JPH06101576B2 - Amorphous Silicon X-ray sensor - Google Patents

Amorphous Silicon X-ray sensor

Info

Publication number
JPH06101576B2
JPH06101576B2 JP60036199A JP3619985A JPH06101576B2 JP H06101576 B2 JPH06101576 B2 JP H06101576B2 JP 60036199 A JP60036199 A JP 60036199A JP 3619985 A JP3619985 A JP 3619985A JP H06101576 B2 JPH06101576 B2 JP H06101576B2
Authority
JP
Japan
Prior art keywords
semiconductor
amorphous silicon
ray
type
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60036199A
Other languages
Japanese (ja)
Other versions
JPS61196582A (en
Inventor
英彦 前畑
厚生 堀
圭弘 浜川
博明 岡本
光普 魏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP60036199A priority Critical patent/JPH06101576B2/en
Publication of JPS61196582A publication Critical patent/JPS61196582A/en
Publication of JPH06101576B2 publication Critical patent/JPH06101576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/29Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to radiation having very short wavelengths, e.g. X-rays, gamma-rays or corpuscular radiation
    • H10F30/292Bulk-effect radiation detectors, e.g. Ge-Li compensated PIN gamma-ray detectors
    • H10F30/2925Li-compensated PIN gamma-ray detectors

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アモルフアスシリコン半導体型のX線セン
サに関する。
The present invention relates to an amorphous silicon semiconductor type X-ray sensor.

〔従来の技術〕 一般に、放射線センサは、電離作用を利用するGM計数
管,不活性ガスのイオン化作用を利用する比例計数管,
固体中の電離作用を利用する半導体放射線センサ等があ
る。
[Prior Art] Generally, a radiation sensor includes a GM counter that uses an ionization effect, a proportional counter that uses an ionization effect of an inert gas,
There are semiconductor radiation sensors and the like that utilize the ionization effect in solids.

そして、とくに、後者の半導体放射線センサは、前2者
に比して、電子−正孔対を作るのに費されるエネルギが
きわめて小さいことから、より多くのイオン対が生成で
き、大きな利得を持つ。また、気体に比して半導体は密
度が大きいことから、必要厚さすなわち検出器の大きさ
を非常に小さくすることができ、このために電荷の集収
時間すなわち検出信号の立上り時間が短い特長がある。
そのほか、入射放射線のエネルギとセンサ出力の比例性
が良く、また磁場の影響を受けにくいといつた特長を有
する。
Especially, since the latter semiconductor radiation sensor consumes much less energy to form electron-hole pairs than the former two, more ion pairs can be generated and a large gain can be obtained. To have. Also, since the semiconductor has a higher density than gas, the required thickness, that is, the size of the detector, can be made very small, and for this reason, the characteristic is that the charge collection time, that is, the rise time of the detection signal is short. is there.
In addition, the energy of the incident radiation and the sensor output have a good proportionality, and it has the advantage that it is hardly affected by the magnetic field.

反面、放射線の損傷を受けやすく、またゲルマニウムの
ものは液体窒素などで冷却して使用しなければならない
という問題点がある。
On the other hand, it is vulnerable to radiation damage, and germanium must be cooled with liquid nitrogen before use.

また、種々の放射線の中でも、X線は医療機器,科学分
析機器などの広い分野に使用されているが、それに応じ
て半導体X線センサも、X線断層撮影装置,自動X線露
光装置,ポケツトX線線量計,螢光X線分析装置および
X線残留応力分析装置などに使われている。
Further, among various radiations, X-rays are used in a wide range of fields such as medical equipment and scientific analysis equipment, and accordingly, semiconductor X-ray sensors are also used, X-ray tomography equipment, automatic X-ray exposure equipment, pockets. It is used in X-ray dosimeters, X-ray fluorescence analyzers and X-ray residual stress analyzers.

そして、第5図は、現在実用されている単結晶半導体放
射線センサの原理,構造を説明するものである。
FIG. 5 illustrates the principle and structure of the currently used single crystal semiconductor radiation sensor.

