剤の効果を上げるため、または反応を十分に進行させ
ることを目的に、適宜加温することが出来る。
(Means for Solving the Problems) The present invention involves dissolving halides or metal nitrates in water or organic solvents in order to obtain a superconductor in which various metals corresponding to various desired metal ions are uniformly mixed. A process of producing a mixture of various metal hydrogels and metal organogels by using a hydrolysis agent or solvolysis agent soluble in water or an organic solvent from a homogeneous metal ion mixture, and further oxidation of the resulting product. The method is characterized in that it includes a step of adding an agent to form a mixed metal oxide and then heat-treating the product in an oxygen atmosphere or an oxygen-free atmosphere. At this time, heating can be carried out as appropriate in order to increase the effect of the hydrolyzing agent or solvolytic agent or for the purpose of sufficiently advancing the reaction.

第一の好ましい態様によれば、加水分解剤あるいは加溶
媒分解剤が特に超伝導性発現の妨害となりうるアルカリ
金属を含まないことを特徴とし、このような加水分解剤
あるいは加溶媒分解剤を用いることで、超伝導転移温度
の高い超伝導体が得られる。
According to a first preferred embodiment, the hydrolyzing agent or solvolytic agent is characterized in that it does not contain an alkali metal that may particularly interfere with the development of superconductivity, and such a hydrolyzing agent or solvolytic agent is used. By doing so, a superconductor with a high superconducting transition temperature can be obtained.

第二の好ましい態様によれば、第一の態様においてもっ
とも好適に用いることができる加水分解剤あるいは加溶
媒分解剤として水溶液中あるいは有機溶剤中で水酸イオ
ンやアルコキサイドイオンを発生する能力を有する有機
化合物を用いることが出来る。最も好ましくは、テトラ
アルキルアンモニウムヒドロキサイド、ドリアルキルス
ルフォニウムヒドロキサイド、ジアザビシクロウンデセ
ン、ジメチルアミノピリジンが用いることができる。
According to the second preferred embodiment, the hydrolyzing agent or solvolytic agent that can be most preferably used in the first embodiment has the ability to generate hydroxyl ions or alkoxide ions in an aqueous solution or an organic solvent. It is possible to use an organic compound having Most preferably, tetraalkylammonium hydroxide, dryalkylsulfonium hydroxide, diazabicycloundecene, and dimethylaminopyridine can be used.

本発明で用いる酸化剤としては、ハロゲン(弗素、塩素
、臭素、沃素)あるいは硝酸イオンあるいはハロゲンと
酸素を含むイオン(過塩素酸イオン、塩素酸イオン、次
亜塩素酸イオン。
The oxidizing agent used in the present invention includes halogen (fluorine, chlorine, bromine, iodine), nitrate ion, or ions containing halogen and oxygen (perchlorate ion, chlorate ion, hypochlorite ion).

過臭素酸イオン、臭素酸イオン、次亜臭素酸イオン、過
沃素酸イオン、沃素酸イオン、次亜沃素酸イオン)ある
いは過酸化水素あるいは含硫黄酸化物(パーオキソ一硫
酸イオン、パーオキソ二硫酸イオン)あるいはスーパー
オキシドイオン等が選択でき、金属酸化物の形成を容易
にする事により組成の均質性の高い超伝導体を得ること
ができる。
perbromate ion, bromate ion, hypobromite ion, periodate ion, iodate ion, hypoiodite ion) or hydrogen peroxide or sulfur-containing oxides (peroxomonosulfate ion, peroxodisulfate ion) Alternatively, superoxide ions or the like can be selected, and by facilitating the formation of metal oxides, a superconductor with highly homogeneous composition can be obtained.

