JP2522032B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JP2522032B2
JP2522032B2 JP63306332A JP30633288A JP2522032B2 JP 2522032 B2 JP2522032 B2 JP 2522032B2 JP 63306332 A JP63306332 A JP 63306332A JP 30633288 A JP30633288 A JP 30633288A JP 2522032 B2 JP2522032 B2 JP 2522032B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light
sample
current
apv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63306332A
Other languages
Japanese (ja)
Other versions
JPH02152281A (en
Inventor
和美 松重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63306332A priority Critical patent/JP2522032B2/en
Publication of JPH02152281A publication Critical patent/JPH02152281A/en
Application granted granted Critical
Publication of JP2522032B2 publication Critical patent/JP2522032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光電変換方法に関する。The present invention relates to a photoelectric conversion method.

(従来の技術) 光エネルギーを電気エネルギーに変換する素子として
現在広く用いられているものに、半導体を利用した太陽
電池がある。しかしながら半導体による光起電力効果で
は、そのバンドギヤツプを越える電圧は出せないことが
知られている。そこで、この条件に制限されない高電圧
を取り出す光電変換素子を開発することを目的とし、P
−N接合等を利用した通常の太陽電池とは機構が全く異
なる「APV効果」と呼ばれる異常光起電力効果(Anomalo
us Photovoltaic効果)について研究が行われている。
APV効果とは、自発分極を持つ物質に光を照射したとき
に、定常的な短絡回路電流が生じる現象である。この開
放橋電圧は試料の厚さに比例して増大すること、更にこ
の現象は試料内部全域で発生する(bulk効果)という特
徴を有する。
(Prior Art) A solar cell using a semiconductor is widely used as an element for converting light energy into electric energy. However, it is known that a voltage exceeding the band gap cannot be generated by the photovoltaic effect of the semiconductor. Therefore, for the purpose of developing a photoelectric conversion element for extracting a high voltage that is not limited to this condition, P
-Anomalous photovoltaic effect called "APV effect" (Anomalo)
us Photovoltaic effect) is being researched.
The APV effect is a phenomenon in which a constant short circuit current occurs when a substance having spontaneous polarization is irradiated with light. The open bridge voltage increases in proportion to the thickness of the sample, and this phenomenon is characterized in that it occurs all over the inside of the sample (bulk effect).

(発明が解決しようとする課題) 本発明の目的は従来に比し光電変換効率の著しく優れ
た光電変換方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a photoelectric conversion method having remarkably excellent photoelectric conversion efficiency as compared with conventional methods.

(課題を解決するための手段) 本発明は薄膜状の有機強誘電性材料からなる光電変換
素子の該強誘電性材料に対して実質的に平行に光を入射
させることを特徴とする光電変換方法に係る。
(Means for Solving the Problems) The present invention is directed to a photoelectric conversion element of a thin film organic ferroelectric material, in which light is incident substantially parallel to the ferroelectric material. According to the method.

本発明において光電変換素子は強誘電性材料から構成
される。強誘電性材料として有用な材料は、特にビニリ
デンフルオライド(VdF)系重合体を挙げることができ
る。該VdF系重合体としてはVdFの単独重合体及び共重合
体が含まれ、共重合体の好適な例としては、特にVdFの
共重合比が35モル%以上のVdF/トリフルオロエチレン
(TrFE)共重合体、約10モル%以下の少量のヘキサフル
オロプロピレン、ビニルフルオライド等を共重合したVd
F/TrFE共重合体等を挙げることができる。強誘電性材料
は薄膜にして光を入射するが、その膜厚は好適には約1
〜200μmである。
In the present invention, the photoelectric conversion element is made of a ferroelectric material. Particularly useful materials as the ferroelectric material are vinylidene fluoride (VdF) based polymers. The VdF-based polymer includes VdF homopolymers and copolymers, and preferable examples of the copolymer include a VdF copolymerization ratio of 35 mol% or more VdF / trifluoroethylene (TrFE). Vd copolymerized with a small amount of hexafluoropropylene, vinyl fluoride, etc.
F / TrFE copolymer etc. can be mentioned. The ferroelectric material is made into a thin film to allow light to enter, and the film thickness is preferably about 1
~ 200 μm.

尚、本発明において平行に入射という意味は必ずしも
フイルムの平面に完全に平行に限られるものではなく、
平行軸からずれた光でもよい。即ちフイルム端面から入
射される光はフイルム電極面で反射または全反射するこ
とによりフイルム中を進行し、完全な平行に入射される
光と同じ効果を示す。
In the present invention, the meaning of parallel incidence is not necessarily limited to being completely parallel to the plane of the film,
The light may deviate from the parallel axis. That is, the light incident from the film end face travels in the film by being reflected or totally reflected by the film electrode surface, and has the same effect as the light incident in perfect parallel.

