JP2517727B2 - Method for manufacturing stainless steel member for semiconductor manufacturing equipment - Google Patents

Method for manufacturing stainless steel member for semiconductor manufacturing equipment

Info

Publication number
JP2517727B2
JP2517727B2 JP62185673A JP18567387A JP2517727B2 JP 2517727 B2 JP2517727 B2 JP 2517727B2 JP 62185673 A JP62185673 A JP 62185673A JP 18567387 A JP18567387 A JP 18567387A JP 2517727 B2 JP2517727 B2 JP 2517727B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel member
oxide film
present
electrolytic polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185673A
Other languages
Japanese (ja)
Other versions
JPS6431956A (en
Inventor
忠弘 大見
和雄 藤原
治夫 泊里
文博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62185673A priority Critical patent/JP2517727B2/en
Publication of JPS6431956A publication Critical patent/JPS6431956A/en
Application granted granted Critical
Publication of JP2517727B2 publication Critical patent/JP2517727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体製造装置の構成部材として用いられる
ステンレス鋼部材の製造方法に関し、詳細には高品質製
品を得る上で必要な平滑性及び清浄性に優れたステンレ
ス鋼部材の製造方法に関するものである。尚本明細書に
おいては、ステンレス鋼部材として特に配管部材を取り
上げてその製造方法を説明していくが、本発明は半導体
製造装置の構成部材となる他のステンレス鋼部材の製造
にも適用できるものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a stainless steel member used as a constituent member of a semiconductor manufacturing apparatus, and more specifically, to smoothness and cleanliness necessary for obtaining a high quality product. The present invention relates to a method for manufacturing a stainless steel member having excellent properties. In the present specification, a pipe member will be particularly taken up as the stainless steel member to explain the manufacturing method thereof, but the present invention can also be applied to the manufacture of other stainless steel members constituting the semiconductor manufacturing apparatus. Is.

[従来の技術] 半導体産業界における技術の発展は近年特に目ざまし
いものがあり、高性能の製品が製造される様になってい
る。例えば半導体記憶素子の配線間隔は数ミクロン、更
にはサブミクロンの精度まで要求される様になってい
る。このため配線上に微粒子や細菌等が付着しただけで
も回路がショートするおそれがある。それ故半導体の製
造段階で使用されるガスや純水も超高純度であることが
必要とされ、これらを移送する配管部材(以下、単に管
材ということがある)の品質についても厳格な規制が設
けられ、例えば管材内面については清浄度及び平滑度の
高い製品の供給が望まれている。このため超純水配管等
においては、半導体記憶素子の大容量化に伴なう突き合
せ溶接機会の増加にも不都合がなく、耐食性も他の素材
に比べて良好なステンレス鋼材が注目され、一方表面の
平滑化及び清浄化をはかる目的で光輝焼鈍,冷間加工,
化学研摩,電解研摩等の表面処理法が採用され、特に電
解研摩処理を施したものが最も効果的であるといわれて
いる。
[Prior Art] The development of technology in the semiconductor industry has been particularly remarkable in recent years, and high-performance products have been manufactured. For example, wiring intervals of semiconductor memory devices are required to have an accuracy of several microns, and even submicron accuracy. Therefore, the circuit may be short-circuited even if the fine particles or bacteria adhere to the wiring. Therefore, the gases and pure water used in the semiconductor manufacturing stage also need to be of ultra-high purity, and strict regulations are also imposed on the quality of the piping members that transfer these (hereinafter sometimes simply referred to as pipe materials). It is desired to supply a product provided with high cleanliness and smoothness on the inner surface of the pipe material. For this reason, in ultrapure water pipes, etc., there is no inconvenience in increasing the number of butt welding opportunities associated with the increase in capacity of semiconductor memory elements, and stainless steel materials that have better corrosion resistance than other materials are attracting attention. Bright annealing, cold working, for the purpose of smoothing and cleaning the surface,
Surface treatment methods such as chemical polishing and electrolytic polishing are adopted, and it is said that the one that has been subjected to electrolytic polishing is most effective.