また、加水分解あるいは加溶媒分解時あるいは酸化剤と
の反応前後に、親水部を1個以上有する有機物質で増粘
作用や界面活性作用を有する添加剤を加えれば焼成前の
成形が容易となり組成の均質化にも効果がある。
In addition, if an additive, which is an organic substance with one or more hydrophilic moieties and has a thickening effect or a surfactant effect, is added during hydrolysis or solvolysis or before or after the reaction with an oxidizing agent, it will be easier to shape the composition before firing. It is also effective in homogenizing the

本発明の加熱処理について概説すると、本発明の加熱処
理は、加水分解あるいは加溶媒分解により合成した混合
金属ヒドロあるいはオルガノゲルに、さらに酸化剤を加
え、金属酸化物を穏やかな条件で合成し、直接微細な混
合金属酸化物のプリフォームを得る工程を含めてもよい
To summarize the heat treatment of the present invention, the heat treatment of the present invention further adds an oxidizing agent to a mixed metal hydro or organogel synthesized by hydrolysis or solvolysis, synthesizes metal oxides under mild conditions, and directly synthesizes metal oxides. A step of obtaining a fine mixed metal oxide preform may also be included.

また、このようにして合成した微細な混合金属酸化物体
微粒子を粒子間を連続させるためにさらに高温で加熱処
理できるが、2価の銅が還元を起こす温度よりは十分低
い温度で加熱処理することが好ましい、また、その焼結
をより完全に行うため、加水分解あるいは酸化時に小量
のポリマーや増粘剤や界面活性剤を溶液中に共存させ、
生成したゲルあるいは金属酸化物微粒子を分散させ、焼
結することも肴効である。
In addition, the fine mixed metal oxide fine particles synthesized in this way can be heat-treated at a higher temperature to make the particles continuous, but the heat treatment must be performed at a temperature sufficiently lower than the temperature at which divalent copper undergoes reduction. is preferable, and in order to achieve more complete sintering, a small amount of polymer, thickener, or surfactant is allowed to coexist in the solution during hydrolysis or oxidation.
Dispersing and sintering the generated gel or metal oxide fine particles is also an effective appetizer.

本発明の方法では、超伝導体を常温付近で所定の組成に
原子スケールで均一混合でき、これの酸化剤処理および
加熱処理により金属酸化物混合体の形成を完結させる。
In the method of the present invention, a superconductor can be uniformly mixed on an atomic scale to a predetermined composition at around room temperature, and the formation of a metal oxide mixture is completed by treatment with an oxidizing agent and heat treatment.

従って、金属イオンの最小限の拡散により超伝導相を示
す結晶構造を従来法に比べ低温で完結することができる
Therefore, with minimal diffusion of metal ions, a crystal structure exhibiting a superconducting phase can be completed at a lower temperature than in conventional methods.

またアルカリ金属を含む塩基性物質による加水分解で起
こるこれらイオン類のゲルへの取す込みを完全に抑える
ことができ、最終的にこれまで報告されている焼結温度
に比べ、高温焼結でありがちな2価銅の還元を起こさず
に比較的低温で超伝導体の製造が可能になると言う点で
大きな利点を有する。
In addition, it is possible to completely suppress the incorporation of these ions into the gel due to hydrolysis caused by basic substances containing alkali metals, and the final sintering temperature is higher than that reported so far. This method has a major advantage in that superconductors can be produced at relatively low temperatures without the usual reduction of divalent copper.

以下に2本発明の典型的実施例を示す。Two typical embodiments of the present invention are shown below.

(実施例1) Y(C104)3 0.2mol/1.BaC1g  
0. 2  no l/ 1. Cu (CI 0s)
z  0.2  mol/1  の各水溶液を室温にて
1:2:3の割合で混ぜた。これに次亜塩素化テトラメ
チルアンモニウムヒドロキサイド10%水溶液を徐々に
添加し、生じたヒドロゲルに、テトラメチルアンモニウ
ムハイポプロマイト水溶液を加え、生じた酸化物を吸引
ろ過した。これを300〜500℃で仮焼結した。
(Example 1) Y(C104)3 0.2 mol/1. BaC1g
0. 2 no l/1. Cu (CI 0s)
Each aqueous solution of z 0.2 mol/1 was mixed at a ratio of 1:2:3 at room temperature. A 10% aqueous solution of hypochlorinated tetramethylammonium hydroxide was gradually added to this, and an aqueous solution of tetramethylammonium hypopromite was added to the resulting hydrogel, and the resulting oxide was suction filtered. This was pre-sintered at 300-500°C.