そして、そのセンサのダイオード構造は、p型のシリコ
ンまたはゲルマニウムにリンやリチウムを拡散させて見
掛上真性に近い高抵抗半導体が造られるものであり、第
5図に示すように、n型半導体(1)の裏面に順次i型
真性半導体(2)およびp型半導体(3)が形成され、
それらの表面および裏面にアルミニウム蒸着による前面
電極(4)および裏面電極(5)が形成され、両電極
(4),(5)に電源(6)から抵抗(7)を介して逆
方向のバイアス電圧Vが印加されている。
The diode structure of the sensor is one in which phosphorus or lithium is diffused into p-type silicon or germanium to form a high-resistance semiconductor that is apparently near-intrinsic. As shown in FIG. An i-type intrinsic semiconductor (2) and a p-type semiconductor (3) are sequentially formed on the back surface of (1),
A front electrode (4) and a back electrode (5) are formed on their front and back surfaces by aluminum vapor deposition, and a reverse bias is applied to both electrodes (4) and (5) from a power supply (6) through a resistor (7). The voltage V is applied.

そして、センサに放射線(8)が入射すると、i型半導
体(2)の層中で電子と正孔対を生成し、i型半導体
(2)の厚みをaとすると、電界F(=V/a)によりそ
れぞれn型半導体(1)およびp型半導体(3)に向つ
て動き、両電源(4),(5)の外部出力端(9),
(10)に電気信号を出力する。
Then, when the radiation (8) is incident on the sensor, electron-hole pairs are generated in the layer of the i-type semiconductor (2), and assuming that the thickness of the i-type semiconductor (2) is a, the electric field F (= V / a) moves toward the n-type semiconductor (1) and the p-type semiconductor (3) respectively, and the external output ends (9), (5) of both power supplies (4), (5)
Output an electric signal to (10).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、第5図の場合、結晶中の不純物や欠陥により
電子や正孔は捕獲され、SN比は低下するが、このSN比を
向上させるためにそれぞれの平均自由行程をle,lhとす
ると、i型半導体(2)の厚みaよりずつと大きくする
ことが必要になる。たとえば、Si半導体検出器ではa≒
1cm(le,lh=200cm),Ge半導体検出器ではa=3〜5cm
(le,lh=200cm)である。
By the way, in the case of FIG. 5, electrons and holes are trapped by impurities and defects in the crystal, and the SN ratio decreases, but if the respective mean free paths are le and lh in order to improve this SN ratio, It is necessary to make the thickness a larger than the thickness a of the i-type semiconductor (2). For example, in Si semiconductor detector,
1cm (le, lh = 200cm), a = 3-5cm for Ge semiconductor detector
(Le, lh = 200 cm).

しかし、単結晶半導体放射線センサは大面積化がむずか
しいことから断層撮影や大面積構造材の欠陥検出などに
適用する場合、走査機構を必要とする。また、逆バイア
スを印加するために電源を必要とし、また半導体は放射
線による損傷を受けやすいことから量産性に富み安価で
あることが望まれる。
However, since it is difficult to increase the area of the single crystal semiconductor radiation sensor, a scanning mechanism is required when it is applied to tomography or defect detection of a large area structural material. Further, since a power source is required to apply a reverse bias and the semiconductor is easily damaged by radiation, it is desired that the semiconductor has high mass productivity and is inexpensive.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記単結晶半導体型放射線センサの問題点
に留意してなされたものであり、基板材料の裏面に順
次、透明導電膜,p型アモルフアスシリコンカーバイド半
導体,i型アモルフアスシリコン半導体,n型アモルフアス
シリコン半導体またはn型微結晶シリコン半導体および
裏面電極を形成し、前記基板材料の表面または前記基板
材料と前記透明導電膜との間に螢光物質を配置しかつ、
前記i型アモルフアスシリコンの厚みを1000〜6000Åと
したことを特徴とするアモルフアスシリコンX線センサ
である。
This invention was made in consideration of the problems of the single crystal semiconductor type radiation sensor, and a transparent conductive film, a p-type amorphous silicon carbide semiconductor, an i-type amorphous silicon semiconductor, in order on the back surface of the substrate material. forming an n-type amorphous silicon semiconductor or an n-type microcrystalline silicon semiconductor and a back electrode, disposing a fluorescent substance on the surface of the substrate material or between the substrate material and the transparent conductive film, and
The amorphous silicon X-ray sensor is characterized in that the thickness of the i-type amorphous silicon is 1000 to 6000Å.