[発明が解決しようとする問題点] ところが電解研摩による表面処理を行なったステンレ
ス鋼であっても、その構成元素であるFe,Cr,Niなどの重
金属イオンが溶出することがあり、半導体製造装置用部
材における上記した様な高度の要求特性を十分満足する
部材は得られていないのが現状である。
[Problems to be Solved by the Invention] However, even in the case of stainless steel surface-treated by electrolytic polishing, heavy metal ions such as Fe, Cr, and Ni, which are the constituent elements, may elute, and semiconductor manufacturing equipment At present, no member has been obtained that sufficiently satisfies the above-mentioned highly required characteristics of the member for use.

本発明はこの様な状況に鑑みてなされたものであって
その目的は、管材内面の平滑性及び洗浄性に優れしかも
管内面から重金属イオン等のステンレス鋼構成元素が溶
出することがない半導体製造装置用ステンレス部材の製
造方法を提供する点こある。
The present invention has been made in view of such a situation, and an object thereof is to manufacture a semiconductor which is excellent in smoothness and cleanability of an inner surface of a pipe material and in which stainless steel constituent elements such as heavy metal ions are not eluted from the inner surface of the pipe. A point is to provide a method for manufacturing a stainless member for a device.

[問題点を解決する為の手段] 本発明は電解研摩によって、面粗度をRmax:1μm以下
としたステンレス鋼部材を、酸素含有量が25容量%以上
の雰囲気中、280〜580℃で加熱酸化処理することにより
部材表面に酸化皮膜を形成することを要旨とするもので
ある。
[Means for Solving Problems] The present invention heats a stainless steel member having a surface roughness Rmax of 1 μm or less by electrolytic polishing at 280 to 580 ° C. in an atmosphere having an oxygen content of 25% by volume or more. The gist is to form an oxide film on the surface of the member by performing an oxidation treatment.

[作用] 本発明は上記の様に構成されるが、要するに管材内面
に付着した不純物の除去作用を兼ね備えた処理方法を採
用することによって管材内面に酸化皮膜を形成するもの
である。
[Operation] Although the present invention is configured as described above, in short, an oxide film is formed on the inner surface of the pipe material by adopting a treatment method that also has a function of removing impurities adhering to the inner surface of the pipe material.

本発明ではまずステンレス鋼管材の表面粗度を電解研
摩によりRmax:1μm以下とする。表面粗度がRmax:1μm
を超える場合は、形成される酸化皮膜が緻密さに欠けた
ものとなるので管材構成元素が容易に溶出し良好な耐食
性が得られない。
In the present invention, first, the surface roughness of the stainless steel pipe material is set to Rmax: 1 μm or less by electrolytic polishing. Surface roughness Rmax: 1μm
If it exceeds, the oxide film to be formed lacks in denseness, so that the constituent elements of the pipe material are easily eluted and good corrosion resistance cannot be obtained.

次に酸化皮膜の形成は25容量%以上の酸素を含有する
雰囲気中280〜580℃の温度で加熱処理を施すことにより
行なわれる。後述の実施例から明らかな様に酸素含有量
が25容量%未満の場合は酸素量が十分でなく、良好な酸
化皮膜の形成が困難となり、また加熱温度が280℃未満
の場合は温度が低すぎて良好な酸化皮膜が形成されにく
い。一方加熱温度が580℃を超える場合は酸化皮膜が生
長しすぎることに起因して酸化皮膜中に極微細なひび割
れを生じ耐食性が不十分となる。
Next, formation of an oxide film is carried out by heat treatment at a temperature of 280 to 580 ° C in an atmosphere containing 25% by volume or more of oxygen. As will be apparent from the examples described below, when the oxygen content is less than 25% by volume, the amount of oxygen is insufficient, and it becomes difficult to form a good oxide film, and when the heating temperature is less than 280 ° C, the temperature is low. It is too difficult to form a good oxide film. On the other hand, when the heating temperature exceeds 580 ° C, the oxide film grows too much, resulting in extremely fine cracks in the oxide film, resulting in insufficient corrosion resistance.