さらに、酸素雰囲気下、600〜900℃で焼結した。Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere.

得られた粉末を400〜600Kg/cm”でプレスし
た。このペレットをさらに酸素雰囲気下、920〜10
50℃で焼結した。
The obtained powder was pressed at 400 to 600 Kg/cm. The pellets were further pressed at 920 to 10
It was sintered at 50°C.

徐冷した試料を4端子交流法により導電率の温度変化を
求めた。絶対温度92にで完全に超伝導に至り、試料の
良否の目安である転移幅がわずか0.2にであった。
Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. Complete superconductivity was achieved at an absolute temperature of 92, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例2) LaC1,0,2mol/1.BaBrgO,2mol
/1.CuC1t  o、2mol/l  の各エタノ
ール溶液を室温にて1:2:3の割合で混ぜた。これに
テトラメチルアンモニウムヒドロキサイド10%メタノ
ール溶液を徐々に添加し、生じたゲルに硝酸テトラメチ
ルアンモニウムを加え、生成した酸化物を吸引ろ過した
。これを300〜400℃で仮焼結した。さらに、酸素
雰囲気下、600〜900℃で焼結した。得られた粉末
を400〜600Kg/cm”でプレスした。このペレ
ットをさらに酸素雰囲気下、920〜1050℃で焼結
した。徐冷した試料を4端子交流法により導電率の温度
変化を求めた。絶対温度37にで完全に超伝導に至り、
試料の良否の目安である転移幅はわずか0.2にであっ
た。
(Example 2) LaC 1,0,2 mol/1. BaBrgO, 2 mol
/1. CuClto and 2 mol/l ethanol solutions were mixed at room temperature in a ratio of 1:2:3. A 10% methanol solution of tetramethylammonium hydroxide was gradually added to this, tetramethylammonium nitrate was added to the resulting gel, and the generated oxide was filtered with suction. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere. The obtained powder was pressed at 400 to 600 kg/cm''. This pellet was further sintered at 920 to 1050°C in an oxygen atmosphere. The temperature change in conductivity of the slowly cooled sample was determined by the four-terminal AC method. . Completely superconducting at an absolute temperature of 37,
The transition width, which is a measure of sample quality, was only 0.2.

(実施例3) YCIs  0.2mo 1/1.BaC1゜0.2 
 mol/1.CuC1z  0.2m。
(Example 3) YCIs 0.2mo 1/1. BaC1゜0.2
mol/1. CuC1z 0.2m.

1/1  の各水溶液を室温にて6:4:1の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
The 1/1 aqueous solutions were mixed at room temperature in a ratio of 6:4:1. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

生じたヒドロゲルに、パーオキソ一硫酸テトラメチルア
ンモニウムを加え、生成した酸化物を吸引ろ過した。こ
れを300〜400°Cで仮焼結した。さらに、酸素雰
囲気下、600〜900°Cで焼結した。得られた粉末
を400〜600Kg/cm”でプレスした。このペレ
ットをさらに酸素雰囲気下、920〜1050°Cで焼
結した。徐冷した試料を4端子交流法により導電率の温
度変化を求めた。絶対温度83にで完全に超伝導に至り
、転移幅はわずか0.5にであった。
Tetramethylammonium peroxomonosulfate was added to the resulting hydrogel, and the generated oxide was suction filtered. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere. The obtained powder was pressed at 400 to 600 kg/cm''.The pellet was further sintered at 920 to 1050°C in an oxygen atmosphere.The temperature change in conductivity of the slowly cooled sample was determined by the four-terminal AC method. It reached complete superconductivity at an absolute temperature of 83, and the transition width was only 0.5.