以下、具体的な実施例により本発明について説明す
る。試料はモル分率の異なるVdF/TrFE共重合体(54/46,
65/35,73/27;厚さ約25μm)を3種類用いた。両面に金
をスパツタリングして電極を形成し、コロナ放電によつ
てポーリング処理を行つている。測定系を第1図に示
す。光源はキセノンランプを使用し、エレクトロメータ
ーを用いて電流を検出した。試料は、空気中の浮遊電荷
などの影響を受けないようにするため、真空セル内にセ
ツトした。本発明では、試料への光の入射方向を従来行
つてきた第2図(a)のような、試料に垂直にする方法
から、入射光の薄膜試料への吸収効率を高めるため、第
2図(b)のように試料に平行にする方法に変えてAPV
電流を測定した。
Hereinafter, the present invention will be described with reference to specific examples. Samples are VdF / TrFE copolymers (54/46,
65/35, 73/27; thickness about 25 μm). Gold is sputtered on both sides to form electrodes, and poling is performed by corona discharge. The measurement system is shown in FIG. A xenon lamp was used as a light source, and an electric current was detected using an electrometer. The sample was set in a vacuum cell so as not to be affected by floating charges in the air. In the present invention, in order to increase the absorption efficiency of the incident light to the thin film sample from the method of making the incident direction of the light to the sample perpendicular to the sample as in FIG. Change to the parallel method to the sample as shown in (b) and change the APV
The current was measured.

第3図にVdF/TrFE(65/35)共重合体の試料を用い
て、35℃で観測した短絡電流の時間依存性を示す。ここ
で光照射開始時及び消光時に見られる鋭い電流のピーク
は、試料の急激な温度変化による焦電流である。一方、
光瀬流射時のみに観測される定常的な電流がAPV電流で
ある。第4図にこのAPV電流の温度依存性を示す。グラ
フより、80℃付近ではAPV電流が殆ど観測できなくなる
ことがわかる。この消失温度とD−Eヒステリシス曲線
の測定から明確に求められているキユリー温度とを比較
すると、3種類の試料からVdFのモル分率の増加による
キユリー温度の上昇にともなつて、APV電流の消失温度
も上昇していることがわかり、このAPV効果は試料の自
発分極と密接な関係があることは確認された。
Figure 3 shows the time dependence of the short-circuit current observed at 35 ° C using a sample of VdF / TrFE (65/35) copolymer. The sharp current peaks observed at the start of light irradiation and at the time of quenching are pyroelectric currents due to a rapid temperature change of the sample. on the other hand,
The APV current is a steady current observed only during Mitsuse. Figure 4 shows the temperature dependence of this APV current. From the graph, it can be seen that the APV current can hardly be observed near 80 ° C. Comparing this disappearance temperature and the Kyurie temperature clearly obtained from the measurement of the D-E hysteresis curve, the APV current of the three types of samples increased with the increase of the Kuriry temperature due to the increase of the mole fraction of VdF. It was found that the disappearance temperature was also elevated, and it was confirmed that this APV effect is closely related to the spontaneous polarization of the sample.