〔作 用〕 したがつて、この発明によると、アモルフアスシリコン
半導体に螢光物質が配されているため、入射するX線が
可視光に変換される光起電力型センサとなり、しかも、
真性半導体層を形成するi型アモルフアスシリコンの厚
みをX線励起の発光帯に対応する1000〜6000Åにするた
め、入射するX線が螢光物質によりアモルフアスシリコ
ン半導体の光感度ピークと一致する励起光を発生し、き
わめて高い出力電流が得られる。
[Operation] Therefore, according to the present invention, since the fluorescent substance is arranged in the amorphous silicon semiconductor, it becomes a photovoltaic sensor that converts incident X-rays into visible light.
Since the thickness of the i-type amorphous silicon forming the intrinsic semiconductor layer is set to 1000 to 6000 Å corresponding to the emission band of X-ray excitation, the incident X-rays coincide with the photosensitivity peak of the amorphous silicon semiconductor due to the fluorescent substance. Excitation light is generated and an extremely high output current is obtained.

〔実施例〕〔Example〕

つぎにこの発明を、その1実施例を示した第1図ととも
に、詳細に説明する。
Next, the present invention will be described in detail with reference to FIG. 1 showing the first embodiment.

可視光を透過しやすい基板材料(11)の表面に、ニツケ
ルをドーピングした硫化亜鉛などの螢光物質(12)を配
置し、基板材料(11)の裏面に酸化インジウムや酸化す
ずなどの薄状の透明導電膜(13)を配し、その透明導電
膜(13)の上にプラズマ分解法などによるp型アモルフ
アスシリコンカーバイド半導体(14)およびi型アモル
フアスシリコン半導体(15)およびn型アモルフアスシ
リコン半導体膜またはn型微結晶シリコン半導体(16)
を形成し、さらに、前記n型微結晶シリコン半導体(1
6)上にアルミニウムなどの薄膜電極からなる裏面電極
(17)を形成して構成される。
A fluorescent material (12) such as nickel-doped zinc sulfide is placed on the surface of the substrate material (11) that easily transmits visible light, and a thin material such as indium oxide or tin oxide is placed on the back surface of the substrate material (11). Of the p-type amorphous silicon carbide semiconductor (14) and the i-type amorphous silicon semiconductor (15) and the n-type amorphous film are formed on the transparent conductive film (13) by a plasma decomposition method or the like. As-silicon semiconductor film or n-type microcrystalline silicon semiconductor (16)
To form the n-type microcrystalline silicon semiconductor (1
6) A back electrode (17) made of a thin film electrode of aluminum or the like is formed on the upper surface of the structure.

そして、p型半導体は、X線励起による可視光の窓層に
なるため、光吸収損をおさえるよう膜厚100〜500Åのア
モルフアスシリコンカーバイドを用いる。
Since the p-type semiconductor serves as a window layer for visible light by X-ray excitation, amorphous silicon carbide having a film thickness of 100 to 500Å is used so as to suppress light absorption loss.

また、n型半導体は、導電率が高く、金属層との接着性
が良好なこと、光学的禁止帯幅をi層より高くすること
による正孔の流入防止および裏面電極(17)の金属層か
らの反射光を有効利用する点などから膜厚500Å前後の
微結晶シリコンを用いる。
The n-type semiconductor has high conductivity and good adhesion to the metal layer, prevents inflow of holes by making the optical band gap higher than that of the i layer, and prevents the metal layer of the back electrode (17). Microcrystalline silicon with a film thickness of around 500Å is used in order to effectively use the reflected light from.

さらに、真性半導体層は、アモルフアスシリコンを用い
るが、膜厚はX線励起による発光帯(400〜600nm)に依
存し、第2図に示すように、適正膜厚は1000〜6000Åで
ある。
Further, amorphous silicon is used for the intrinsic semiconductor layer, but the film thickness depends on the emission band (400 to 600 nm) by X-ray excitation, and the appropriate film thickness is 1000 to 6000Å as shown in FIG.

つぎに、前記実施例の効果を、第3図を用いて説明す
る。
Next, the effect of the above embodiment will be described with reference to FIG.

第3図の破線で示すデータは、ガラス/ITO/pa-SiC/i a
−Si/n μC−Si/Alなどの構成で作られるX線センサの
測定結果の1例である。この場合、センサ単位面積あた
りの出力電流は、X線管電流に比例して増大するが微弱
電流である。
The data shown by the broken line in Fig. 3 is glass / ITO / pa-SiC / ia.
It is an example of a measurement result of an X-ray sensor made of a structure such as -Si / n μC-Si / Al. In this case, the output current per sensor unit area increases in proportion to the X-ray tube current, but is a weak current.

これに対して、第3図の実線で示すデータは、前記実施
例によるX線センサの測定結果の1例であり、前記アモ
ルフアスシリコンセンサに対し、1〜2桁高い出力電流
が得られるとともに、X線管電流,すなわち,X線の強度
に比例する値が得られる。
On the other hand, the data shown by the solid line in FIG. 3 is an example of the measurement result of the X-ray sensor according to the above-mentioned embodiment, and an output current higher than that of the amorphous silicon sensor by 1 to 2 digits is obtained. , X-ray tube current, that is, a value proportional to the intensity of X-rays is obtained.

これは、入射するX線が、アモルフアスシリコン半導体
の光感度ピークと一致する励起光を発生する硫化亜鉛な
どの螢光物質を設けたことによる効果である。
This is because the incident X-ray is provided with a fluorescent substance such as zinc sulfide that generates excitation light that coincides with the photosensitivity peak of the amorphous silicon semiconductor.

また、前記実施例のX線センサは前記半導体センサの場
合と同様に、逆バイアス電圧を印加することにより出力
電流をさらに増大させることができる。
Further, in the X-ray sensor of the above-mentioned embodiment, the output current can be further increased by applying the reverse bias voltage as in the case of the semiconductor sensor.

したがつて、前記実施例によると、アモルフアスシリコ
ン薄膜半導体に、アモルフアスシリコン半導体のスペク
トル感度のピーク値と合致する光に変換する螢光物質を
配することにより、実用レベルのX線強度測定センサを
提供することができ、また、高純度単結晶半導体X線セ
ンサと比べると、大面積化および一次元,二次元集積型
センサの作成が可能となる。さらに、量産性に富むとと
もに安価なX線センサを提供できる特徴を有している。
Therefore, according to the above-mentioned embodiment, a practical level of X-ray intensity measurement is performed by arranging a fluorescent substance that converts into light that matches the peak value of the spectral sensitivity of the amorphous silicon semiconductor in the amorphous silicon thin film semiconductor. It is possible to provide a sensor, and as compared with a high-purity single crystal semiconductor X-ray sensor, it is possible to increase the area and create a one-dimensional or two-dimensional integrated sensor. Further, it has a feature that it is possible to provide an inexpensive X-ray sensor which has high mass productivity.

つぎに、この発明の他の実施例を示した第4図について
説明する。
Next, FIG. 4 showing another embodiment of the present invention will be described.

この実施例が第1図の実施例の異なる点は、X線を透過
しやすい基板材料(11)′と透明導電膜(13)との間に
前記螢光物質(12)を配した点であり、その作用効果は
第1図の実施例とほぼ同様である。
This embodiment is different from the embodiment shown in FIG. 1 in that the fluorescent substance (12) is arranged between the substrate material (11) 'which easily transmits X-rays and the transparent conductive film (13). The operation and effect are almost the same as those of the embodiment shown in FIG.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明のアモルフアスシリコンX線セ
ンサによると、アモルフアスシリコン半導体に螢光物質
が配され、しかも、真性半導体層を形成するi型アモル
フアスシリコンの厚みがX線励起の発光帯に対応する10
00〜6000Åになるため、入射するX線を高効率に可視光
に変換して光起電力型センサにすることができ、入射す
るX線を螢光物質によりアモルフアスシリコン半導体の
スペクトル感度のピーク値と合致する光に高効率に変換
することができ、きわめて高い出力電流が得られ、量産
性に富むとともに安価であり、大面積化や一次元,二次
元のX線入射位置を測定する集積型も容易に作成可能で
ある。
As described above, according to the amorphous silicon X-ray sensor of the present invention, the fluorescent substance is arranged in the amorphous silicon semiconductor, and the i-type amorphous silicon forming the intrinsic semiconductor layer has a thickness of X-ray excited light emission. 10 corresponding to the obi
Since it is from 00 to 6000Å, the incident X-ray can be converted into visible light with high efficiency to make it a photovoltaic sensor, and the incident X-ray can be converted into a peak by the fluorescent substance of the spectral sensitivity of the amorphous silicon semiconductor. It can be converted into light that matches the value with high efficiency, obtains extremely high output current, is highly mass-produced and inexpensive, and has a large area and one-dimensional and two-dimensional X-ray incident position measurement integrated. The mold can be easily created.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のアモルフアスシリコンX線センサの
1実施例の正面図、第2図はi層膜厚と相対感度の関係
図、第3図はX線管電流と出力電流の関係図、第4図は
この発明の他の実施例の正面図、第5図は従来の単結晶
半導体放射線センサの正面図である。 (11),(11)′……基板材料、(12)……螢光物質、
(13)……透明導電膜、(14)……p型アモルフアスシ
リコンカーバイド半導体、(15)……i型アモルフアス
シリコン半導体、(16)……n型微結晶シリコン半導
体、(17)……裏面電極。
FIG. 1 is a front view of one embodiment of an amorphous silicon X-ray sensor of the present invention, FIG. 2 is a relationship diagram of i-layer film thickness and relative sensitivity, and FIG. 3 is a relationship diagram of X-ray tube current and output current. FIG. 4 is a front view of another embodiment of the present invention, and FIG. 5 is a front view of a conventional single crystal semiconductor radiation sensor. (11), (11) '... substrate material, (12) ... fluorescent material,
(13) …… Transparent conductive film, (14) …… p-type amorphous silicon carbide semiconductor, (15) …… i-type amorphous silicon semiconductor, (16) …… n-type microcrystalline silicon semiconductor, (17)… ... Back electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前畑 英彦 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 堀 厚生 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 浜川 圭弘 兵庫県川西市南花屋敷3−17―4 (72)発明者 岡本 博明 兵庫県川西市平野字上新在家779―1 北 113 (72)発明者 魏 光普 大阪府吹田市千里山東3−6―4 第2弘 竹荘 (56)参考文献 実開 昭53−85970(JP,U) 米国特許4109271(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidehiko Maehata 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Inventor Kosei Hori 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Inside Hitachi Shipbuilding Co., Ltd. (72) Inventor Keihiro Hamakawa 3-17-4 Minamihanayashiki, Kawanishi-shi, Hyogo (72) Inventor Hiroaki Okamoto 779-1 North New House in Hirano, Kawanishi-shi, Hyogo 113 (72) Inventor Wei Kofu, 3-6-4 Senriyamahigashi, Suita City, Osaka Prefecture, 2nd Hiroshi Takesou (56) References: Actual Development Sho 53-85970 (JP, U) US Patent 4109271 (US, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板材料の裏面に順次、透明導電膜,p型ア
モルフアスシリコンカーバイド半導体,i型アモルフアス
シリコン半導体,n型アモルフアスシリコン半導体または
n型微結晶シリコン半導体および裏面電極を形成し、 前記基板材料の表面または前記基板材料と前記透明導電
膜との間に蛍光物質を配置し、 かつ、前記i型アモルフアスシリコンの厚みを1000〜60
00Åとしたことを特徴とするアモルフアスシリコンX線
センサ。
1. A transparent conductive film, a p-type amorphous silicon carbide semiconductor, an i-type amorphous silicon semiconductor, an n-type amorphous silicon semiconductor or an n-type microcrystalline silicon semiconductor and a back surface electrode are sequentially formed on the back surface of a substrate material. A phosphor is disposed on the surface of the substrate material or between the substrate material and the transparent conductive film, and the thickness of the i-type amorphous silicon is 1000 to 60
Amorphous silicon X-ray sensor characterized by having a diameter of 00Å.
JP60036199A 1985-02-25 1985-02-25 Amorphous Silicon X-ray sensor Expired - Lifetime JPH06101576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036199A JPH06101576B2 (en) 1985-02-25 1985-02-25 Amorphous Silicon X-ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036199A JPH06101576B2 (en) 1985-02-25 1985-02-25 Amorphous Silicon X-ray sensor

Publications (2)

Publication Number Publication Date
JPS61196582A JPS61196582A (en) 1986-08-30
JPH06101576B2 true JPH06101576B2 (en) 1994-12-12

Family

ID=12463060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036199A Expired - Lifetime JPH06101576B2 (en) 1985-02-25 1985-02-25 Amorphous Silicon X-ray sensor

Country Status (1)

Country Link
JP (1) JPH06101576B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623019B1 (en) * 1987-11-10 1990-05-11 Thomson Csf RADIOLOGICAL IMAGE TAKING DEVICE
IL96561A0 (en) * 1989-12-28 1991-09-16 Minnesota Mining & Mfg Amorphous silicon sensor
CA2034118A1 (en) * 1990-02-09 1991-08-10 Nang Tri Tran Solid state radiation detector
JP3796069B2 (en) * 1999-07-15 2006-07-12 三洋電機株式会社 Solar cell module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109271A (en) 1977-05-27 1978-08-22 Rca Corporation Amorphous silicon-amorphous silicon carbide photovoltaic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997072A (en) * 1982-11-27 1984-06-04 Toshiba Corp Radiation detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109271A (en) 1977-05-27 1978-08-22 Rca Corporation Amorphous silicon-amorphous silicon carbide photovoltaic device

Also Published As

Publication number Publication date
JPS61196582A (en) 1986-08-30

Similar Documents

Publication Publication Date Title
US4176275A (en) Radiation imaging and readout system and method utilizing a multi-layered device having a photoconductive insulative layer
JP4037917B2 (en) X-ray detection element and method of operating the element
Huggett et al. Intrinsic photoconductivity in the alkali halides
US5602397A (en) Optical imaging system utilizing a charge amplification device
US20150276950A1 (en) Compact solid-state neutron detector
US7060523B2 (en) Lithium-drifted silicon detector with segmented contacts
US4675469A (en) Amorphous silicon solar battery
Lorenz et al. Fast readout of plastic and crystal scintillators by avalanche photodiodes
JPH06101576B2 (en) Amorphous Silicon X-ray sensor
JPH0546709B2 (en)
Perez-Mendez et al. Amorphous silicon based radiation detectors
JPH0550857B2 (en)
JP2003086823A (en) Thin film solar battery
JPH0476509B2 (en)
JP3216153B2 (en) Photo detector
Markakis et al. Mercuric iodide photodetectors for scintillation spectroscopy
Miyake Operation of Cesium‐Antimony Phototubes under High Light Level
US4326126A (en) High speed photodetector
Kanemitsu et al. Photocarrier generation and injection at the interface in double‐layered organic photoconductors
JPH03159179A (en) Manufacture of photoelectric converter
JP3469061B2 (en) Solar cell
JP2963104B2 (en) Method and apparatus for measuring localized level density
CN117727826B (en) Geometric-crystal anisotropic coupling photoelectric detector and preparation method thereof
JPS6247169A (en) Photosensor
JPS61259577A (en) Radiation detection device