尚本発明においては加熱処理時間は特に限定されない
が、酸化皮膜を完全且つ良好に形成するには5分以上加
熱することが望ましい。
In the present invention, the heat treatment time is not particularly limited, but it is desirable to heat for 5 minutes or more to form the oxide film completely and satisfactorily.

以下実施例について説明するが、本発明は以下の実施
例に限定されるものではなく、前・後記の趣旨に徴して
適宜設計変更することは本発明の技術的範囲に含まれ
る。
Examples will be described below, but the present invention is not limited to the following examples, and it is within the technical scope of the present invention to appropriately change the design in view of the gist of the preceding and the following.

[実施例] H2SO4−H3PO4水溶液を用いて外径12.7mmのSUS316Lス
テンレス鋼管内面に電解研摩を施こした。次いで第1表
左欄に示す種々の条件の下で加熱酸化処理を行なった。
加熱酸化処理にあっては種々の酸素含有量の雰囲気ガス
をそれぞれ炉内に導入し、空気を完全に追い出した後で
管材を入れ加熱処理に付した。これらの資料について次
の試験を行なった。
It hurts facilities electrolytic polishing to SUS316L stainless steel tube inner surface of the outer diameter of 12.7mm with Example] H 2 SO 4 -H 3 PO 4 solution. Then, heat oxidation treatment was performed under various conditions shown in the left column of Table 1.
In the heating and oxidizing treatment, atmospheric gases having various oxygen contents were respectively introduced into the furnace, air was completely expelled, and then the tube material was put in and subjected to the heating treatment. The following tests were conducted on these materials.

(a)溶出金属量測定試験 試料とした管材の内部に比抵抗>18MΩ・cmの超純水
を封入して管材全体を80℃で30日間保持した後、管材内
の超純水中に溶出した全金属量をイオンクロマトグラフ
ィー及び誘導プラズマ質量分析によって求めた。試験結
果を第1表右欄に示す。尚第1表中、全金属溶出量は、
電解研摩の後加熱酸化処理を行なわなかった試料No.19
の溶出量を1とした場合の相対溶出量を示す。
(A) Elution metal amount measurement test After filling the inside of the sample pipe material with ultrapure water of> 18 MΩ · cm and keeping the whole pipe material at 80 ℃ for 30 days, elute in the ultrapure water in the pipe material. The total amount of metal deposited was determined by ion chromatography and induction plasma mass spectrometry. The test results are shown in the right column of Table 1. In Table 1, the total metal elution amount is
Sample No. 19 which was not subjected to thermal oxidation treatment after electrolytic polishing
The relative elution amount is shown when the elution amount of 1 is 1.

第1表から明らかなように、本発明例No.1〜No.11は
いずれも電解研摩によって予め管内表面粗度をがRmax:1
μm以下としており、且つ酸化含有量30%以上の雰囲気
中での適切な条件による酸化処理によって緻密で保護性
に富む酸化皮膜が形成されているため、それらの金属溶
出量は電解研摩ままのものに比べて1/3以下となり優れ
た耐食性を示した。
As is clear from Table 1, all of the invention examples No. 1 to No. 11 have a tube inner surface roughness of Rmax: 1 by electrolytic polishing in advance.
The metal elution amount is as electrolytically polished because a dense and highly protective oxide film is formed by the oxidation treatment under appropriate conditions in an atmosphere with an oxidation content of 30% or more. The corrosion resistance was 1/3 or less, which was excellent in corrosion resistance.

一方、比較例No.12は加熱酸化処理温度が低いため超
純水中での耐食性を得るのに十分な酸化皮膜の形成がな
されなかった。
On the other hand, in Comparative Example No. 12, the heat oxidation treatment temperature was low, so that an oxide film was not formed sufficiently to obtain corrosion resistance in ultrapure water.

No.13では加熱酸化処理温度が高すぎ、その結果酸化
皮膜が生長しすぎて皮膜にミクロ的欠陥が導入されたた
め、耐食性が不十分であった。
In No. 13, the heat oxidation treatment temperature was too high, and as a result, the oxide film grew too much and microscopic defects were introduced into the film, resulting in insufficient corrosion resistance.