試料へ光を平行に入射する利点は、僅か1.5mmの厚さ
で入射光をほぼ100%吸収すること、電極による光の吸
収がないこと、回路における接触を良くできることで電
流が安定することなどである。第1表にVdF/TrFE(65/3
5)共重合体での光の照射面積と、35℃におけるAPV電流
値を、試料に平行( )及び垂直()な方向について
それぞれ示す。第2表はそれらにおける比である。本発
明では、平行入射における試料の入射面積(S )は、
垂直入射における面積(S)に対して、110分の1以
下であるにもかかわらず、APV電流値は約9倍(I /I
)上昇した。従つて、単位面積当りの電流値の比(I
/I・S/S )はほぼ1000となり、光電変換効率は
著しく向上したことになる。このことからAPV効果の測
定では、平行入射の方法は極めて有効であるといえる。
 The advantage of parallel incidence of light on the sample is a thickness of only 1.5 mm
Absorbs almost 100% of the incident light, and the electrode absorbs the light.
It is possible to make electricity by not receiving
The flow is stable. Table 1 shows VdF / TrFE (65/3
5) Light irradiation area of the copolymer and APV current at 35 ℃
Parallel to the sample ( ) And vertical () About directions
Shown respectively. Table 2 shows the ratio in them. Departure
In the case of light, the incident area (S ) Is
Area at normal incidence (S) For less than 1/110
Although it is below, the APV current value is about 9 times (I / I
)Rose. Therefore, the ratio of the current value per unit area (I
/ I・ S/ S ) Is almost 1000, and the photoelectric conversion efficiency is
This is a significant improvement. From this, the measurement of the APV effect
By the constant, it can be said that the method of parallel incidence is extremely effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は光電変換素子の電流、電圧測定系の概略図、第
2図は試料への光の入射方向を示す図、第3図は短絡電
流の時間依存性を示すグラフ、第4図はAPV電流の温度
依存性を示すグラフである。
FIG. 1 is a schematic diagram of the current and voltage measuring system of the photoelectric conversion element, FIG. 2 is a diagram showing the incident direction of light on the sample, FIG. 3 is a graph showing the time dependence of the short-circuit current, and FIG. It is a graph which shows the temperature dependence of APV current.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】薄膜状の有機強誘電性材料からなる光電変
換素子の該強誘電性材料に対して実質的に平行に光を入
射させることを特徴とする光電変換方法。
1. A photoelectric conversion method characterized in that light is made to enter substantially parallel to the ferroelectric material of a thin film-shaped photoelectric conversion element made of an organic ferroelectric material.
【請求項2】強誘電性材料がビニリデンフルオライド系
重合体である請求項1記載の光電変換方法。
2. The photoelectric conversion method according to claim 1, wherein the ferroelectric material is a vinylidene fluoride polymer.
JP63306332A 1988-12-02 1988-12-02 Photoelectric conversion element Expired - Fee Related JP2522032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306332A JP2522032B2 (en) 1988-12-02 1988-12-02 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306332A JP2522032B2 (en) 1988-12-02 1988-12-02 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH02152281A JPH02152281A (en) 1990-06-12
JP2522032B2 true JP2522032B2 (en) 1996-08-07

Family

ID=17955834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306332A Expired - Fee Related JP2522032B2 (en) 1988-12-02 1988-12-02 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2522032B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555616A (en) * 1991-08-23 1993-03-05 Mitsubishi Materials Corp Apparatus for converting light energy into electric energy and storing it

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532095A (en) * 1976-06-29 1978-01-10 Nippon Telegr & Teleph Corp <Ntt> High-molecule thermoelectric conversion element
JPS5857758A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Photovoltaic element
JPS60201672A (en) * 1984-03-27 1985-10-12 Agency Of Ind Science & Technol Photovoltaic element
FR2613085B1 (en) * 1987-03-25 1989-06-09 Carenco Alain METHOD FOR LOCALLY INCREASING THE REFRACTION INDEXES OF AN ELECTRO-OPTICAL MATERIAL FOR USE IN GUIDED OPTICS AND MATERIAL OBTAINED BY THIS PROCESS

Also Published As

Publication number Publication date
JPH02152281A (en) 1990-06-12

Similar Documents

Publication Publication Date Title
JP2938634B2 (en) Solar cell module
Chiba et al. Dye-sensitized solar cells with conversion efficiency of 11.1%
TWI263777B (en) Ultraviolet sensor and method for manufacturing the same
CN201032635Y (en) PIN structure 4H-SiC ultraviolet photoelectric detector
US4258259A (en) Infrared detector
JPS5879122A (en) Pyroelectric infrared ray detecting device
JPS5950579A (en) Semiconductor optical position detector
Jayadevaiah Semiconductor‐electrolyte interface devices for solar energy conversion
JP2522032B2 (en) Photoelectric conversion element
JP2006229052A (en) Solar cell, its manufacturing method, and short-circuited part removal device
CN110379873A (en) A kind of quantum point detector
US4213797A (en) Radiant energy to electric energy converter
Borsenberger et al. Field-dependent photogeneration in molecularly doped polymers
Robins et al. The logarithmic response of palladium‐gate metal‐insulator‐silicon field‐effect transistors to hydrogen
Singla et al. Numerical Simulation of CeO x ETL Based Perovskite Solar Cell:-An Optimization Study for High Efficiency and Stability
JPS61196570A (en) Amorphous silicon x-ray sensor
CN110335900A (en) A kind of tin indium oxide/vertical graphene photodetector composite construction and preparation method thereof
EP0302820A1 (en) Detector of ionizing particles
JPH06209114A (en) Photovoltaic element
JP2761135B2 (en) Solar cell power supply
McGibbon et al. Photocurrents in simple polymer systems. II
JPH06101576B2 (en) Amorphous Silicon X-ray sensor
Cahen et al. Injected current‐related distortion of photothermal signals from a photovoltaic cell
RU2631919C1 (en) Method for determining polarization sign of circular and elliptically polarized laser radiation
JP2010199342A (en) Solar cell, module, and photovoltaic power generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees