JP2918385B2 - Surface treatment method for stainless steel members - Google Patents

Surface treatment method for stainless steel members

Info

Publication number
JP2918385B2
JP2918385B2 JP9128492A JP9128492A JP2918385B2 JP 2918385 B2 JP2918385 B2 JP 2918385B2 JP 9128492 A JP9128492 A JP 9128492A JP 9128492 A JP9128492 A JP 9128492A JP 2918385 B2 JP2918385 B2 JP 2918385B2
Authority
JP
Japan
Prior art keywords
stainless steel
ozone
gas
oxide film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9128492A
Other languages
Japanese (ja)
Other versions
JPH05287496A (en
Inventor
重雄 清水
崇晴 八木
信秀 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP9128492A priority Critical patent/JP2918385B2/en
Publication of JPH05287496A publication Critical patent/JPH05287496A/en
Application granted granted Critical
Publication of JP2918385B2 publication Critical patent/JP2918385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子機器薄膜製造・表面
分析装置など超高真空応用機器、バイオ・医薬品原料製
造、フロン代替洗浄などの超純水製造装置の構成部材と
して用いられるステンレス鋼部材の表面処理方法に関
し、詳細には高品質製品、高精度測定、無菌工程、廃棄
物無公害化作業を達成する上で必要なガス放出性、イオ
ン溶出性、平滑性および清浄性に優れたステンレス鋼部
材の表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel member used as a component of an ultra-high vacuum application device such as an electronic device thin film production / surface analysis device, a bio / pharmaceutical raw material production, and an ultrapure water production device such as a substitute for cleaning of CFC. Stainless steel with excellent gas release, ion elution, smoothness and cleanliness required to achieve high quality products, high precision measurement, aseptic process, and detoxification of waste The present invention relates to a method for surface treatment of a steel member.

【0002】[0002]

【従来の技術】近年、電子機器業界においては、電子部
品の高集積化、高性能化が進み、最少加工寸法が、サブ
ミクロンオーダーの超LSIが製造される今日では、使
用原料の超高純度化は、勿論、原料供給系、すなわちガ
スや純水の製造、貯留容器、配管およびその部材などの
システムから混入する微細な粒子や、部材表面から放出
するガス状不純物、溶出するイオン状不純物、バクテリ
アなどの繁殖が製造空間を不完全なものとしている。こ
のような汚れは半導体の結晶欠陥、薄膜の膜質不良、成
膜エッチングの均一性不良、パターン欠陥などの原因と
なり製品歩留りの低下を招いたり、加工スピードの低下
により、生産性に悪影響を与えるので、LSIの高集積
化、高性能化が進むにつれて、クリーンな空間の確保は
より深刻になりつつある。
2. Description of the Related Art In recent years, in the electronic equipment industry, high integration and high performance of electronic components have been progressing, and ultra-large scale LSIs having a minimum processing dimension of submicron order have been manufactured. Of course, the raw material supply system, that is, production of gas and pure water, storage containers, fine particles mixed from systems such as piping and its members, gaseous impurities released from the member surface, ionic impurities eluted, Propagation of bacteria and the like makes the production space imperfect. Such contamination causes crystal defects of semiconductors, poor film quality of thin films, poor uniformity of film-forming etching, pattern defects, etc., leading to a reduction in product yield and a reduction in processing speed, which adversely affects productivity. As the integration and performance of LSIs increase, securing a clean space is becoming more serious.

【0003】したがって、電子機器、半導体の製造段階
で使用される原料や純水も超高純度であることが必要と
され、これらを製造・移送する配管部材の品質について
も厳格な規制が設けられ、例えば管材内面については清
浄度および平滑度の高い製品が望まれている。
[0003] Therefore, it is necessary that raw materials and pure water used in the production stage of electronic equipment and semiconductors are also of ultra-high purity, and strict regulations are imposed on the quality of piping members for producing and transferring these. For example, a product having high cleanliness and smoothness is desired for the inner surface of a tube.

【0004】このような観点から、真空容器、ガス配管
などにおいては溶接が可能な金属材料が採用され、中で
も耐熱性、耐食性およびガス放出性が他の材料より良好
なステンレス鋼が広く使用されている。
[0004] From such a viewpoint, a weldable metal material is used for a vacuum vessel, a gas pipe, and the like, and among them, stainless steel, which has better heat resistance, corrosion resistance, and gas release properties than other materials, is widely used. I have.