No.14では前処理としての電解研摩が不十分であった
ため表面粗度がRmax.1μmを超えており平滑性に乏し
く、そのため相対的に表面積が大きいこと及び電解研摩
前の加工変質層の除去が不十分なため、その表面に形成
される酸化皮膜には欠陥が導入され、耐食性が不十分で
あった。
In No.14, the surface roughness exceeded Rmax.1μm due to insufficient electrolytic polishing as a pretreatment, resulting in poor smoothness. Therefore, the surface area was relatively large and the work-affected layer was removed before electrolytic polishing. Therefore, the oxide film formed on the surface thereof had defects, and the corrosion resistance was insufficient.

No.15では加熱酸化雰囲気中の酸素含有量が約20%
(大気)であるため、酸化皮膜の形成が不十分で本発明
例よりも耐食性に劣った。
In No. 15, the oxygen content in the heated oxidizing atmosphere is about 20%
Since it was (atmosphere), the formation of the oxide film was insufficient and the corrosion resistance was inferior to that of the examples of the present invention.

No.16では前処理が酸洗光輝焼鈍したものであるため
表面粗度が著しく粗く耐食性が不十分であった。
In No. 16, since the pretreatment was bright pickling annealing, the surface roughness was extremely rough and the corrosion resistance was insufficient.

No.17及びNo.18では機械研摩を行なったものであり、
研摩の際に表面に加工変質層が形成される。この加工変
質層の上に形成された酸化皮膜は欠陥が多く十分な耐食
性が得られなかった。
No.17 and No.18 were mechanical polishing,
A work-affected layer is formed on the surface during polishing. The oxide film formed on the work-affected layer had many defects and could not have sufficient corrosion resistance.

No.19〜21では加熱酸化処理を施こしていないため酸
化皮膜の形成が十分でなく良好な耐食性が得られなかっ
た。
In Nos. 19 to 21, since the heat oxidation treatment was not applied, the oxide film was not sufficiently formed and good corrosion resistance could not be obtained.

(b)IMMAによる管内表面の不純物元素分析試験: 分析結果を第1図に示す。(B) Impurity element analysis test on the inner surface of the pipe by IMMA: The analysis results are shown in FIG.

図中A及びBは、 A:電解研摩により管内面粗度をRmax:0.6μmにした後酸
素含有量99.9%の雰囲気中で450℃,10分の加熱酸化処理
を施した管材(本発明例) B:電解研摩により管内面粗度をRmax:0.5μmにした後、
酸素含有量約20%(大気)雰囲気中で450℃,10分の加熱
酸化処理を施した管材(比較例) である。
In the figure, A and B are A: a tube material that has been subjected to a heat oxidation treatment at 450 ° C. for 10 minutes in an atmosphere having an oxygen content of 99.9% after the tube inner surface roughness Rmax: 0.6 μm by electrolytic polishing (the present invention example). ) B: After the inner surface roughness of the tube is set to Rmax: 0.5 μm by electrolytic polishing,
This is a pipe material (comparative example) that has been subjected to a heat oxidation treatment at 450 ° C for 10 minutes in an atmosphere with an oxygen content of about 20% (atmosphere).

第1図から明らかなように、本発明例Aは比較例Bと
比べて、Na,Clの表面付着が著しく少なく、表面清浄性
が優れていた。
As is clear from FIG. 1, in comparison with Comparative Example B, Inventive Example A had significantly less Na and Cl adhering to the surface and was excellent in surface cleanability.

(c)AES分析による管内表面の全金属量に対するCr元
素の割合調査: 調査結果を第2図に示す。
(C) Investigation of the ratio of Cr element to the total amount of metal on the inner surface of the pipe by AES analysis: The investigation results are shown in FIG.

図中A,Bは A:電解研摩により管内面粗度をRmax:0.4μmにした後、
酸素含有量99.9%の雰囲気中で425℃,60分の加熱酸化処
理を施した管材(本発明例) B:電解研摩により管内面粗度をRmax:0.3μmにした後、
酸素含有量20%(大気中)雰囲気中で425℃,60分の加熱
酸化処理を施した管材(比較例) 第2図から明らかなように、本発明例Aは比較例Bに
比べて、酸化皮膜中の全金属量に対するCrの割合が高
く、このことから、超純水以外にも腐食性ガスに対する
耐食性も向上することがわかった。
In the figure, A and B are A: After the inner surface roughness of the tube is set to Rmax: 0.4 μm by electrolytic polishing,
A pipe material that has been subjected to a heat oxidation treatment at 425 ° C. for 60 minutes in an atmosphere having an oxygen content of 99.9% (Example of the present invention) B: After the inner surface roughness of the pipe is set to Rmax: 0.3 μm by electrolytic polishing,
A pipe material that has been subjected to a heat oxidation treatment at 425 ° C. for 60 minutes in an atmosphere with an oxygen content of 20% (in air) (comparative example). As is clear from FIG. The ratio of Cr to the total amount of metals in the oxide film was high, which revealed that the corrosion resistance to corrosive gases was improved in addition to ultrapure water.

[発明の効果] 本発明は上記の様に構成されているので本発明方法に
よれば平滑性,清浄性,耐不純物溶出性に優れ且つ耐食
性も優れた半導体製造装置用ステンレス鋼部材を製造す
ることができる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, according to the method of the present invention, a stainless steel member for a semiconductor manufacturing apparatus, which is excellent in smoothness, cleanability, impurity elution resistance and corrosion resistance, is manufactured. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例におけるIMMA分析結果を示す
図、第2図はAES分析による管内表面の全金属量に対す
るCrの割合を示す図である。
FIG. 1 is a diagram showing the result of IMMA analysis in the example of the present invention, and FIG. 2 is a diagram showing the ratio of Cr to the total amount of metal on the inner surface of the tube by AES analysis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 泊里 治夫 兵庫県高砂市米田町神爪355−27 (72)発明者 佐藤 文博 兵庫県神戸市北区鈴蘭台東町9−7−16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Haruo Tomari, 355-27 Kamizume, Yoneda-cho, Takasago, Hyogo Prefecture (72) Fumihiro Sato 9-7-16 Suzurandaito-cho, Kita-ku, Kobe, Hyogo Prefecture

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解研摩によって表面粗度をRmax:1μm以
下としたステンレス鋼部材を、酸素含有量が25容量%以
上の雰囲気中、280〜580℃で加熱酸化処理することによ
り部材表面に酸化皮膜を形成することを特徴とする半導
体製造装置用ステンレス鋼部材の製造方法。
1. A stainless steel member having a surface roughness Rmax of 1 μm or less obtained by electrolytic polishing is subjected to a heat oxidation treatment at 280 to 580 ° C. in an atmosphere having an oxygen content of 25% by volume or more to oxidize the surface of the member. A method of manufacturing a stainless steel member for a semiconductor manufacturing apparatus, which comprises forming a film.
JP62185673A 1987-07-25 1987-07-25 Method for manufacturing stainless steel member for semiconductor manufacturing equipment Expired - Lifetime JP2517727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62185673A JP2517727B2 (en) 1987-07-25 1987-07-25 Method for manufacturing stainless steel member for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185673A JP2517727B2 (en) 1987-07-25 1987-07-25 Method for manufacturing stainless steel member for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS6431956A JPS6431956A (en) 1989-02-02
JP2517727B2 true JP2517727B2 (en) 1996-07-24

Family

ID=16174868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185673A Expired - Lifetime JP2517727B2 (en) 1987-07-25 1987-07-25 Method for manufacturing stainless steel member for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2517727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380907B2 (en) * 2017-02-09 2022-07-05 Jfe Steel Corporation Substrate stainless steel sheet for fuel cell separators and production method therefor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487760A (en) * 1987-09-28 1989-03-31 Kobe Steel Ltd Stainless steel member for semiconductor producing device
JP2862546B2 (en) * 1988-11-21 1999-03-03 神鋼パンテック株式会社 Equipment piping materials for ultrapure water production and supply equipment
JP3017301B2 (en) * 1991-02-18 2000-03-06 大阪酸素工業株式会社 Method of forming passivation film
WO1992014858A1 (en) * 1991-02-18 1992-09-03 Osaka Sanso Kogyo Kabushiki-Kaisha Process for forming passivated film
JP3045576B2 (en) * 1991-05-28 2000-05-29 忠弘 大見 Method of forming passive film on stainless steel and stainless steel
JPH0533118A (en) * 1991-07-25 1993-02-09 Hitachi Zosen Corp Corrosion protecting method for weld zone of stainless steel
JPH0533117A (en) * 1991-07-25 1993-02-09 Hitachi Zosen Corp Surface treatment for stainless steel member
JP3286697B2 (en) * 1992-05-29 2002-05-27 忠弘 大見 Method and process apparatus for forming an oxide passivation film on a weld
JP3261768B2 (en) * 1992-05-29 2002-03-04 忠弘 大見 Welded stainless steel, process equipment, ultrapure water production and supply equipment, ultrapure gas supply piping system and welding method
JP3379070B2 (en) 1992-10-05 2003-02-17 忠弘 大見 Method of forming oxidation passivation film having chromium oxide layer on surface
JP3218802B2 (en) * 1993-05-07 2001-10-15 株式会社神戸製鋼所 Surface treatment of stainless steel for semiconductor manufacturing equipment
JPH07252631A (en) * 1994-03-16 1995-10-03 Tadahiro Omi Austenitic stainless steel for forming passive film and formation of passive film
KR20080053411A (en) * 2004-03-10 2008-06-12 제온 코포레이션 Apparatus for producing gas, vessel for supplying gas and gas for use in manufacturing electronic device
EP2517801B1 (en) * 2009-12-21 2019-07-24 Nippon Steel Corporation Base tube for cold-drawing, manufacturing method for same, and manufacturing method for cold-drawn tube
CN109071104B (en) 2016-03-31 2020-03-31 富士胶片株式会社 Processing liquid for semiconductor manufacturing, container for containing processing liquid for semiconductor manufacturing, pattern forming method, and method for manufacturing electronic device
SE543567C2 (en) * 2020-02-10 2021-03-30 Ipco Sweden Ab A method for surface treatment of a steel belt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380907B2 (en) * 2017-02-09 2022-07-05 Jfe Steel Corporation Substrate stainless steel sheet for fuel cell separators and production method therefor

Also Published As

Publication number Publication date
JPS6431956A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
JP2517727B2 (en) Method for manufacturing stainless steel member for semiconductor manufacturing equipment
WO2021259135A1 (en) High-purity fine platinum wire and preparation method
EP0294558B1 (en) Method for treating stainless steel surface by high temperature oxidation
Beidler et al. The formation of molybdenum disilicide coatings on molybdenum
JP2918385B2 (en) Surface treatment method for stainless steel members
GB2041483A (en) Corrosion-resistant phosphorous copper, or phosphorous copper alloy pipes for sanitary plumbing applications and method of making the same
JPH06322512A (en) Surface treatment for stainless steel material for semiconductor-manufacturing equipment
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
US5916377A (en) Packed bed carburization of tantalum and tantalum alloy
JP2737551B2 (en) Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance
JPH0533116A (en) Surface treatment of stainless steel member
JP2720716B2 (en) Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same
JP3031407B2 (en) Stainless steel and its manufacturing method
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JP2587846B2 (en) Heat transfer tube having excellent seawater corrosion resistance and method for producing the same
JP2001206724A (en) Component for device handling molten material particularly glass molten material
JPH0533118A (en) Corrosion protecting method for weld zone of stainless steel
JP2019157261A (en) ANTICORROSIVE CuCo ALLOY
JPH01198463A (en) Stainless steel member for semiconductor-manufacturing equipment and its production
JPH06108224A (en) Surface treatment of stainless steel member
US3185597A (en) Metal oxidizing process
JP2925876B2 (en) Metal surface oxidation treatment method
JPH07268599A (en) Stainless steel for high-purity alcohol and its surface treatment
JPS63309325A (en) Production of u-tube made of stainless steel
Greiner Plastic deformation of germanium and silicon by torsion