(実施例4) LaC1s  o、2mo 1/1,5rC1゜0.2
  mo!/1.CuC1t  o、2mol/l  
の各水溶液を室温にて11:4の割合で混ぜた。これに
テトラメチルアンモニウムヒドロキサイド10%水溶液
を徐々に添加し、生じたヒドロゲルに9次亜塩素酸テト
ラメチルアンモニウムを加え、生成した酸化物を吸引ろ
過した。これを300〜400℃で仮焼結した。さらに
、酸素雰囲気下、600〜900°Cで焼結した。得ら
れた粉末を400〜600Kg/cm”でプレスした。
(Example 4) LaC1s o, 2mo 1/1,5rC1°0.2
mo! /1. CuClto, 2mol/l
The respective aqueous solutions were mixed at room temperature in a ratio of 11:4. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this, and 9-tetramethylammonium hypochlorite was added to the resulting hydrogel, and the generated oxide was suction-filtered. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg/cm''.

このペレットをさらに酸素雰囲気下、920〜1050
°Cで焼結した。徐冷した試料を4端子交流法により導
電率の温度変化を求めた。絶対温度37にで完全に超伝
導に至り、転移幅は2.5にであった。
The pellets were further heated to 920 to 1050 in an oxygen atmosphere.
Sintered at °C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. It reached complete superconductivity at an absolute temperature of 37, and the transition width was 2.5.

(実施例5) YCl3 0.2mo 1/1.BaBrzO,2mo
l/1.CuC]z  0.2m。
(Example 5) YCl3 0.2mo 1/1. BaBrzO,2mo
l/1. CuC]z 0.2m.

1/1  の各グリセリン溶液を室温にて1:2:3の
割合で混ぜた。これにテトラメチルアンモニウムヒドロ
キサイド10%メタノール溶液を徐々に添加し、生じた
ゲルに臭素酸テトラメチルアンモニウムを加え、生成し
た酸化物を吸引ろ過した。これを300〜400℃で仮
焼結した。さらに、酸素雰囲気下、600〜900°C
で焼結した。得られた粉末を400〜600Kg/cm
2でプレスした。このペレットをさらに酸素雰囲気下、
920〜1050°Cで焼結した。徐冷した試料を4端
子交流法により導電率の温度変化を求めた。絶対温度9
2にで完全に超伝導に至り、試料の良否の目安である転
移幅がわずか0.2にであった。
1/1 of each glycerin solution was mixed at room temperature in a ratio of 1:2:3. A 10% methanol solution of tetramethylammonium hydroxide was gradually added to this, tetramethylammonium bromate was added to the resulting gel, and the generated oxide was filtered with suction. This was pre-sintered at 300-400°C. Furthermore, under an oxygen atmosphere, 600-900°C
Sintered with The obtained powder is 400-600Kg/cm
Pressed with 2. This pellet is further processed under an oxygen atmosphere.
Sintered at 920-1050°C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. absolute temperature 9
At No. 2, complete superconductivity was achieved, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例6) YCis  0.2mol/1.、BaC1゜0.2 
 mol/1.CuC1z  0.2m。
(Example 6) YCis 0.2mol/1. , BaC1゜0.2
mol/1. CuC1z 0.2m.

1/l  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにKOH水溶液を徐々に添加し、生じたヒド
ロゲルにテトラメチルアンモニウムスーパーオキシドを
加え、生成した酸化物を吸引ろ過した。純水で十分に洗
浄した後これを300〜400°Cで仮焼結した。さら
に、酸素雰囲気下、600〜900°Cで焼結した。得
られた粉末を400〜600Kg/cm”でプレスした
。このペレットをさらに酸素雰囲気下。
1/l of each aqueous solution was mixed at room temperature in a ratio of 1:2:3. A KOH aqueous solution was gradually added thereto, tetramethylammonium superoxide was added to the resulting hydrogel, and the generated oxide was suction filtered. After thorough washing with pure water, this was pre-sintered at 300 to 400°C. Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere. The obtained powder was pressed at 400 to 600 Kg/cm''.The pellets were further pressed under an oxygen atmosphere.

920〜1050℃で焼結した。徐冷した試料を4端子
交流法により導電率の温度変化を求めた。絶対温度86
にで完全に超伝導に至り、試料の良否の目安である転移
幅は0.9にであった。
It was sintered at 920-1050°C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. absolute temperature 86
It reached complete superconductivity in 2000, and the transition width, which is a measure of the quality of the sample, was 0.9.

(実施例7) Y(C104)3 0.2mol/1.BaCL  0
,2  mol/1.CuC1=  o。
(Example 7) Y(C104)3 0.2 mol/1. BaCL 0
,2 mol/1. CuC1=o.

2mol/l  の各水溶液を室温にて1:2:3の割
合で混ぜた。これにテトラメチルアンモニウムヒドロキ
サイド10%水溶液を徐々に添加し、生じたヒドロゲル
に次亜臭素酸テトラメチルアンモニウムを加え、生成し
た酸化物をさらに溶液中で加温処理を施し、生じた黒色
沈澱を吸引ろ過した。これを300〜400℃で仮焼結
した。さらに、酸素雰囲気下、600〜900°Cで焼
結した。得られた粉末を400〜600Kg/cm”で
プレスした。このペレットをさらに酸素雰囲気下、92
0〜1050℃で焼結した。徐冷した試料を4端子交流
法により導電率の温度変化を求めた。絶対温度90にで
完全に超伝導に至り、試料の良否の目安である転移幅は
0.6にであった。
Each 2 mol/l aqueous solution was mixed at a ratio of 1:2:3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to the resulting hydrogel, tetramethylammonium hypobromite was added to the resulting hydrogel, and the resulting oxide was further heated in the solution to remove the resulting black precipitate. It was filtered by suction. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere. The obtained powder was pressed at 400 to 600 kg/cm''.The pellet was further pressed at 92 kg/cm in an oxygen atmosphere.
Sintered at 0-1050°C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. Complete superconductivity was achieved at an absolute temperature of 90°C, and the transition width, which is a measure of sample quality, was 0.6.

(実施例8) YNo、  0.2mo l/l、BaN0sO,2m
ol/1.CuNOs  0.2m。
(Example 8) YNo, 0.2mol/l, BaNOsO, 2m
ol/1. CuNOs 0.2m.

1/1  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
Each 1/1 aqueous solution was mixed at a ratio of 1:2:3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

生じたヒドロゲルに次亜臭素酸テトラメチルアンモニウ
ムを加え、生成した酸化物を吸引ろ過した。これを空気
中300〜400°Cで仮焼結した。さらに、酸素雰囲
気下、600〜900°Cで焼結した。得られた粉末を
400〜600Kg/cm”でプレスした。このペレッ
トをさらに酸素雰囲気下、920〜1050℃で焼結し
た。徐冷した試料を4端子交流法により導電率の温度変
化を求めた。絶対温度92にで完全に超伝導に至り、試
料の良否の目安である転移幅がわずか0.2にであった
Tetramethylammonium hypobromite was added to the resulting hydrogel, and the generated oxide was suction filtered. This was pre-sintered in air at 300-400°C. Furthermore, it was sintered at 600 to 900°C in an oxygen atmosphere. The obtained powder was pressed at 400 to 600 kg/cm''. This pellet was further sintered at 920 to 1050°C in an oxygen atmosphere. The temperature change in conductivity of the slowly cooled sample was determined by the four-terminal AC method. Complete superconductivity was achieved at an absolute temperature of 92, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例9) YCl3 0.2mo 1/1.BaC1tO,2mo
l/1.CuCIz  0.2m。
(Example 9) YCl3 0.2mo 1/1. BaC1tO,2mo
l/1. CuCIz 0.2m.

1/l  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
1/l of each aqueous solution was mixed at room temperature in a ratio of 1:2:3. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

生じたヒドロゲルに次亜臭素酸テトラメチルアンモニウ
ムを加え、生成した酸化物にポリビニルアルコール水溶
液を小量添加し、吸引ろ過した。これを300〜400
℃で仮焼結した。さらに、酸素雰囲気下、600〜90
0℃で焼結した。得られた粉末を400〜600Kg/
cm8でプレスした。このペレットをさ−らに酸素雰囲
気下、920〜1050℃で焼結した。徐冷した試料を
4端子交流法により導電率の温度変化を求めた。絶対温
度93にで完全に超伝導に至り、試料の良否の目安であ
る転移幅がわずか0.3にであった。
Tetramethylammonium hypobromite was added to the resulting hydrogel, and a small amount of polyvinyl alcohol aqueous solution was added to the resulting oxide, followed by suction filtration. This is 300-400
Temporary sintering was carried out at ℃. Furthermore, under an oxygen atmosphere, 600 to 90
Sintered at 0°C. The obtained powder is 400 to 600 kg/
Pressed at cm8. This pellet was further sintered at 920-1050°C in an oxygen atmosphere. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. Complete superconductivity was achieved at an absolute temperature of 93, and the transition width, which is a measure of sample quality, was only 0.3.

(実施例10) YCl30,2mo I/1.BaCIto、2  m
ol/1.CuC1t  o、2m。
(Example 10) YCl30,2mo I/1. BaCIto, 2 m
ol/1. CuClto, 2m.

1/1  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
Each 1/1 aqueous solution was mixed at a ratio of 1:2:3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

さらに次亜臭素酸テトラメチルアンモニウムを加え、生
成した酸化物にエチレングリコールを添加し、吸引ろ過
した。300〜400°Cで仮焼結した後、酸素雰囲気
下、600〜900℃で焼結した。得られた粉末を40
0〜600Kg/cm”でプレスした。このペレットを
さらに酸素雰囲気下、920〜1050°Cで焼結した
。徐冷した試料を4#子交流法により導電率の温度変化
を求めた。絶対温度90にで完全に超伝導に至り、試料
の良否の目安である転移幅かわずか0.4にであつた。
Further, tetramethylammonium hypobromite was added, ethylene glycol was added to the generated oxide, and the mixture was filtered with suction. After pre-sintering at 300-400°C, sintering was performed at 600-900°C in an oxygen atmosphere. 40% of the obtained powder
This pellet was further sintered at 920 to 1050°C in an oxygen atmosphere. The temperature change in conductivity of the slowly cooled sample was determined by the 4-iron alternating current method. Absolute temperature At 90°C, it reached complete superconductivity, and the transition width, which is a measure of sample quality, was only 0.4.

以下同様にして、所定の組成に仕込んだY。In the same manner, Y was prepared to a predetermined composition.

Scおよびランタニド系元素、Baを初めとするアルカ
リ土類系元素、そして銅のハロゲン化物、あるいは硝酸
塩あるいは過塩素酸塩を原料にして、加水分解あるいは
加溶媒分解および酸化剤との化学処理をして、目的物質
を得た。結果を表1にまとめる。
Using Sc and lanthanide elements, alkaline earth elements such as Ba, and copper halides, nitrates, or perchlorates as raw materials, hydrolysis or solvolysis and chemical treatment with oxidizing agents are performed. The target substance was obtained. The results are summarized in Table 1.

(以下余白) 表1 (発明の効果) 以上説明したように9本発明の加水分解法あるいは加溶
媒分解法ならびに酸化剤を用いた製造方法においては、
化学処理を施すことによって、金属酸化物混合物を低温
で合成することができ、これが2価銅の還元が起こらな
い温度で焼結でき、転移幅のシャープな特性の良い高温
超伝導体を再現良く作製することができるという利点を
有する。高温超伝導体特に絶対温度77にの液体窒素温
度以上で超伝導に至る材料は。
(The following is a blank space) Table 1 (Effects of the invention) As explained above, in the 9 hydrolysis or solvolysis methods of the present invention and the production method using an oxidizing agent,
Through chemical treatment, a metal oxide mixture can be synthesized at low temperatures, and this can be sintered at a temperature that does not cause reduction of divalent copper, making it possible to easily reproduce high-temperature superconductors with good properties and sharp transition widths. It has the advantage of being easily fabricated. High-temperature superconductors, especially materials that become superconducting at temperatures above the liquid nitrogen temperature of 77 degrees absolute.

ジョセフソン素子、電力輸送、高磁場発生磁石等の幅広
い工業的応用が期待され、その素材加工上9本発明は低
温プロセスで作製できるという点で極めて大きなインパ
クトを与える。
It is expected to find a wide range of industrial applications such as Josephson devices, power transport, and magnets that generate high magnetic fields, and the present invention will have an extremely large impact in terms of material processing in that it can be manufactured using low-temperature processes.

Claims (5)

【特許請求の範囲】[Claims] (1)一般組成式(M1)x(M2)y(M3)zOw
(M1は(B、Al、Ga、In、Tl、Sc、Y、L
a、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb
、Dy、Ho、Er、Tm、Yb、Lu)からなる群か
ら選ばれた一または二以上の元素、M2は(Be、Mg
、Ca、Sr、Ba、Ra、Sn、Pb)からなる群か
ら選ばれた一または二以上の元素、M3はCu、x、y
、z、wは任意の原子モル分率)で表される超伝導体の
製造方法に於て、M1、M2、M3のハロゲン化物ある
いは硝酸塩あるいは過塩素酸塩をアルカリ加水分解ある
いは加溶媒分解する工程と、これにより生じた生成物に
酸化剤を加える工程と、その後に該生成物を加熱処理し
て金属酸化物とする工程を含むことを特徴とする超伝導
体の製造方法。
(1) General compositional formula (M1)x(M2)y(M3)zOw
(M1 is (B, Al, Ga, In, Tl, Sc, Y, L
a, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb
, Dy, Ho, Er, Tm, Yb, Lu), M2 is (Be, Mg
, Ca, Sr, Ba, Ra, Sn, Pb), M3 is Cu, x, y
, z, w are arbitrary atomic mole fractions) In the method for producing a superconductor, halides, nitrates, or perchlorates of M1, M2, and M3 are subjected to alkaline hydrolysis or solvolysis. 1. A method for producing a superconductor, comprising the steps of: adding an oxidizing agent to a product produced thereby; and then heat-treating the product to form a metal oxide.
(2)アルカリ加水分解あるいは加溶媒分解するときの
分解剤がアルカリ金属を含まないことを特徴とする特許
請求の範囲第1項記載の超伝導体の製造方法。
(2) The method for producing a superconductor according to claim 1, wherein the decomposing agent used in alkaline hydrolysis or solvolysis does not contain an alkali metal.
(3)アルカリ加水分解あるいは加溶媒分解するときの
分解剤が水溶液中あるいは有機溶剤中で水酸イオンある
いはアルコキサイドイオンを発生する能力を有する有機
化合物であることを特徴とする特許請求の範囲第1項又
は第2項記載の超伝導体の製造方法。
(3) Claims characterized in that the decomposing agent during alkaline hydrolysis or solvolysis is an organic compound having the ability to generate hydroxyl ions or alkoxide ions in an aqueous solution or an organic solvent. A method for producing a superconductor according to item 1 or 2.
(4)アルカリ加水分解あるいは加溶媒分解するときの
分解剤がテトラアルキルアンモニウムヒドロキサイド、
トリアルキルスルフォニウムヒドロキサイド、ジアザビ
シクロウンデセン、ジメチルアミノピリジンであること
を特徴とする特許請求の範囲第1項、第2項、第3項い
ずれか記載の超伝導体の製造方法。
(4) The decomposing agent during alkaline hydrolysis or solvolysis is tetraalkylammonium hydroxide,
The method for producing a superconductor according to any one of claims 1, 2, and 3, characterized in that the superconductor is trialkylsulfonium hydroxide, diazabicycloundecene, or dimethylaminopyridine.
(5)酸化剤が、ハロゲン(弗素、塩素、臭素、沃素)
あるいは硝酸イオンあるいはハロゲンと酸素を含むイオ
ン(過塩素酸イオン、塩素酸イオン、次亜塩素酸イオン
、過臭素酸イオン、臭素酸イオン、次亜臭素酸イオン、
過沃素酸イオン、沃素酸イオン、次亜沃素酸イオン)あ
るいは過酸化水素あるいは含硫黄酸化物(パーオキソ一
硫酸イオン、パーオキソ二硫酸イオン)あるいはスーパ
ーオキシドイオンのいずれかであることを特徴とする特
許請求の範囲第1項、第2項、第3項、第4項いずれか
記載の超伝導体の製造方法。
(5) The oxidizing agent is a halogen (fluorine, chlorine, bromine, iodine)
Or nitrate ions or ions containing halogen and oxygen (perchlorate ions, chlorate ions, hypochlorite ions, perbromate ions, bromate ions, hypobromite ions,
Patents characterized by being either hydrogen peroxide, sulfur-containing oxides (peroxomonosulfate ion, peroxodisulfate ion), or superoxide ion (periodate ion, iodate ion, hypoiodite ion) A method for producing a superconductor according to any one of claims 1, 2, 3, and 4.
JP62130375A 1987-05-27 1987-05-27 Production of superconductor Pending JPS63295415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130375A JPS63295415A (en) 1987-05-27 1987-05-27 Production of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130375A JPS63295415A (en) 1987-05-27 1987-05-27 Production of superconductor

Publications (1)

Publication Number Publication Date
JPS63295415A true JPS63295415A (en) 1988-12-01

Family

ID=15032848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130375A Pending JPS63295415A (en) 1987-05-27 1987-05-27 Production of superconductor

Country Status (1)

Country Link
JP (1) JPS63295415A (en)

Similar Documents

Publication Publication Date Title
JPH01242418A (en) High temperature superconductor and its production
JPH02133368A (en) Manufacture of high-temperature superconducting substance
JPH01219007A (en) High temperature superconductor and its production
JPS63295415A (en) Production of superconductor
WO1994022620A1 (en) Synthesis of highly phase pure bscco superconductors
CN114085080B (en) Rare earth doped tantalum titanate powder and preparation method thereof
JP2528117B2 (en) Superconductor manufacturing method
JPS63307113A (en) Production of superconductor
JPS63307114A (en) Production of superconductor
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
Drache et al. Bi–La-Based Oxide Conductors with Rhombohedral Bi–Sr–O Type: Structural and Conductivity Properties Optimization by Polycationic Substitutions for La
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JPH0574528B2 (en)
JPH0214871A (en) Production of copper oxide superconductor
JP2017048072A (en) Method for producing negative thermal expandable material
JPH03183619A (en) Production of oxide superconductor
CN116768273A (en) Fe doped delta-MnO 2 Nanoparticle and method for preparing same
JP3049311B2 (en) Cu2HfS3 and its manufacturing method
JP2865174B2 (en) Copper oxide conductive compound
JPH01270510A (en) Manufacture of superconductive ceramic
JP2003012372A (en) Method of manufacturing solid ion conductor
JPS63282118A (en) Production of superconducting material
JPH04124003A (en) Oxide high-temperature superconductor and fluorine halide treating method
JPH03115121A (en) Preparation of high temperature superconductive material by means of coprecipitation
Kim et al. Structural study of La1. 93Bi0. 07CuO4+ δ by neutron powder diffraction