【0005】そして、真空容器、真空システムからのガ
ス放出量低減による超高真空化は空間にガスやダスト粒
子の密度を低下させることを意味し、空間運動分子の衝
突までの飛程を増加させ、不用な散乱を防ぐことにな
る。また、単位表面に入射してくる粒子などの量を減少
させることになるので、清浄表面が不純物により汚染さ
れるまでの時間が長くなり、それだけ純度の高い良好な
表面が確保できることになる。
[0005] Ultra-high vacuum by reducing the amount of gas released from the vacuum vessel and vacuum system means lowering the density of gas and dust particles in the space, which increases the range up to collision of spatially moving molecules. , Preventing unnecessary scattering. In addition, since the amount of particles or the like incident on the unit surface is reduced, the time required for the clean surface to be contaminated with impurities is lengthened, and a good surface with high purity can be secured accordingly.

【0006】ところで、真空を使った成膜プロセスの場
合、成膜作業前に真空槽を含め系内の不用なガスを排気
する必要があり、この段階で十分高真空にしておかない
と後から導入するプロセスガスが汚染され高品位の薄膜
が作製することができない。また、空間が充分に清浄で
ないと基板表面が汚染されたままであるので、成膜界面
が不良になるなどの問題があるため、微細加工が要求さ
れる場合には、プロセスの初期条件がクリーンでかつ高
真空であることが要求される。
By the way, in the case of a film forming process using a vacuum, it is necessary to exhaust unnecessary gas in the system including the vacuum chamber before the film forming operation. The introduced process gas is contaminated and a high-quality thin film cannot be produced. Also, if the space is not sufficiently clean, the surface of the substrate remains contaminated, and there is a problem that the film formation interface becomes defective. Therefore, when fine processing is required, the initial conditions of the process are clean. In addition, high vacuum is required.

【0007】一方、超純水配管などにおいては、純水に
対する耐食性の優れた塩化ビニール樹脂などの有機材料
が従来から用いられてきた。しかしながら、このような
材料でも本体と接合部からの有機成分(残留モノマーや
可塑剤などの添加物)の微量溶出を完全に阻止すること
はできないという欠点があった。さらに、最近、環境問
題と関連して純水による高温洗浄が注目され、有機材料
には耐熱性に問題があり、高温状況下では、強度不足・
軟化に加え、有機成分の溶出量が大きく増えるという問
題があった。このため、構成材料として溶接が可能な金
属材料が着目され、中でも耐熱性、耐食性が他の材料よ
り良好なステンレス鋼材が注目されるようになった。
On the other hand, in ultrapure water pipes and the like, organic materials such as vinyl chloride resin having excellent corrosion resistance to pure water have been used. However, even with such a material, there is a drawback that a trace elution of organic components (additives such as residual monomers and plasticizers) from the main body and the joint cannot be completely prevented. Furthermore, recently, high-temperature cleaning with pure water has been attracting attention in connection with environmental problems, and organic materials have a problem with heat resistance.
In addition to the softening, there is a problem that the amount of eluted organic components is greatly increased. For this reason, attention has been focused on weldable metal materials as constituent materials, and in particular, stainless steel materials having better heat resistance and corrosion resistance than other materials have come to attract attention.

【0008】ところで、構成材料には、不純物成分の付
着や放出・溶出を抑制するという観点から、表面の平滑
化および清浄化をはかる目的で光輝焼鈍、冷間加工、電
解研磨等の表面処理が採用されている。しかし、構成材
料の表面に機械的な加工処理をした場合に、加工変質層
が残存するようなものであると、不純物が吸着・放出さ
れて真空環境やガス・純水の清浄性を損なう恐れもあ
る。このため、ステンレス鋼を構成部材として使用する
場合、製造工程中に形成された加工変質層を除去すると
同時に平滑性を兼ねる表面加工法が採用されている。
[0008] By the way, from the viewpoint of suppressing adhesion, release and elution of impurity components, surface treatments such as bright annealing, cold working, electrolytic polishing, and the like are performed on the constituent materials for the purpose of smoothing and cleaning the surface. Has been adopted. However, if the surface of the constituent material is subjected to mechanical processing, if the deteriorated layer remains, impurities may be adsorbed and released, impairing the vacuum environment and the cleanliness of gas and pure water. There is also. For this reason, when stainless steel is used as a constituent member, a surface processing method has been adopted which also has a smoothness at the same time as removing a deteriorated layer formed during the manufacturing process.

【0009】[0009]

【発明が解決しようとする課題】しかし、電解研磨を始
めとする従来の表面加工を行ったステンレス鋼であって
も、精錬中に溶解したガス成分や、表面加工中、保存中
に吸着・吸蔵したダスト、ガスなどを空間に放出するこ
とがある。特に、水中で電解研磨する方式では、電気分
解に伴う原子状のガス成分が金属に溶解吸蔵されること
と、水中で形成するステンレス鋼の不動態膜に水分が取
り込まれることにより、その後の使用中においては、い
つまでも水分の放出が続き超高真空が達成できず、クリ
ーンなプロセスガスが水分で汚染されるなどの問題があ
る。
However, even in the case of stainless steel which has been subjected to conventional surface processing such as electrolytic polishing, gas components dissolved during refining, adsorption and occlusion during surface processing and storage. Dust and gas may be released into the space. In particular, in the method of electrolytic polishing in water, the atomic gas components accompanying the electrolysis are dissolved and occluded in the metal, and the moisture is taken in the passivation film of stainless steel formed in water, so that it can be used later. In such a case, there is a problem that the release of moisture continues forever, an ultra-high vacuum cannot be achieved, and the clean process gas is contaminated with moisture.

【0010】例えば、純水に対してはステンレス鋼の構
成元素であるFe、Cr、Niなどの重金属イオンが溶
出することがある。そこで、電解研磨を施したステンレ
ス鋼のガス放出性およびイオン溶出性を少なくするた
め、後工程として各種雰囲気で酸化処理を行う方法が提
案されている。この方法は、適当な厚さと結晶構造の表
面酸化皮膜を設けることで電解研磨による表面の問題を
解決したものである。
For example, heavy metal ions such as Fe, Cr, and Ni, which are constituent elements of stainless steel, may be eluted in pure water. Therefore, in order to reduce the gas release property and the ion elution property of the electrolytically polished stainless steel, a method of performing an oxidation treatment in various atmospheres as a post-process has been proposed. This method solves the problem of the surface caused by electrolytic polishing by providing a surface oxide film having an appropriate thickness and a crystal structure.

【0011】例えば、電解研磨したステンレス鋼を酸素
含有量25容量%以上の雰囲気中で、280 ℃〜580 ℃で加
熱酸化する方法(特開昭64-31956号公報)があるが、こ
の方法は酸化温度が高く、低融点材料、パッキンなどの
非耐熱材料を含む装置には適用できず、温度による構成
物の歪の問題も発生する。また、入手性、価格の点で優
れたSUS304ないしSUS316ステンレス鋼は50
0 ℃前後で長時間加熱されると結晶粒界にクロム炭化物
が折出し粒界腐食を起こし易くなる現象が見られる。し
たがって、この問題を避けるためには、粒界腐食を起こ
しにくい鋼種に代える必要があり高価にならざるを得な
い。さらに、ある厚さ(7.5 nm)以上の非晶質酸化皮
膜を加熱により形成する方法(特開昭64-87760号公報)
があるが、この方法は、電解研磨に特有の非晶質構造を
利用したものであり、電解研磨に限定されることと、不
安定な結晶構造とその厚さの制御に問題がある。また、
酸化雰囲気の水分量を(露点-10 ℃以下)制限し、酸化
皮膜の厚さと組成を規定した方法(特開平1-198463号公
報)は、酸化温度を300 〜550 ℃の範囲で推奨してお
り、温度の高い点が問題である。
For example, there is a method in which electrolytically polished stainless steel is heated and oxidized at 280 ° C. to 580 ° C. in an atmosphere having an oxygen content of 25% by volume or more (JP-A-64-31956). It cannot be applied to a device that has a high oxidation temperature and contains a non-heat-resistant material such as a low-melting-point material and packing, and also causes a problem of distortion of components due to temperature. SUS304 or SUS316 stainless steel, which is excellent in availability and price, is 50
When the material is heated at about 0 ° C. for a long time, chromium carbides are protruded from the crystal grain boundaries, and a phenomenon is liable to be caused to cause intergranular corrosion. Therefore, in order to avoid this problem, it is necessary to use a steel type which is less likely to cause intergranular corrosion, and it is inevitably expensive. Further, a method of forming an amorphous oxide film having a thickness (7.5 nm) or more by heating (Japanese Patent Application Laid-Open No. 64-87760).
However, this method utilizes an amorphous structure peculiar to electropolishing, and is limited to electropolishing, and has problems in controlling an unstable crystal structure and its thickness. Also,
The method of limiting the moisture content of the oxidizing atmosphere (dew point -10 ° C or less) and defining the thickness and composition of the oxide film (Japanese Patent Laid-Open No. 1-198463) recommends that the oxidation temperature be in the range of 300 to 550 ° C. And the high temperature is a problem.

【0012】そこで、本発明は上述した技術的課題を解
決するためになされたもので、その目的はガス放出性、
イオン溶出性、平滑性、および清浄性のいずれにも優
れ、超高真空応用機器、超純水製造装置の構成部材とし
て用いられるステンレス鋼部材の表面処理方法を提供す
ることにある。
The present invention has been made to solve the above-mentioned technical problems, and its object is to provide a gas release,
An object of the present invention is to provide a surface treatment method for a stainless steel member which is excellent in ion elution property, smoothness, and cleanliness and is used as a component of an ultra-high vacuum applied device and an ultrapure water production device.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明のステンレス鋼部材の表面処理方法は、表面
粗度が1μm以下となるように研磨されたステンレス鋼
部材を、オゾンの含量が0.5 〜10容量%である乾燥酸
素雰囲気中において、150 〜300 ℃の温度で1時間を
超えて10時間までの時間範囲内で加熱酸化処理をする
ことにより、ステンレス鋼部材表面に酸化皮膜を形成す
る方法である。
Means for Solving the Problems To solve the above problems, a method for surface treating a stainless steel member of the present invention comprises the steps of: polishing a stainless steel member polished to a surface roughness of 1 μm or less; 1 hour at 150-300 ° C in a dry oxygen atmosphere of 0.5-10% by volume.
This is a method of forming an oxide film on the surface of a stainless steel member by performing a heat oxidation treatment within a time range of more than 10 hours .

【0014】[0014]

【作用】本発明の表面処理方法は、部材表面に付着した
不純物のオゾン酸化・除去作用を兼ね備えた処理法を採
用することにより、部材表面に低温で緻密な酸化皮膜を
形成するものである。
According to the surface treatment method of the present invention, a dense oxide film is formed on the surface of a member at a low temperature by employing a treatment method having an action of oxidizing and removing impurities adhering to the surface of the member.

【0015】一般に、超高真空装置では真空ポンプ油、
シール部材、取り扱いの不手際によって装置内面を汚す
ことがあり、汚れの主要成分である有機物・炭素の除去
なくしてはクリーンな真空が立ち上がらないという問題
があり、超純水装置においても汚れはTOCの増加、バ
クテリアなどの繁殖につながるので有機物の除去が不可
欠である。
Generally, in an ultra-high vacuum apparatus, a vacuum pump oil,
There is a problem that the inner surface of the device may be soiled due to inadequate handling of the sealing member and handling, and there is a problem that a clean vacuum cannot be established without removing organic substances and carbon which are the main components of the soil. Removal of organic matter is indispensable because it leads to increase and propagation of bacteria.

【0016】したがって、オゾンのもつ強力な酸化作用
と、その発生が小型な装置で可能となるすなわち使用現
場近くで製造供給できることと、酸素のみが原料で、使
用した後には酸素しか残らない無汚染性であるという特
徴がある。
Therefore, the strong oxidizing action of ozone, its generation is possible with a small apparatus, that is, it can be manufactured and supplied near the site of use, and there is no pollution in which only oxygen is a raw material and only oxygen remains after use. There is a characteristic that it is sex.

【0017】本発明の表面処理方法においては、まずス
テンレス鋼部材の表面粗度を研磨によりRmax:1μ
m以下とする。表面粗度がRmax:1μmを超える場
合は、比表面積が大きくなることと、表面が化学的に活
性であり傷の部分に不純物が補足されること、および形
成される酸化皮膜が緻密さに欠けたものとなるため、部
材内面のガス・表面元素が容易に溶出して良好な特性が
得られない。
In the surface treatment method of the present invention, first, the surface roughness of a stainless steel member is polished by Rmax: 1 μm.
m or less. When the surface roughness exceeds Rmax: 1 μm, the specific surface area is increased, the surface is chemically active and impurities are trapped in the flaws, and the formed oxide film lacks denseness. Therefore, gas and surface elements on the inner surface of the member are easily eluted, and good characteristics cannot be obtained.

【0018】そして、酸化皮膜の形成は、オゾン含有量
が0.5 〜10容量%の乾燥酸素雰囲気中で150 ℃〜300 ℃
の温度範囲で加熱処理を施すことにより行われる。後述
の実施例から明らかなように、オゾン含有量が0.5 容量
%未満の場合はオゾン濃度が十分でなく、良好な酸化皮
膜の形成が困難となり、また加熱温度が150 ℃未満の場
合は温度が低すぎて水分などの不純物の除去が遅く、良
好な酸化皮膜が形成されにくい。ところで、雰囲気中に
水分を含むと、表面に水分が残留するほかオゾンと反応
して腐食性を示すようになるため、乾燥酸素が必要とな
る。なお、乾燥空気の場合は酸素濃度が約20%しかな
く、オゾン発生装置を用いて標記の高濃度のオゾンを得
るには効率的でない。また、酸素中で低圧水銀ランプを
照射する方法は表面の有機性不純物の除去には効果があ
るが、オゾン濃度が低く金属を酸化するには濃度不足で
ある。10%を超える高濃度オゾンは市販のオゾン発生装
置では効率的ではない。また、加熱時間が1時間未満だ
とステンレス鋼の伝熱性から温度分布が均一でなく均質
な酸化皮膜ができないことと、酸化反応が遅く十分な厚
さの酸化皮膜が得られない。一方、加熱温度が300 ℃を
超える場合はオゾンが自己分解して、オゾンの酸化効果
が薄れ低温処理の特徴が無くなる。また、加熱処理にと
もない熱歪の影響が表れてくる。さらに、酸化時間が10
時間を超えると過剰酸化の恐れもあるが、主として作業
性に問題を生じてくる。
The formation of the oxide film is performed at 150 ° C. to 300 ° C. in a dry oxygen atmosphere having an ozone content of 0.5 to 10% by volume.
The heat treatment is performed in the above temperature range. As is clear from the examples described below, when the ozone content is less than 0.5% by volume, the ozone concentration is not sufficient, and it becomes difficult to form a good oxide film. When the heating temperature is less than 150 ° C., the temperature is reduced. It is too low to remove impurities such as moisture slowly, and it is difficult to form a good oxide film. By the way, when moisture is contained in the atmosphere, moisture remains on the surface and reacts with ozone to become corrosive, so that dry oxygen is required. In the case of dry air, the oxygen concentration is only about 20%, and it is not efficient to obtain the indicated high concentration of ozone using an ozone generator. The method of irradiating a low-pressure mercury lamp in oxygen is effective for removing organic impurities on the surface, but the ozone concentration is low and the concentration is insufficient for oxidizing metal. High ozone concentrations above 10% are not efficient with commercial ozone generators. If the heating time is less than 1 hour, the temperature distribution is not uniform due to the heat conductivity of the stainless steel, and a uniform oxide film cannot be formed, and the oxidation reaction is slow and a sufficiently thick oxide film cannot be obtained. On the other hand, when the heating temperature exceeds 300 ° C., ozone is self-decomposed, the oxidation effect of ozone is weakened, and the characteristics of low-temperature treatment are lost. In addition, the influence of thermal strain appears with the heat treatment. In addition, the oxidation time is 10
If the time is exceeded, excessive oxidation may occur, but mainly causes a problem in workability.

【0019】なお、本発明においては、上述した他の加
熱条件は特に限定されないが、ニッケル、クロムが濃化
した安定酸化皮膜を完全かつ良好に形成する条件が望ま
しい。
In the present invention, the other heating conditions described above are not particularly limited, but it is preferable that the heating conditions be such that a stable oxide film in which nickel and chromium are concentrated is formed completely and favorably.

【0020】以下、実施例について説明するが、本発明
は以下の実施例に限定されるものではなく、適宜変更す
ることができる。また、本発明に係るステンレス鋼は実
質的にFe、Cr、Ni成分からなるものを代表的に取
り上げて示しているが、その他Mo、Tiなどを含んだ
ステンレス鋼であってもよい。
Hereinafter, embodiments will be described. However, the present invention is not limited to the following embodiments, and can be appropriately modified. Further, the stainless steel according to the present invention substantially includes a Fe, Cr, and Ni component as a representative, and may be a stainless steel containing Mo, Ti, or the like.

【0021】[0021]

【実施例】管径20A、長さ2000mmのSUS316Lステ
ンレス鋼管(両端フランジ付き)内面に各種番手のバフ
研磨を行うとともに、さらに20%NaNO3 水溶液を用
いて電解電流密度を1A/cm2 の条件で、電解複合研磨
した結果、粗さが5〜0.1μm(Rmax)の部材表面が得ら
れた。次に、下記の[表1]の中欄に示す種々の条件の
下で加熱酸化処理を行った。加熱酸化処理にあたって
は、上下分割型マッフル炉内に試験鋼管を設置し、純度
99.9%以上の高純度酸素ボンベ(露点−40℃以下)か
ら、無声放電式オゾン発生装置(高周波沿面放電型オゾ
ナイザー)を用いて種々のオゾン含有量の雰囲気ガスを
それぞれ鋼管内に導入し、空気を完全に置換するととも
に酸化処理中、ガスの流量を1リットル/min の割合で
流した。これらの試料について次の試験を行った。 (a)溶出金属量測定試験 試料とした鋼管内部に比抵抗18MΩ・cm以上の超純水を
封入して管全体を90℃で9日間保持した後、管内の超純
水中に溶出した全金属量をフレームレス原子吸光光度計
(パーキンエルマー5100)によって求めた。試験結
果を[表1]の右欄に示す。なお、[表1]中、全金属
溶出量は、電解複合研磨の後、オゾン酸化処理を行わな
かった試料(No.20 )の溶出量を1とした場合の相対溶
出量を示している。
EXAMPLE A SUS316L stainless steel pipe (with a flange of both ends) having a pipe diameter of 20 A and a length of 2000 mm was subjected to buff polishing of various counts, and an electrolytic current density of 1 A / cm 2 using a 20% NaNO 3 aqueous solution. As a result of electrolytic combined polishing, a member surface having a roughness of 5 to 0.1 μm (Rmax) was obtained. Next, thermal oxidation treatment was performed under various conditions shown in the middle column of [Table 1] below. During the thermal oxidation treatment, test steel pipes were installed in a vertically split muffle furnace,
Atmospheric gases with various ozone contents were introduced into steel pipes from a high-purity oxygen cylinder of 99.9% or more (dew point -40 ° C or less) using a silent discharge ozone generator (high-frequency creeping discharge type ozonizer). Was completely replaced, and during the oxidation treatment, the gas flow rate was 1 l / min. The following tests were performed on these samples. (A) Test for measuring the amount of eluted metal Ultrapure water having a specific resistance of 18 MΩ · cm or more was sealed in a steel pipe as a sample, and the entire pipe was kept at 90 ° C. for 9 days. The amount of metal was determined by a flameless atomic absorption spectrophotometer (Perkin Elmer 5100). The test results are shown in the right column of [Table 1]. In Table 1, the total metal elution amount indicates the relative elution amount when the elution amount of the sample (No. 20) which was not subjected to the ozone oxidation treatment after the electrolytic combined polishing was set to 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[表1]の結果から明らかなように、本発
明で規定する用件を全て満足する試料No.1〜の全体
の金属溶出量はバフ研磨のままのもの(試料No.15 )
および電解複合研磨のままのもの(試料No.20 )に比
べて1/2以下となり、優れた耐溶出性を示しているこ
とが容易に分かる。
As is clear from the results in Table 1, the sample No. satisfying all the requirements specified in the present invention. Entire metal elution amount of from 1 to 9 shall remain buffing (Sample No.15)
And it is easily understood that it shows excellent elution resistance, which is 1 / or less as compared with that of the electrolytic composite polishing as it is (sample No. 20).

【0024】一方、比較例No.11 は加熱酸化処理条件が
本発明で規定する範囲内であるが、超純水中での耐溶出
性に優れるものの、加熱前の表面粗さが少し粗いので平
滑性に乏しく、相対的に表面積が大きいことにより本発
明例に比べ十分にその効果を発揮していない。
On the other hand, in Comparative Example No. 11, the heating oxidation treatment conditions were within the range specified in the present invention. However, although the elution resistance in ultrapure water was excellent, the surface roughness before heating was slightly rough. Due to poor smoothness and relatively large surface area, the effect is not sufficiently exhibited as compared with the examples of the present invention.

【0025】No12,17では加熱酸化処理温度が低いため
オゾンによる酸化が進まず、超純水中で耐食性を得るの
に十分な酸化皮膜の形成がされないので、加熱酸化処理
効果が見られなかった。
In Nos. 12 and 17, oxidation by ozone did not proceed because the temperature of the heat oxidation treatment was low, and an oxide film sufficient to obtain corrosion resistance in ultrapure water was not formed, so that no effect of the heat oxidation treatment was observed. .

【0026】No.13 ,18では温度が高いことで加熱酸化
処理効果が見られるが、オゾンの添加無しでも同様な効
果が得られるので、本発明の趣旨(低温酸化処理)から
外れるものである。
In Nos. 13 and 18, the effect of heat oxidation treatment can be seen due to the high temperature, but the same effect can be obtained even without the addition of ozone, which departs from the gist of the present invention (low temperature oxidation treatment). .

【0027】No.14 ,19では加熱酸化雰囲気中のオゾン
含有量が不足していたため、緻密な酸化皮膜の形成が不
十分で耐食性の改善効果が少ない。No.16 では加熱酸化
温度は十分であるが酸化処理時間が不足している。伝熱
性に劣るステンレス鋼の場合、局部的な温度むらによる
ものと思われる不均一な酸化皮膜が形成され、耐食性改
善効果が不十分であった。 (b)ガス放出比較試験 酸化処理を行ったテストピース(幅25mm 長さ50mm 板
厚2mm )を内容積3 リットルの超高真空ガス放出試験装
置に挿入し、装置全体を10-10 Torr以下に排気した後、
テストピース部分を昇温速度10℃/min で200 ℃までヒ
ーター加熱した。放出してくるガスの圧力を自動レンジ
超高真空計(MIG−920)で測定し、またガス成分
は4重極ガス質量分析計(AQA−100MPX)を用
いて測定した。試験結果を[表2]の右欄に示す。な
お、[表2]中、200 ℃におけるガス放出量は、電解複
合研磨の後、酸化処理を行わなかった試料(No.6)の放
出量を1とした場合の相対放出量を示す。また、加熱放
出ガスの大半は水分であった。
In Nos. 14 and 19, since the ozone content in the heating and oxidizing atmosphere was insufficient, the formation of a dense oxide film was insufficient and the effect of improving the corrosion resistance was small. In No.16, the heating oxidation temperature was sufficient, but the oxidation treatment time was insufficient. In the case of stainless steel having poor heat conductivity, a non-uniform oxide film, which is considered to be due to local temperature unevenness, was formed, and the effect of improving corrosion resistance was insufficient. (B) Gas emission comparison test Insert the oxidized test piece (width 25 mm, length 50 mm, plate thickness 2 mm) into an ultra-high vacuum gas emission test device with an internal volume of 3 liters, and reduce the entire device to 10 -10 Torr or less. After exhausting
The test piece was heated to 200 ° C. at a heating rate of 10 ° C./min. The pressure of the released gas was measured with an automatic range ultrahigh vacuum gauge (MIG-920), and the gas component was measured using a quadrupole gas mass spectrometer (AQA-100MPX). The test results are shown in the right column of [Table 2]. In Table 2, the amount of gas released at 200 ° C. indicates the relative release amount when the release amount of the sample (No. 6) which was not subjected to the oxidation treatment after electrolytic combined polishing was set to 1. Most of the heat release gas was water.

【0028】[0028]

【表2】 [Table 2]

【0029】(c)オージェ電子分光分析による管内表
面の元素分析 雰囲気酸素中にオゾン添加の有無による酸化処理効果を
研磨面のC、Ni、Cr、Fe、Oについて調査を行っ
た。電解複合研磨により表面粗さを0.1 μm(Rmax)とし
た試料の場合、5%のオゾンの添加により150 ℃からC
rの表面濃縮が観察され、不純物(炭素)も酸化除去さ
れた。一方、酸素だけの場合は250 ℃からCrのピーク
が表れ、炭素のピークは250 ℃でも残っていた。200 ℃
で2時間酸化した試料の深さ方向の元素分析結果を図1
に示す。なお、図1(a)はオゾン(O3 )を添加した
場合を示し、(b)は酸素だけの場合を示している。ま
た、図1における各グラフの横軸はスパッタリング時間
すなわち表面からの深さを示しており、また縦軸は相対
濃度を示している。最表面でCrの濃縮が見られる他、
オゾンを添加したものは、酸素だけのものよりも酸化膜
厚が厚くなるとともに膜中の酸素濃度が高く、緻密な酸
化皮膜が形成されているのがよく分かる。本発明のガス
放出性、イオン溶出性の低減効果はこの酸化皮膜の膜厚
と密度増加によるものと思われる。
(C) Elemental analysis of the inner surface of the tube by Auger electron spectroscopy The effect of the oxidizing treatment by the presence or absence of ozone in atmospheric oxygen was investigated for C, Ni, Cr, Fe and O on the polished surface. In the case of a sample whose surface roughness is 0.1 μm (Rmax) by electrolytic combined polishing, the temperature is reduced from 150 ° C.
Surface enrichment of r was observed, and impurities (carbon) were also oxidized and removed. On the other hand, in the case of oxygen alone, a peak of Cr appeared from 250 ° C., and a peak of carbon remained even at 250 ° C. 200 ° C
Fig. 1 shows the results of elemental analysis in the depth direction of the sample oxidized for 2 hours.
Shown in FIG. 1A shows a case where ozone (O 3 ) is added, and FIG. 1B shows a case where only oxygen is added. The horizontal axis of each graph in FIG. 1 indicates the sputtering time, that is, the depth from the surface, and the vertical axis indicates the relative concentration. In addition to the concentration of Cr on the outermost surface,
It can be clearly seen that the ozone-added one has a thicker oxide film and a higher oxygen concentration in the film than the oxygen-only one, and a dense oxide film is formed. It is considered that the effect of reducing gas release and ion elution of the present invention is due to the increase in the thickness and density of the oxide film.

【0030】[0030]

【発明の効果】本発明のステンレス鋼部材の表面処理方
法によると、表面粗度が1μm 以下となるように研磨す
るとともに、その酸化被膜を形成する際に、オゾンを含
む乾燥酸素雰囲気中で行うようにしているので、オゾン
の持つ不純物の酸化・除去作用と相まって、その表面に
形成される酸化被膜が緻密なものになり、部材表面から
の不純物の溶出量を非常に少なくすることができる。
According to the surface treatment method for a stainless steel member of the present invention, the surface is polished so as to have a surface roughness of 1 μm or less, and the oxide film is formed in a dry oxygen atmosphere containing ozone. In this manner, the oxide film formed on the surface of the member becomes dense, and the elution amount of the impurity from the surface of the member can be extremely reduced, in combination with the action of oxidizing and removing impurities contained in ozone.

【0031】したがって、この方法により表面処理が施
されたステンレス鋼部材を使用することにより、ガス放
出量・イオン溶出量を大きく低減できるので、超高真空
機器、高純度ガス配管はもとより、電子機器製造、バイ
オ・医薬品原料製造、フロン代替洗浄などの超純水製造
装置に対し大きく貢献することが期待される。
Therefore, by using a stainless steel member which has been subjected to surface treatment by this method, the amount of outgassing and the amount of ion elution can be greatly reduced, so that not only ultra-high vacuum equipment and high-purity gas piping but also electronic equipment It is expected to make a significant contribution to ultrapure water production equipment such as production, bio / pharmaceutical raw material production, and chlorofluorocarbon alternative cleaning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料表面を酸化処理した際の深さ方向における
元素分析結果を示すグラフである。
FIG. 1 is a graph showing the results of elemental analysis in the depth direction when a sample surface is oxidized.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−274254(JP,A) 特開 昭64−31956(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 8/14,8/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-274254 (JP, A) JP-A-64-31956 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 8 / 14,8 / 02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面粗度が1μm以下となるように研磨さ
れたステンレス鋼部材を、オゾンの含有量が0.5 〜10
容量%である乾燥酸素雰囲気中において、150 〜300
℃の温度で1時間を超えて10時間までの時間範囲内で
加熱酸化処理をすることにより、ステンレス鋼部材表面
に酸化皮膜を形成することを特徴とするステンレス鋼部
材の表面処理方法。
1. A stainless steel member polished so as to have a surface roughness of 1 μm or less has an ozone content of 0.5 to 10 μm.
150 to 300% in a dry oxygen atmosphere at volume%
A surface treatment of a stainless steel member characterized by forming an oxide film on the surface of the stainless steel member by performing a heating oxidation treatment at a temperature of more than 1 hour to 10 hours at a temperature of ℃. Method.
JP9128492A 1992-04-13 1992-04-13 Surface treatment method for stainless steel members Expired - Fee Related JP2918385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128492A JP2918385B2 (en) 1992-04-13 1992-04-13 Surface treatment method for stainless steel members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128492A JP2918385B2 (en) 1992-04-13 1992-04-13 Surface treatment method for stainless steel members

Publications (2)

Publication Number Publication Date
JPH05287496A JPH05287496A (en) 1993-11-02
JP2918385B2 true JP2918385B2 (en) 1999-07-12

Family

ID=14022167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128492A Expired - Fee Related JP2918385B2 (en) 1992-04-13 1992-04-13 Surface treatment method for stainless steel members

Country Status (1)

Country Link
JP (1) JP2918385B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987754B2 (en) * 1996-01-17 1999-12-06 岩谷産業株式会社 Passivation treatment method for high purity gas in piping
JP4505097B2 (en) * 2000-02-25 2010-07-14 岩谷産業株式会社 Metal surface passivation treatment method
WO2004041477A1 (en) * 2002-11-06 2004-05-21 Nomura Plating Co., Ltd. Surface treatment method for vacuum member
JP4766516B2 (en) * 2006-03-17 2011-09-07 岡山県 Method for hydrophilizing microchannels
JP2009265027A (en) * 2008-04-28 2009-11-12 Kowa Co Endotoxin measuring stainless steel instrument
WO2009148141A1 (en) 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass
JP5629443B2 (en) * 2009-09-04 2014-11-19 住友精密工業株式会社 Manufacturing method of ozone gas generator
JP2013013599A (en) * 2011-07-05 2013-01-24 Olympus Corp Medical component and method for manufacturing the same, and medical instrument
CN103695837B (en) * 2013-11-29 2015-09-30 莱芜钢铁集团有限公司 A kind of building iron surface rust prevention method

Also Published As

Publication number Publication date
JPH05287496A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
EP0428733B1 (en) Device for forming tungsten film
US5009963A (en) Metal material with film passivated by fluorination and apparatus composed of the metal material
Ohmi et al. Formation of chromium oxide on 316L austenitic stainless steel
JP2918385B2 (en) Surface treatment method for stainless steel members
WO1990001569A1 (en) Metal oxidation apparatus and method
US5259935A (en) Stainless steel surface passivation treatment
JP2517727B2 (en) Method for manufacturing stainless steel member for semiconductor manufacturing equipment
JP3218802B2 (en) Surface treatment of stainless steel for semiconductor manufacturing equipment
JPH04183846A (en) Stainless steel material for high purity gas and its production
JP3286697B2 (en) Method and process apparatus for forming an oxide passivation film on a weld
JP2976333B2 (en) Stainless steel, its manufacturing method and pressure reducing device
WO1995018240A1 (en) Austenitic stainless steel, piping system and fluid-contacting parts
JPH02263972A (en) Fluorine passive film-formed metallic material and device using the same
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
JP2720716B2 (en) Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same
JPH01198463A (en) Stainless steel member for semiconductor-manufacturing equipment and its production
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JPH0533116A (en) Surface treatment of stainless steel member
JPH0633216A (en) Austenitic stainless steel for high purity gas excellent in corrosion resistance and its manufacture
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JPH0533117A (en) Surface treatment for stainless steel member
JPH04333570A (en) Method for cleaning silicon nitiride with gaseous hf
JPH0762219B2 (en) Ultra-high vacuum stainless steel
JPH10212564A (en) Stainless steel having oxidized passive coating and its formation
JPH0559524A (en) Stainless steel member for ultrahigh vacuum equipment and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees