JP2010199342A - Solar cell, module, and photovoltaic power generator - Google Patents

Solar cell, module, and photovoltaic power generator Download PDF

Info

Publication number
JP2010199342A
JP2010199342A JP2009043274A JP2009043274A JP2010199342A JP 2010199342 A JP2010199342 A JP 2010199342A JP 2009043274 A JP2009043274 A JP 2009043274A JP 2009043274 A JP2009043274 A JP 2009043274A JP 2010199342 A JP2010199342 A JP 2010199342A
Authority
JP
Japan
Prior art keywords
light
solar cell
receiving surface
power generation
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009043274A
Other languages
Japanese (ja)
Inventor
Motoaki Masuda
元昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Masuda Motoaki
Original Assignee
Masuda Motoaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masuda Motoaki filed Critical Masuda Motoaki
Priority to JP2009043274A priority Critical patent/JP2010199342A/en
Publication of JP2010199342A publication Critical patent/JP2010199342A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To improve the power generating performance of a solar cell by collecting and supplying a direct light beam which is cut off by a light receiving surface electrode to be lost to a power generating element surface so as to improve the performance of the solar cell. <P>SOLUTION: The power generating performance is improved by configuring the solar cell to have directivity taking the latitude of an installation place and an altitude of the sun into consideration and also to collect the direct light beam which is cut off by the triangular light receiving surface electrode to the power generating element surface through specular reflection on front and rear slopes of the light receiving surface electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池の性能改善に関するもである。   The present invention relates to an improvement in the performance of a solar cell.

太陽光発電の性能改善には発電素子自体の性能改善のほか、発電素子に入射する光線を有効に利用するために反射防止膜などで表面形状を工夫するなど様々な方法が提案されているが、発電素子の表面に電極を設ける構造の太陽電池では表面電極に直射光線が遮られて性能が低下する不都合があった。この不都合を改善するために集光ユニットで予め光線を集光して空間を確保し、この空間に受光面電極を配置する方法が考えられるが、その集光方法として次のような提案がある。
特願2008−309186 太陽レンズ 特開2001−189487 集光器および集光型太陽電池モジュール
Various methods have been proposed to improve the performance of solar power generation, such as improving the performance of the power generation element itself, and devising the surface shape with an anti-reflection film to effectively use the light incident on the power generation element. In the solar cell having a structure in which an electrode is provided on the surface of the power generation element, there is a disadvantage that the direct light ray is blocked by the surface electrode and the performance is lowered. In order to improve this inconvenience, a method of concentrating the light beam in advance by the condensing unit to secure a space and arranging the light receiving surface electrode in this space can be considered. .
Japanese Patent Application No. 2008-309186 Solar Lens JP-A-2001-189487 Concentrator and Concentrating Solar Cell Module

前記特許文献1の方法は、逆台形の太陽レンズを透明材料で形成し、入射光線を全反射で出光面に集光する方法の太陽レンズであるが、太陽電池の電極間に太陽レンズを配置してその隙間に電極を配置するように構成した場合、入射光線の全てを有効に発電素子に供給することができる点では不都合はないが、耐久性を確保するために太陽電池と太陽レンズの全体を太陽電池モジュールとして透明基板内に透明充填材で封入すると、太陽レンズ相互間の空間がなくなって全反射での集光ができなくなる不都合があった。   The method of Patent Document 1 is a solar lens in which an inverted trapezoidal solar lens is formed of a transparent material and condenses incident light on a light exit surface by total reflection, but the solar lens is disposed between the electrodes of the solar cell. When the electrodes are arranged in the gap, there is no problem in that all of the incident light can be effectively supplied to the power generation element, but in order to ensure durability, the solar cell and the solar lens When the whole is sealed as a solar cell module with a transparent filler in a transparent substrate, there is a problem that the space between the solar lenses disappears and the light cannot be condensed by total reflection.

また、前記特許文献2の方法は、反射膜による鏡面反射と全反射の組み合わせで集光する方法であるが、入射光線の方角に指向性が考慮されていないために、図3に示す如く反射膜の傾斜角度を極めて大きくとる必要があって形状的に製造が困難であることや集光性能が低い不都合があった。受光面電極部分に当たる太陽光線の全てを発電素子面に集光できて形状が簡単な集光型太陽電池の開発で性能改善を図ることが課題である。   Further, the method of Patent Document 2 is a method of condensing light by a combination of specular reflection and total reflection by a reflecting film. However, since directivity is not considered in the direction of incident light, reflection is performed as shown in FIG. It is necessary to take a very large inclination angle of the film, which makes it difficult to manufacture in shape and has a disadvantage of low light collecting performance. The challenge is to improve the performance by developing a concentrating solar cell that can condense all of the sunlight that strikes the light receiving surface electrode portion onto the power generating element surface and has a simple shape.

太陽電池に指向性を持たせると共に、太陽電池の受光面電極で遮られる直射光線を受光面電極自体の鏡面反射で発電素子面に集光するように構成することで、発電性能を改善し前記課題を解決するものである。   By providing directivity to the solar cell and condensing the direct ray blocked by the light receiving surface electrode of the solar cell on the power generating element surface by the mirror reflection of the light receiving surface electrode itself, the power generation performance is improved and the It solves the problem.

従来一般的な太陽電池においては受光面の1割以上が受光面電極で占められており、相応の入射光線の損失があったが、その損失を殆ど解消することができるから発電性能を改善できる効果がある。   In conventional solar cells, more than 10% of the light-receiving surface is occupied by the light-receiving surface electrode, and there was a corresponding loss of incident light. However, since the loss can be almost eliminated, the power generation performance can be improved. effective.

図2は本発明による平板状の太陽電池1の断面を示すもので、2は発電素子、3は発電素子に電気的に接合されて等間隔に配置された細長い多数の受光面電極、4は裏面電極である。また、受光面電極の断面は発電素子に接する面を底辺とする三角形で前斜面5と後斜面6からなり、前斜面は傾斜角度α1で、後斜面は傾斜角度α2で傾斜した反射面を形成している。太陽電池モジュールとして組み上げられた状態では全体が透明基板7との間に透明な充填材8で保持された構成になる。9は受光面電極の先端に相当する太陽光線の入光面を示している。また、10は全ての受光面電極を電気的に連結するために受光面電極に直角に配置された集電極で、受光面電極と集電極は銀などの導電材で櫛型に一体で形成されている。11は樹脂などで形成された裏板である。   FIG. 2 shows a cross section of a flat plate solar cell 1 according to the present invention, in which 2 is a power generation element, 3 is a large number of elongated light receiving surface electrodes that are electrically connected to the power generation element and arranged at equal intervals, It is a back electrode. In addition, the cross section of the light receiving surface electrode is a triangle having a bottom surface that is in contact with the power generation element, and includes a front slope 5 and a rear slope 6. The front slope has a tilt angle α1 and the rear slope has a tilt angle α2. is doing. When assembled as a solar cell module, the entire structure is held between the transparent substrate 7 and the transparent filler 8. Reference numeral 9 denotes a light incident surface of sunlight corresponding to the tip of the light receiving surface electrode. Reference numeral 10 denotes a collecting electrode arranged at right angles to the light receiving surface electrode to electrically connect all the light receiving surface electrodes. The light receiving surface electrode and the collecting electrode are integrally formed in a comb shape with a conductive material such as silver. ing. Reference numeral 11 denotes a back plate made of resin or the like.

なお、三角形に形成された受光面電極の前斜面や後斜面は反射面として作用させることが目的であるから、集電性能を低下させない範囲であれば三角形の先端部分を導電性が低くても反射性能の高い安価な材料、例えばアルミニュームや合成樹脂などで形成してもよい。   Note that the front and rear slopes of the light-receiving surface electrode formed in a triangle are intended to act as reflecting surfaces. Therefore, if the current collection performance is not degraded, the tip of the triangle may have a low conductivity. You may form with cheap materials with high reflective performance, for example, aluminum, a synthetic resin, etc.

本発明の太陽電池は指向性を有するので、以下の説明においては前斜面を南向きにして水平に設置した場合を前提に記述し、斜面や光線の傾斜角度は特に断らない限り鉛直面に対する傾斜角度で示すものとする。   Since the solar cell of the present invention has directivity, in the following description, it is assumed that the front slope is facing south and is installed horizontally, and the slope and the inclination angle of the light beam are inclined with respect to the vertical plane unless otherwise specified. It shall be indicated in angle.

入光面に入射する太陽光線は透明基板や透明充填材の屈折率に応じて屈折して進行するが、全ての入射光線を発電素子面に集光させるには、発電素子面に直接当たる光線の他に前斜面や後斜面に当たる光線を鏡面反射で発電素子面に向かわせることが必要である。   Sunlight incident on the light entrance surface is refracted and travels according to the refractive index of the transparent substrate or transparent filler, but in order to condense all incident light rays onto the power generation element surface, light rays that directly strike the power generation element surface In addition, it is necessary to direct the light rays hitting the front and rear slopes to the power generation element surface by specular reflection.

また、発電素子表面には反射防止膜が設けられることが多いが、発電素子面に対する到達光線との角度差α3、α4は構成素材の臨界屈折角度以下になるように設定することが望ましい。発電素子面と透明充填材との間に隙間があると光線が全反射して反転し散逸するからである。   In addition, an antireflection film is often provided on the surface of the power generation element, but it is desirable to set the angle differences α3 and α4 with respect to the rays reaching the power generation element surface to be equal to or less than the critical refraction angle of the constituent material. This is because if there is a gap between the power generation element surface and the transparent filler, the light beam is totally reflected and inverted and dissipated.

このためには、後斜面の先端に入射する最大高度の太陽光線が鏡面反射によって発電素子面に到達するように後斜面の傾斜角度α2を設定すると共に、前斜面の先端に入射する最小高度の太陽光線が鏡面反射によって発電素子面に到達するように前斜面の傾斜角度α1を設定する必要があり、さらに発電素子面に対する到達光線との角度差α3、α4が受光面電極の間に充填される充填材の臨界屈折角度以下になるように設定することが望ましい。このような設定により最大高度の太陽光線から最小高度の太陽光線までを全て発電素子面に集光することができることになる。   For this purpose, the inclination angle α2 of the rear slope is set so that the sunlight with the highest altitude incident on the tip of the rear slope reaches the power generating element surface by specular reflection, and the minimum height incident on the tip of the front slope is set. It is necessary to set the inclination angle α1 of the front slope so that the sunlight rays reach the power generation element surface by specular reflection, and angle differences α3 and α4 with respect to the light beam reaching the power generation element surface are filled between the light receiving surface electrodes. It is desirable to set it to be equal to or less than the critical refraction angle of the filler. With such a setting, it is possible to concentrate all the sunlight from the maximum altitude to the minimum altitude on the power generation element surface.

また、受光面電極の高さは、後斜面で反射した光線e1が直接前斜面に当たって反転し入光面から散逸しないような高さに、そして前斜面で反射した光線e2が後斜面に直接当たらない範囲に設定すればよい。このためには受光面電極相互の間隔を十分に広く設定することで解決できるが、間隔を広くし過ぎると太陽電池の性能を低下させることになるから、小さな受光面電極を多数設けて受光面電極の間隔を細かくすることで総合的な性能の改善を図ることができる。   The height of the light receiving surface electrode is such that the light beam e1 reflected by the rear slope directly hits the front slope and is reversed and does not dissipate from the light entrance surface, and the light beam e2 reflected by the front slope strikes the rear slope directly. It may be set to a range that does not. This can be solved by setting the distance between the light receiving surface electrodes sufficiently wide. However, if the distance is too wide, the performance of the solar cell will be reduced. The overall performance can be improved by reducing the distance between the electrodes.

以上のように太陽高度の変動範囲や設置方角を考慮して太陽電池に指向性を持たせることで、太陽光線を容易に集光することができることになる。例えば、東京の場合、正午の南中高度で最大高度は夏至日の78度、最小高度は冬至日の31度であるから、この範囲の太陽光線を集光できるように設定することで、全ての光線を集光して発電素子に供給することができる。   As described above, by giving directivity to the solar cell in consideration of the variation range of the solar altitude and the installation direction, it is possible to easily collect the sunlight. For example, in the case of Tokyo, the maximum altitude is 78 degrees on the summer solstice and the minimum altitude is 31 degrees on the winter solstice at noon. Can be collected and supplied to the power generation element.

図3は特許文献2の集光器で、集光倍率が小さくしかも反射膜の傾きが少なくて済む簡単な形状の場合を示したものである。12は屈折率が空気より大きい透明材料からなる集光器本体、13と14は反射膜で、入光面15から入射する光線を集光して出光面16に集光するものであるが、入射光線の方角に指向性が考慮されていないために反射膜を極めて大きく傾斜させる必要がある。傾斜角度が小さい仕様として、屈折率1,5の透明材で形成する場合で、入光面と出光面の割合が1,5、厚みが出光面の長さの0,5倍の集光器を示しているが、出光面に対して前後の反射膜が重なる形状になるために製造が極めて困難となり実用性が低いと考えられる。逆に傾斜角度を少なく設定すると入光面と出光面の面積差がより少なくなって電極スペースを確保できなくなる。   FIG. 3 shows a concentrator disclosed in Patent Document 2, in which the condensing magnification is small and the reflection film has a simple shape that requires only a small inclination. 12 is a collector body made of a transparent material having a refractive index larger than that of air, and 13 and 14 are reflection films, which collect the light incident from the light incident surface 15 and condense it on the light output surface 16, Since directivity is not considered in the direction of incident light, it is necessary to incline the reflective film extremely greatly. In the case of forming with a transparent material having a refractive index of 1, 5 as a specification with a small inclination angle, the ratio of the light incident surface to the light output surface is 1, 5 and the thickness is 0.5 times the length of the light output surface. However, it is considered that the manufacturing is extremely difficult because of the shape in which the front and rear reflection films overlap with the light exit surface, and the practicality is considered to be low. On the other hand, if the tilt angle is set to be small, the area difference between the light incident surface and the light exit surface becomes smaller, and the electrode space cannot be secured.

図3は最大高度や最小高度に相当する光線での光線経路を示している。同一高度の光線でも入射する位置によっては出光面に到達する光線も全反射することになるが、出光面に太陽電池の表面反射膜が直結している場合はより複雑な光線経路を辿ることになる。三角形の受光面電極を有する本発明の太陽電池ではこのような空隙を有する集光器を特別に装備する必要がなく、むしろ全体を充填材で密封できるから構造的に安定し、空隙がないから酸化による性能の低下を防止できるものである。   FIG. 3 shows a ray path with rays corresponding to the maximum altitude and the minimum altitude. Even at the same altitude, depending on the incident position, the light reaching the light exit surface will be totally reflected, but if the surface reflective film of the solar cell is directly connected to the light exit surface, it will follow a more complicated light path. Become. In the solar cell of the present invention having a triangular light-receiving surface electrode, it is not necessary to specially equip such a concentrator with a gap, but rather it is structurally stable because there is no gap, since the whole can be sealed with a filler. It is possible to prevent deterioration in performance due to oxidation.

図4は太陽電池を南向きに傾斜させて設置することを前提にした場合の受光面電極の形状と集光状況を入射光線の経路で示すものである。透明基板と充填材の臨界屈折角度が42度(屈折率約1.5)で最大高度が85度、最小高度が5度の太陽光線を集光する場合の光線経路で、最大高度の光線m1と最小高度の光線m2を実態に合わせて描いたものである。最大高度以下の光線はm1とm2の中間の光線経路となる。   FIG. 4 shows the shape of the light-receiving surface electrode and the condensing state by the path of the incident light when it is assumed that the solar cell is inclined to the south. Ray path of maximum altitude ray m1 when condensing sunlight with a critical angle of refraction of 42 degrees (refractive index of about 1.5) and a maximum altitude of 85 degrees and a minimum altitude of 5 degrees. The minimum height ray m2 is drawn according to the actual situation. Rays below the maximum altitude are in the middle ray path between m1 and m2.

このように本発明の太陽電池は受光面電極の形状から集光できる方向に指向性があって、前斜面の方向からの光線は集光できるが、後斜面の方向から入射する光線については直接発電素子面に到達する入射光線以外の光線は殆ど集光することができない。太陽光線の集光範囲を緯度に合わせた最大高度から最小高度の光線に限定することで実用性の高い集光性能を確保するものである。   As described above, the solar cell of the present invention has directivity in the direction in which light can be collected from the shape of the light-receiving surface electrode and can collect light rays from the front slope direction. Light rays other than the incident light rays that reach the power generation element surface can hardly be collected. By limiting the light collection range of sunlight to the light of the maximum altitude to the minimum altitude according to the latitude, a highly practical condensing performance is ensured.

集光性能が若干低下するが、使用できる緯度の範囲に幅を持たせて仕様を設定することで製品の統合を図ることができる。例えば沖縄から北海道までの緯度の違いを考慮して、沖縄の最大高度と北海道の最小高度に対応する太陽電池であれば日本全土で利用できることになる。なお、最大高度や最小高度になる期間は年間を通して極く限られた期間であるから、高度の変動幅を少なく設定することで受光面電極の前後斜面の傾斜が緩やかになり製造が容易な形状となる。   Condensation performance is slightly reduced, but product integration can be achieved by setting specifications with a wide range of latitudes that can be used. For example, considering the difference in latitude from Okinawa to Hokkaido, solar cells that correspond to the maximum altitude in Okinawa and the minimum altitude in Hokkaido can be used throughout Japan. Note that the maximum altitude and minimum altitude periods are extremely limited throughout the year, so by setting the altitude fluctuation range small, the slope of the front and rear slopes of the light-receiving surface electrode becomes gentle and easy to manufacture. It becomes.

太陽の方位を考慮して太陽電池を設置した場合、南東からの太陽光など斜め方向から射し込む光線は、前斜面から南北方向に進行する光線と、東西方向に進行する光線のふたつに分解して考えることができるが、受光面電極に沿って進行する光線は隣合う受光面電極で囲まれた台形斜面で反射して発電素子面に到達することになる。   When solar cells are installed in consideration of the direction of the sun, the light rays entering from an oblique direction, such as sunlight from the southeast, are decomposed into two rays, one traveling from the front slope in the north-south direction and the other traveling in the east-west direction. Although it can be considered, the light beam traveling along the light receiving surface electrode is reflected by the trapezoidal slope surrounded by the adjacent light receiving surface electrodes and reaches the power generating element surface.

日出没に近い高度が低い時刻では季節によって東西軸から前後30度範囲の方角から太陽光線が射し込むことになるが、これらの光線は同様の要領で発電素子面に集光することができる。しかし、夏至前後の限られた日出没の時刻帯においては東北東または西南西からの逆向きの太陽光線が射し込むことになるから極く一部の光線は集光されずに損失すると考えられる。   At times when the altitude close to sun rises is low, the sun rays shine from a direction in the range of about 30 degrees from the east-west axis depending on the season. These rays can be condensed on the power generation element surface in the same manner. However, in the limited time zone where the sun rises and falls before and after the summer solstice, it is considered that only a part of the light beam is lost without being collected because the reverse sun rays from the east-northeast or west-southwest are incident.

図5は指向性を有する太陽電池モジュールからなる太陽光発電装置で、太陽電池の前斜面を南向きになるように配置した上で装置全体を傾斜させて設置した場合を示すものである。南半球で設置する場合には逆に太陽電池を北向きに傾けると共に前斜面を北向きに設置することになるが、モジュールの最適な傾斜角度は緯度によって異なる。   FIG. 5 shows a solar power generation device including a solar cell module having directivity, in which the entire slope of the solar cell is disposed with the front slope of the solar cell facing south. In the case of installation in the southern hemisphere, the solar cell is inclined northward and the front slope is installed northward, but the optimum inclination angle of the module varies depending on the latitude.

このように本発明の太陽電池は鏡面反射によって受光面電極で遮られる入射光線を三角形の受光面電極の斜面を使って発電素子面に集光するもので、設置方角に指向性があるが、極めて単純な形状で総合的に性能を高めることができ実用性が高い特徴を有するものである。   Thus, the solar cell of the present invention focuses incident light blocked by the light receiving surface electrode by mirror reflection on the power generating element surface using the inclined surface of the triangular light receiving surface electrode, and the installation direction has directivity, It has an extremely simple shape and can improve the performance comprehensively, and has a high practicality.

太陽電池の斜視図である。It is a perspective view of a solar cell. 太陽電池の断面図である。It is sectional drawing of a solar cell. 特許文献2の集光器の説明図である。It is explanatory drawing of the collector of patent document 2. FIG. 傾斜させた太陽電池の断面図である。It is sectional drawing of the inclined solar cell. 太陽電池モジュールを南向きに設置した太陽光発電装置の斜視図である。It is a perspective view of the solar power generation device which installed the solar cell module facing south.

1、太陽電池
2、発電素子
3、受光面電極
4、裏面電極
5、前斜面
6、後斜面
7、透明基板
8、透明充填材
9、入光面
10、集電極
11、裏板
DESCRIPTION OF SYMBOLS 1, Solar cell 2, Electric power generation element 3, Light-receiving surface electrode 4, Back surface electrode 5, Front slope 6, Rear slope 7, Transparent substrate 8, Transparent filler 9, Light entrance surface 10, Collector electrode 11, Back plate

Claims (4)

太陽電池の受光面電極の断面を発電素子に接する面が底辺となる三角形に形成し、この受光面電極の前斜面の方向から太陽光線を入射させるように配置した場合に、後斜面の先端に入射する最大高度の太陽光線が鏡面反射によって発電素子面に到達するように後斜面の傾斜を設定すると共に、前斜面の先端に入射する最小高度の太陽光線が鏡面反射によって発電素子面に到達するように前斜面の傾斜を設定したことを特徴とする太陽電池。   When the cross section of the light-receiving surface electrode of the solar cell is formed in a triangle whose surface is in contact with the power generation element and is arranged so that sunlight rays enter from the direction of the front slope of this light-receiving surface electrode, The slope of the rear slope is set so that the incident maximum solar radiation reaches the power generation element surface by specular reflection, and the minimum altitude solar light incident on the front slope tip reaches the power generation element surface by specular reflection. A solar cell characterized in that the inclination of the front slope is set as described above. 請求項1に記載の太陽電池において、発電素子面に対する到達光線との角度差が受光面電極の相互間を構成する透明充填材の臨界屈折角度以下になるように前後斜面を設定したことを特徴とする太陽電池。   The solar cell according to claim 1, wherein the front and back slopes are set so that an angle difference with a light beam reaching the power generating element surface is equal to or less than a critical refraction angle of the transparent filler constituting between the light receiving surface electrodes. A solar cell. 請求項1に記載の太陽電池複数を受光面電極の向きを同一に揃えて平面に配置し、それぞれの太陽電池を電気的に連結したことを特徴とする太陽電池モジュール。   A solar cell module comprising: a plurality of solar cells according to claim 1 arranged in a plane with the same orientation of the light receiving surface electrodes, and the solar cells being electrically connected to each other. 請求項3に記載の太陽電池モジュールを受光面電極の前斜面が南向きになるように配置したことを特徴とする太陽光発電装置。   4. A solar power generation apparatus, wherein the solar cell module according to claim 3 is disposed such that a front slope of a light-receiving surface electrode faces southward.
JP2009043274A 2009-02-26 2009-02-26 Solar cell, module, and photovoltaic power generator Pending JP2010199342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043274A JP2010199342A (en) 2009-02-26 2009-02-26 Solar cell, module, and photovoltaic power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043274A JP2010199342A (en) 2009-02-26 2009-02-26 Solar cell, module, and photovoltaic power generator

Publications (1)

Publication Number Publication Date
JP2010199342A true JP2010199342A (en) 2010-09-09

Family

ID=42823760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043274A Pending JP2010199342A (en) 2009-02-26 2009-02-26 Solar cell, module, and photovoltaic power generator

Country Status (1)

Country Link
JP (1) JP2010199342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003789A (en) * 2012-06-28 2014-01-10 엘지전자 주식회사 Solar cell and method for manufacturing the same, and solar cell module
KR101463121B1 (en) 2013-12-02 2014-11-21 성균관대학교산학협력단 Apparatus and method for manufacturing front electrodes for solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003789A (en) * 2012-06-28 2014-01-10 엘지전자 주식회사 Solar cell and method for manufacturing the same, and solar cell module
KR101889776B1 (en) * 2012-06-28 2018-08-20 엘지전자 주식회사 Solar cell and method for manufacturing the same, and solar cell module
KR101463121B1 (en) 2013-12-02 2014-11-21 성균관대학교산학협력단 Apparatus and method for manufacturing front electrodes for solar cell

Similar Documents

Publication Publication Date Title
JP3174549B2 (en) Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system
JP3259692B2 (en) Concentrating photovoltaic module, method of manufacturing the same, and concentrating photovoltaic system
US20100108133A1 (en) Thin Film Semiconductor Photovoltaic Device
US20030029497A1 (en) Solar energy converter using optical concentration through a liquid
JP6416333B2 (en) Solar cell module
US20120145222A1 (en) Enhanced flat plate concentration PV panel
JP2006344964A (en) Photovoltaic force concentrating device of solar energy system
JP2001148500A (en) Solar cell module
US20120295388A1 (en) Large area concentrator lens structure and method
WO2013047424A1 (en) Solar photovoltaic power generation device
KR20070104300A (en) Concentrating photovoltaic module structure
US20100282316A1 (en) Solar Cell Concentrator Structure Including A Plurality of Glass Concentrator Elements With A Notch Design
AU2002259326A1 (en) Solar energy converter using optical concentration through a liquid
WO2003001610A1 (en) Solar energy converter using optical concentration through a liquid
JP5258805B2 (en) Photovoltaic power generation apparatus and method for manufacturing solar power generation apparatus
JP2007073774A (en) Solar battery
JP2003086823A (en) Thin film solar battery
JP2010199342A (en) Solar cell, module, and photovoltaic power generator
ES2806030T3 (en) Photovoltaic device with a set of fibers to track the sun
JP4313841B1 (en) Solar lens and solar-powered equipment
KR20110123922A (en) Solar concentrator
JP6854096B2 (en) Concentrating solar cell system and power generation method
WO2018078659A1 (en) Refined light trapping technique using 3-dimensional globule structured solar cell
US9741886B2 (en) Thin film solar collector and method
JPH0637344A (en) Light-condensing type solar cell module