JP2526632B2 - Method for producing transparent conductive zinc oxide film - Google Patents

Method for producing transparent conductive zinc oxide film

Info

Publication number
JP2526632B2
JP2526632B2 JP9087588A JP9087588A JP2526632B2 JP 2526632 B2 JP2526632 B2 JP 2526632B2 JP 9087588 A JP9087588 A JP 9087588A JP 9087588 A JP9087588 A JP 9087588A JP 2526632 B2 JP2526632 B2 JP 2526632B2
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide film
film
transparent conductive
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9087588A
Other languages
Japanese (ja)
Other versions
JPH01264929A (en
Inventor
寛人 内田
明彦 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9087588A priority Critical patent/JP2526632B2/en
Publication of JPH01264929A publication Critical patent/JPH01264929A/en
Application granted granted Critical
Publication of JP2526632B2 publication Critical patent/JP2526632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は暗所室温における抵抗値が103Ω・cmレベル
の透明導電性酸化亜鉛膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a transparent conductive zinc oxide film having a resistance value of 10 3 Ω · cm level at room temperature in a dark place.

酸化亜鉛は、3.2eVのワイドバンドキヤツプ幅を持つ
半導体として知られており、その膜が光導電性,圧電特
性を有することから電子写真用感光材,圧電変換素子と
して利用されている。また該酸化亜鉛膜は不純物のドー
ビング及び膜の部分還元により導電性を制御することが
可能であり、かつ可視光透過性があるため、丸陽電池等
の透明導電膜としての利用が考えられている。特に、Zn
Se,CdTe等のII−VI族系半導体膜を用いた太陽電池を形
成する際に、通常のITO,TO透明導電膜を用いた場合、I
n,Snとカルコゲン元素が反応し易く十分な特性を得るの
が難しいため、II−VI族系半導体膜との反応安定性を有
しかつマツチングの良いZnO膜を用いることが検討され
ている。
Zinc oxide is known as a semiconductor having a wide band cap width of 3.2 eV, and is used as a photosensitive material for electrophotography and a piezoelectric conversion element because its film has photoconductivity and piezoelectric characteristics. In addition, since the zinc oxide film can control the conductivity by doving impurities and partially reducing the film, and has visible light transparency, it can be considered to be used as a transparent conductive film for a Maruyo battery or the like. There is. In particular, Zn
When a normal ITO or TO transparent conductive film is used when forming a solar cell using a II-VI group semiconductor film such as Se or CdTe, I
Since it is difficult for n, Sn and chalcogen elements to react with each other and it is difficult to obtain sufficient characteristics, it has been considered to use a ZnO film that has reaction stability with the II-VI group semiconductor film and has good matching.

(従来の技術と問題点) 透明酸化亜鉛膜は従来、真空蒸着法,スパツタリング
法,CVD法,スプレイパイロリシス法,亜鉛化合物の有機
溶液の塗布熱分解法,酸化亜鉛粉末をペースト化したも
のをスクリーン印刷後焼成する方法等により製造されて
おり、特にスパツタリング法により作成した、III族金
属(B,Al,Sc,Ga,Y,In,Tl)を含有させてなる酸化亜鉛膜
は、500℃迄の耐熱性を有しすぐれた透明性と導電性(1
0-4Ω・cmオーダー)を示す(例えば、特開昭61−20561
9号公報)。しかるに、この方法は高価な装置と高価な
ターゲツト原料を要し、手軽に実施できない。製造上製
造装置,生産性等のコスト面において、スプレイパイロ
リシス法,亜鉛有機化合物溶液の塗布熱分解法,酸化亜
鉛粉末をペースト化したものをスクリーン印刷後焼成す
る方法が優れている。スプレイパイロリシス法では、膜
厚の均一性,膜の透明性に問題があり、又酸化亜鉛粉末
ペーストのスクリーン印刷後焼成する方法では、膜厚数
μm以下の薄膜の作成が困難である。亜鉛有機化合物の
塗布熱分解法は、デパイス作成に使用可能な膜厚数μm
以下の薄膜の作成に有利な方法であるが、実用上十分な
導電性を示さなかつた。
(Conventional Technology and Problems) Conventional transparent zinc oxide films are those prepared by vacuum deposition, sputtering, CVD, spray pyrolysis, spray pyrolysis of organic solution of zinc compound, and paste of zinc oxide powder. A zinc oxide film containing a Group III metal (B, Al, Sc, Ga, Y, In, Tl), which is produced by a method such as screen-printing and firing, and which is created especially by the sputtering method, is 500 ° C. Has excellent heat resistance and excellent transparency and conductivity (1
Shows a 0 -4 Ω · cm order) (e.g., JP 61-20561
No. 9 bulletin). However, this method requires expensive equipment and expensive target materials, and cannot be easily implemented. From the viewpoint of manufacturing cost, productivity, and the like, the spray pyrolysis method, the coating pyrolysis method of a zinc organic compound solution, and the method of screen-printing a paste of zinc oxide powder and then firing are excellent. In the spray pyrolysis method, there are problems in uniformity of film thickness and transparency of the film, and it is difficult to form a thin film having a film thickness of several μm or less by the method of baking after zinc oxide powder paste screen printing. The coating pyrolysis method of zinc organic compound is a film thickness of several μm
Although it is an advantageous method for preparing the following thin film, it does not exhibit sufficient conductivity in practical use.

例えば窯業協会誌,第83巻,535頁(1975)によれば、
亜鉛化合物の有機溶液の塗布熱分解法により製造した透
明酸化亜鉛膜は膜の抵抗値が暗所室温において106-8Ω
・cmと半絶縁性の領域に在り、従つて透明導電膜として
の特性を有しておらず、実用に用いることは不可能であ
つた。
For example, according to the Society of Ceramic Industry, Vol. 83, p. 535 (1975),
Coating of organic solution of zinc compound Transparent zinc oxide film produced by pyrolysis method has a resistance value of 10 6-8 Ω at room temperature in the dark.
-Since it is in the cm and semi-insulating region, and therefore does not have the characteristics as a transparent conductive film, it cannot be used in practice.

(発明の目的) 本発明者らは、亜鉛化合物の有機溶液の塗布熱分解法
により製造された透明酸化亜鉛膜に導電性を付与するた
め、鋭意検討を重ねた結果、該亜鉛化合物の有機溶液に
ボロンまたはアルミニウム化合物を添加した組成物溶液
の塗布熱分解法により形成した酸化亜鉛膜をさらに水素
雰囲気で熱処理することにより、目的を達成し得ること
を見出し、本発明に到達した。
(Purpose of the Invention) The inventors of the present invention have conducted extensive studies in order to impart conductivity to a transparent zinc oxide film produced by a coating pyrolysis method of an organic solution of a zinc compound. The inventors have found that the object can be achieved by further heat-treating a zinc oxide film formed by a coating pyrolysis method of a composition solution in which boron or an aluminum compound is added to the present invention, and arrived at the present invention.

(発明の構成) すならち、本発明によれば、ボロンまたはアルミニウ
ムを含有させてなる透明導電性酸化亜鉛膜の形成法にお
いて、亜鉛化合物の有機溶液にボロンまたはアルミニウ
ム化合物を加えた組成物溶液の塗布熱分解により形成し
た透明酸化亜鉛膜を水素雰囲気で300℃〜680℃の温度で
熱処理することを特徴とする透明導電性酸化亜鉛膜の製
造方法、が得られる。このようにして製造された透明酸
化亜鉛膜は暗所室温における抵抗値が103Ω・cmレベル
の透明導電性酸化亜鉛膜である。
(Structure of Invention) That is, according to the present invention, in the method for forming a transparent conductive zinc oxide film containing boron or aluminum, a composition solution obtained by adding boron or aluminum compound to an organic solution of zinc compound. A method for producing a transparent conductive zinc oxide film, which comprises heat-treating a transparent zinc oxide film formed by coating pyrolysis in a hydrogen atmosphere at a temperature of 300 ° C to 680 ° C. The transparent zinc oxide film thus produced is a transparent conductive zinc oxide film having a resistance value of 10 3 Ω · cm at room temperature in the dark.

本発明に用いることができる亜鉛化合物は、硝酸亜
鉛,塩化亜鉛等の無機亜鉛化合物,ヘキサン酸亜鉛,オ
クチル酸亜鉛,ナフテン酸亜鉛等の有機酸亜鉛,ビルア
セチルアセトナト亜鉛,ビスオキソブタン酸エチラト亜
鉛等の亜鉛のβ−ジケトン錯体,β−ケトエステル錯体
等である。
Zinc compounds that can be used in the present invention include inorganic zinc compounds such as zinc nitrate and zinc chloride, zinc hexanoate, zinc octylate, organic acid zinc such as zinc naphthenate, zinc viracetylacetonato, and ethyl bisoxobutanoate. Examples thereof include β-diketone complexes of zinc such as zinc and β-keto ester complexes.

また、本発明に用いることができるボロン化合物は、
ほう酸,酸化ほう素,ハロゲン化ほう素,ほう酸エステ
ル類,有機ほう素化合物等であり、アルミニウム化合物
はアルミニウムイソプロピレート,モノsec−ブトキシ
アルミニウムジイソプロピレート,アルミニウムsec−
ブチレート,エチルアセトアセテートアルミニウムジイ
ソプロピレート,アルミニウムトリス(エチルアセトア
セテート),アルミニウムトリス(アセチルアセトネー
ト),アルミニウムモノアセチルアセトネートビス(エ
チルアセトアセテール)等のアルミニウム有機化合物
(アルコレート,キレート)である。添加するボロンま
たはアルミニウム化合物の添加量はB/ZnまたはAl/Zn換
算のモル比で0.1〜5.0%の範囲である。該モル比が0.1
%未満では導電性向上の効果はなく、また5.0%を越え
た場合にはボロンまたはアルミニウムの添加量を増やし
ても導電性向上効果はそれ以上上がらない。
The boron compound that can be used in the present invention is
Boric acid, boron oxide, boron halides, boric acid esters, organoboron compounds, etc., and aluminum compounds are aluminum isopropylate, mono sec-butoxyaluminum diisopropylate, aluminum sec-
Aluminum organic compounds (alcoholates, chelates) such as butyrate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate) is there. The amount of boron or aluminum compound added is in the range of 0.1 to 5.0% in terms of B / Zn or Al / Zn conversion molar ratio. The molar ratio is 0.1
If it is less than 1.0%, there is no effect of improving conductivity, and if it exceeds 5.0%, the effect of improving conductivity does not further increase even if the amount of boron or aluminum added is increased.

本発明の第一工程では、これら亜鉛化合物と必要に応
じては、PEG,PVA,PVB,リノール酸等の有機バインダーま
たは被膜形成物質を有機溶剤に溶かした溶液と添加する
ボロンまたはアルミニウム化合物との組成物溶液を基板
に塗布後酸化雰囲気で焼成する。この時の焼成温度は40
0℃以上であることが必要であり、基板の安定な、また
酸化亜鉛膜と基板との反応がおこらない温度範囲内であ
れば、結晶粒が成長し易い高温での焼成の方が望まし
い。焼成温度が400℃以下であると、膜中に炭素成分が
残留し易く、次の第二工程での熱処理後に十分な導電性
を得ることが出来ない。以上の第一工程によつて得た酸
化亜鉛膜を第二工程では更に水素雰囲気で300℃〜680℃
で熱処理することにより680℃までの耐熱性を備えた103
Ω・cmレベルの透明導電性酸化亜鉛膜を得ることが出来
る。
In the first step of the present invention, these zinc compounds and, if necessary, PEG, PVA, PVB, an organic binder such as linoleic acid or a film-forming substance dissolved in an organic solvent and a boron or aluminum compound added After applying the composition solution to the substrate, it is baked in an oxidizing atmosphere. The firing temperature at this time is 40
It is necessary to be 0 ° C. or higher, and if the temperature of the substrate is stable and the reaction between the zinc oxide film and the substrate does not occur, it is preferable to perform firing at a high temperature at which crystal grains easily grow. If the firing temperature is 400 ° C. or lower, the carbon component is likely to remain in the film, and sufficient conductivity cannot be obtained after the heat treatment in the next second step. In the second step, the zinc oxide film obtained by the above first step was further heated in a hydrogen atmosphere at 300 ° C to 680 ° C.
Heat resistance up to 680 ℃ by heat treatment at 10 3
Ω · cm level transparent conductive zinc oxide film can be obtained.

次に、本発明を実施例によつて具体的に説明するが、
以下の実施例は本発明の範囲を限定するものではない。
Next, the present invention will be specifically described with reference to Examples.
The following examples do not limit the scope of the invention.

実施例1 オクチル酸亜鉛20%,B(OC4H937.7%,リノール酸
5%のベンゼン溶液を(この時のB/Zn換算のモル比は1.
0mol%である。)Pyrex基板に回転数3000rpmでスピンコ
ート後室温で30分放置,大気下400℃一時間焼成後更に5
50℃で一時間焼成を行つた。この操作を三回繰り返し膜
厚約2100ÅのZnO膜を得た。この膜は抵抗値は10-6〜Ω
・cmと半絶縁性で光透過率は>95%であつた。このZnO
膜を管状炉内水素雰囲気550℃で一時間熱処理を行つ
た。この膜の暗所室温における抵抗値は1.1×13Ω・cm
で光透過率は、95%と熱処理前と殆ど変化無かつた。
Example 1 A benzene solution containing 20% of zinc octylate, 7% of B (OC 4 H 9 ) 3 and 5% of linoleic acid (the molar ratio in terms of B / Zn was 1.
It is 0 mol%. ) After spin-coating Pyrex substrate at 3000 rpm at room temperature, leave it for 30 minutes at room temperature, and anneal at 400 ° C for 1 hour in the atmosphere, and then 5
Firing was performed at 50 ° C. for 1 hour. This operation was repeated three times to obtain a ZnO film having a film thickness of about 2100Å. This film has a resistance of 10 -6 ~ Ω
・ Since it is semi-insulating with cm, the light transmittance is> 95%. This ZnO
The film was heat-treated in a tubular furnace in a hydrogen atmosphere at 550 ° C. for 1 hour. Resistance at room temperature in the dark of the film 1.1 × 1 3 Ω · cm
The light transmittance was 95%, which was almost unchanged from that before the heat treatment.

実施例2〜6 実施例2〜6の条件及び結果を第1表にまとめた。Examples 2-6 The conditions and results of Examples 2-6 are summarized in Table 1.

比較例1〜9 比較例1〜9の条件及び結果を第2表にまとめた。 Comparative Examples 1 to 9 Table 2 summarizes the conditions and results of Comparative Examples 1 to 9.

実施例7 オクチル酸亜鉛20%,Al(OC4H950.51%,リノール
酸5%のベンゼン溶液を(この時のAl/Zn換算のモル比
は1.5%である)Pyrex基板に回転数3000rpmでスピンコ
ート後室温で30分放置、大気下400℃で一時間焼成後更
に550℃で一時間焼成を行つた。この操作を三回繰り返
し膜厚約2100ÅのZnの膜を得た。この膜の抵抗値は106
〜Ω・cmと半絶縁性で光透過率は>95%であつた。この
ZnO膜を管状炉内水素雰囲気550℃で一時間熱処理を行つ
た。この膜の暗所室温における抵抗値は1.1×103Ω・cm
で光透過率は、95%と熱処理前と殆ど変化無かつた。
Example 7 A benzene solution containing 20% zinc octylate, 0.51% Al (OC 4 H 9 ) 5 and 5 % linoleic acid (at this time, the Al / Zn conversion molar ratio is 1.5%) was rotated on a Pyrex substrate. After spin coating at 3000 rpm, the mixture was left at room temperature for 30 minutes, baked at 400 ° C. for 1 hour in the air, and further baked at 550 ° C. for 1 hour. This operation was repeated three times to obtain a Zn film having a film thickness of about 2100Å. The resistance of this film is 10 6
It has a semi-insulating property of ~ Ω · cm and a light transmittance of> 95%. this
The ZnO film was heat-treated in a tubular furnace in a hydrogen atmosphere at 550 ° C. for 1 hour. The resistance of this film at room temperature in the dark is 1.1 × 10 3 Ω · cm.
The light transmittance was 95%, which was almost unchanged from that before the heat treatment.

実施例8〜12 実施例8〜12の条件及び結果を第3表にまとめた。Examples 8 to 12 Table 3 summarizes the conditions and results of Examples 8 to 12.

比較例10〜18 比較例10〜18の条件及び結果を第4表にまとめた。 Comparative Examples 10-18 Table 4 summarizes the conditions and results of Comparative Examples 10-18.

(発明の効果) 本発明のボロンまたはアルミニウムドープ透明導電性
酸化亜鉛膜は、上記構成をとることによつて、従来のCV
D法、スパツタリング法による透明導電性酸化亜鉛膜比
べ低廉かつ簡便に製造が可能であり、太陽電池,表示素
子等の通常の透明導電膜として、ITO,TO膜の代替とな
り、さらに今までのITO,TO膜の使用できなかつた工程、
応用分野への透明導電膜の新規利用も可能となる。
(Effects of the Invention) The boron or aluminum-doped transparent conductive zinc oxide film of the present invention has the above-mentioned structure, thereby providing a conventional CV film.
Compared with transparent conductive zinc oxide film by D method and spattering method, it can be manufactured at lower cost and more easily, and it can replace ITO and TO films as ordinary transparent conductive film for solar cells, display elements, etc. , A process where TO film cannot be used,
It is also possible to newly use the transparent conductive film in the application field.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ボロンまたはアルミニウムを含有する透明
導電性酸化亜鉛膜の製造方法において、亜鉛化合物の有
機溶液にボロンまたはアルミニウム化合物をB/Znまたは
Al/Zn換算のモル分率が0.1〜5.0%となるように加えた
組成物溶液の塗布熱分解により透明酸化亜鉛膜を形成
し、この透明酸化亜鉛膜を水素雰囲気で300℃〜680℃の
温度で熱処理することを特徴とする透明導電性酸化亜鉛
膜の製造方法。
1. A method for producing a transparent conductive zinc oxide film containing boron or aluminum, wherein a boron or aluminum compound is added to an organic solution of a zinc compound by B / Zn or
A transparent zinc oxide film is formed by coating pyrolysis of a composition solution added so that the Al / Zn-converted mole fraction is 0.1 to 5.0%, and the transparent zinc oxide film is heated in a hydrogen atmosphere at 300 ° C to 680 ° C. A method for producing a transparent conductive zinc oxide film, which comprises heat treatment at a temperature.
JP9087588A 1988-04-13 1988-04-13 Method for producing transparent conductive zinc oxide film Expired - Lifetime JP2526632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9087588A JP2526632B2 (en) 1988-04-13 1988-04-13 Method for producing transparent conductive zinc oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9087588A JP2526632B2 (en) 1988-04-13 1988-04-13 Method for producing transparent conductive zinc oxide film

Publications (2)

Publication Number Publication Date
JPH01264929A JPH01264929A (en) 1989-10-23
JP2526632B2 true JP2526632B2 (en) 1996-08-21

Family

ID=14010665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087588A Expired - Lifetime JP2526632B2 (en) 1988-04-13 1988-04-13 Method for producing transparent conductive zinc oxide film

Country Status (1)

Country Link
JP (1) JP2526632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172698B2 (en) * 2011-11-10 2017-08-02 国立研究開発法人産業技術総合研究所 Inorganic crystal film and method for producing the same
WO2013145160A1 (en) * 2012-03-28 2013-10-03 東芝三菱電機産業システム株式会社 Method for producing metal oxide film and metal oxide film
DE112012006123T5 (en) * 2012-03-28 2014-12-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Process for producing a metal oxide film and metal oxide film

Also Published As

Publication number Publication date
JPH01264929A (en) 1989-10-23

Similar Documents

Publication Publication Date Title
US4643913A (en) Process for producing solar cells
KR20070089963A (en) Mothod for producing zno-based transparent electroconductive film by mocvd(metal organic chemical vapor deposition) method
JP3616128B2 (en) Method for producing transparent conductive film
DE102011056639A1 (en) Method for producing a transparent conductive oxide layer and a photovoltaic device
JP2526632B2 (en) Method for producing transparent conductive zinc oxide film
JPH08264021A (en) Transparent conductive film
JP3834339B2 (en) Transparent conductive film and method for producing the same
CN112126425A (en) Perovskite thin film and manufacturing method and application thereof
JPH08264022A (en) Transparent conductive film
US3027277A (en) Method of producing transparent electrically conductive coatings and coated article
JPH08264023A (en) Transparent conductive film
JPS62254394A (en) Thin film el device and manufacture of the same
JPH06248427A (en) Raw material for vacuum vapor deposition
JP3373898B2 (en) Transparent conductive film and method of manufacturing the same
JPS60220505A (en) Transparent conductive film and method of forming same
JPS6222312A (en) Formation of transparent conducting film
KR100420049B1 (en) A composition for a protective layer of a transparent conductive layer and a method of preparing a protective layer using the same
JP3352772B2 (en) Transparent conductive film and method of manufacturing the same
JPH0530001B2 (en)
JPS58156533A (en) Forming method of zinc oxide film
JP4365918B2 (en) Coating liquid for forming transparent conductive film and method for forming transparent conductive film using the same
JPS6380413A (en) Transparent conductor
US20240183022A1 (en) Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
GB2425536A (en) Coating compositions
KR100432647B1 (en) A composition for a protective layer of a transparent conductive layer and a method for preparing protective layer from the composition