JP2737551B2 - Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance - Google Patents
Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistanceInfo
- Publication number
- JP2737551B2 JP2737551B2 JP4186940A JP18694092A JP2737551B2 JP 2737551 B2 JP2737551 B2 JP 2737551B2 JP 4186940 A JP4186940 A JP 4186940A JP 18694092 A JP18694092 A JP 18694092A JP 2737551 B2 JP2737551 B2 JP 2737551B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- less
- austenitic stainless
- gas
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体製造プロセスな
どで使用される高純度ガス用高耐食性ステンレス鋼材の
製造方法に関する。 The present invention relates to a semiconductor manufacturing process.
For high purity gas used in high corrosion resistant stainless steel
It relates to a manufacturing method.
【0002】[0002]
【従来の技術】半導体製造分野においては、近年高集積
化が進み、超LSIと称されるディバイスを製造する際
には、1μm以下の微細パターンの加工が必要とされて
いる。このような超LSI製造プロセスでは、微小な塵
や微量不純物ガスが配線パターンに付着、吸着され回路
不良の原因となるため、使用する反応ガス及びキャリア
ーガスは共に高純度であること、すなわち、ガス中の微
粒子及び不純物ガスの含有量が少ないことが必要とされ
る。従って、その製造装置に用いられる高純度ガス用配
管及び部材においては、ガスと接触する部材の内面から
不純物として放出される微粒子(パーティクル)および
ガスが極力少ないことが要求される。また、半導体製造
用ガスとしては窒素、アルゴン等の不活性ガス以外に、
塩素、クロロシラン類といった腐食性のガスも使用され
るので、これらの腐食性ガスに接する部材では当然、高
い耐食性も必要となる。2. Description of the Related Art In the field of semiconductor manufacturing, in recent years, high integration has progressed, and when manufacturing a device called a super LSI, processing of a fine pattern of 1 μm or less is required. In such an VLSI manufacturing process, since fine dust and trace impurity gas adhere to and be adsorbed on the wiring pattern and cause a circuit failure, both the reaction gas and the carrier gas used must be of high purity, It is necessary that the contents of the fine particles and the impurity gas in them are small. Accordingly, in the high-purity gas piping and members used in the manufacturing apparatus, it is required that the amount of fine particles (particles) and gas released as impurities from the inner surface of the member in contact with the gas is as small as possible. In addition, as a semiconductor manufacturing gas, in addition to an inert gas such as nitrogen and argon,
Since corrosive gases such as chlorine and chlorosilanes are also used, members that come into contact with these corrosive gases naturally need to have high corrosion resistance.
【0003】従来、このような半導体製造用ガス配管及
び部材には、オーステナイト系ステンレス鋼、代表的に
はSUS 316L鋼が使用されている。これらのステンレ
ス鋼部材は、塵や水分などの付着および吸着を低減する
ため、その表面粗さはRmaxで1μm以下となるまで平
滑化されている。このような表面平滑化の方法として、
冷間抽伸、機械研磨、電解研磨等があげられる。表面を
平滑化されたステンレス鋼部材にはその後、高純度水に
よる洗浄、高純度ガスによる乾燥などが施されて製品と
なる。Conventionally, austenitic stainless steel, typically SUS 316L steel, has been used for such gas pipes and members for semiconductor production. These stainless steel members are smoothed until the surface roughness Rmax becomes 1 μm or less in order to reduce adhesion and adsorption of dust and moisture. As a method of such surface smoothing,
Examples include cold drawing, mechanical polishing, and electrolytic polishing. The stainless steel member whose surface has been smoothed is then subjected to washing with high-purity water, drying with high-purity gas, and the like to obtain a product.
【0004】特開平1-198463 号公報には実施例とし
て、予め電解研磨処理により表面を平滑化した管内面
に、外層がFe主体、内層が30原子%以上のCrを含有し、
厚さが100 〜500 Åの酸化被膜を有する半導体製造装置
用ステンレス鋼部材および露点温度が−10℃以下の酸化
性ガス雰囲気中で加熱することによる同ステンレス鋼部
材の製造方法が示されている。Japanese Patent Application Laid-Open No. 1-198463 discloses, as an example, an outer layer containing mainly Fe and an inner layer containing 30 atomic% or more of Cr on the inner surface of a tube whose surface has been previously smoothed by electrolytic polishing.
A stainless steel member for a semiconductor manufacturing apparatus having an oxide film having a thickness of 100 to 500 mm and a method for manufacturing the stainless steel member by heating in an oxidizing gas atmosphere having a dew point temperature of -10 ° C or less are disclosed. .
【0005】特開昭63-161145 号公報には、クリーンル
ーム用鋼管として、Mn、Si、Al、Oなどの含有量を規制
することにより非金属介在物を低減し、前述のような管
内面からのパーティクル発生を低減しようとする規格鋼
以外の高清浄度オーステナイトステンレス鋼が開示され
ている。Japanese Patent Application Laid-Open No. 63-161145 discloses a steel pipe for a clean room in which non-metallic inclusions are reduced by regulating the contents of Mn, Si, Al, O, etc. Austenitic stainless steels having high cleanliness other than the standard steels which are intended to reduce the generation of particles are disclosed.
【0006】[0006]
【発明が解決しようとする課題】研磨後に純水による洗
浄、乾燥を行う場合、常温乾燥では鋼材表面の水分の除
去を完全に行うことは困難である。また、かりに100 か
ら300 ℃程度の高温ベーキングによって水分を除去した
場合でも、乾燥後には再び空気中の微量の水分が吸着
し、脱離し難い。このようなステンレス鋼材を高純度ガ
ス用配管および部材として使用した場合には、半導体製
造プラントにおいて操業前の配管系パージに長時間を要
することを意味し、実操業上大きな問題となる。When cleaning and drying with pure water are performed after polishing, it is difficult to completely remove moisture from the surface of the steel material by normal temperature drying. Even when moisture is removed by baking at a high temperature of about 100 to 300 ° C., a small amount of moisture in the air is adsorbed again after drying, and is hardly desorbed. When such a stainless steel material is used as a high-purity gas piping and member, it means that it takes a long time to purge the piping system before operation in a semiconductor manufacturing plant, which is a serious problem in actual operation.
【0007】このような表面吸着による好ましくない水
分の脱離放出現象は、ステンレス鋼を清浄化し介在物を
減少させると鋼材表面の粗さがミクロ的に軽減されるの
で、ある程度は改善されるものの、鋼そのものの高清浄
度化のみでは不十分である。[0007] Such undesirable desorption and release of water due to surface adsorption can be improved to some extent because the surface roughness of the steel material is microscopically reduced by cleaning stainless steel and reducing inclusions. However, simply increasing the cleanliness of the steel itself is not sufficient.
【0008】腐食性ガスの貯蔵容器、配管などで必要と
なる耐食性に関しては、電解研磨のままあるいは更に厚
さ 100〜500 Åの酸化被膜を付与する処理を施したステ
ンレス鋼でも、その酸化被膜の性状が適切なものでなけ
れば、腐食性ガスに対する耐食性に乏しく発錆が起こ
る。このため、錆の微粒子による高純度ガスの汚染は避
け難い。[0008] Regarding the corrosion resistance required for corrosive gas storage containers and pipes, even for stainless steel that has been subjected to electrolytic polishing or a process of providing an oxide film having a thickness of 100 to 500 mm, the oxide film of If the properties are not appropriate, corrosion resistance to corrosive gases is poor and rusting occurs. Therefore, contamination of high-purity gas by rust fine particles is inevitable.
【0009】本発明の目的は、鋼材表面に雰囲気中水分
が吸着し難く、また吸着した場合にもその後の脱離が容
易で、しかも腐食性ガスによっても発錆のない、耐食性
に優れた高純度ガス用ステンレス鋼材の製造方法を提供
することにある。It is an object of the present invention to provide a steel material having a moisture content in an atmosphere.
Is difficult to adsorb, and if adsorbed, subsequent desorption is difficult.
Corrosion resistant, easy and no rust even by corrosive gas
An object of the present invention is to provide a method for producing a stainless steel material for a high-purity gas which is excellent in quality .
【0010】[0010]
【課題を解決するための手段】本発明においてオーステ
ナイト系ステンレス鋼材とは、Crを15〜30%の範囲で含
有するFe基及びNi基合金を総称する。その代表的な例が
SUS 316Lである。そして、酸化被膜を付与する加熱
処理前に、その鋼材表面の最大粗さ(Rmax )が1μm
以下となるように、例えば電解研磨などにより、予め表
面研磨されているものが対象である。Means for Solving the Problems In the present invention, the austenitic stainless steel material is a general term for Fe-based and Ni-based alloys containing Cr in the range of 15 to 30%. A typical example is SUS 316L. Before the heat treatment for providing the oxide film, the maximum roughness (Rmax) of the steel material surface is 1 μm.
As described below, an object whose surface is polished in advance by, for example, electrolytic polishing or the like is a target.
【0011】研磨、洗浄後のステンレス鋼材表面の残留
水分除去は、約 200℃以上に加熱処理するいわゆるベー
キングによって容易に実現される。さらに、本発明者ら
は、上記残留水分除去を施した鋼材を種々の雰囲気およ
び温度で熱処理した後、鋼材表面の水分の吸着、脱離挙
動および腐食性ガスに対する耐食性を調査した。その結
果、TiおよびAlについて特定の化学組成を有するオース
テナイト系ステンレス鋼材に対して、極低酸素分圧の不
活性ガスあるいは真空中で750℃以上900℃未満の温度で
加熱することにより、最外層部のCrの含有率が高い酸化
被膜を付与すれば、ステンレス鋼材表面が水分吸着に対
して不活性化し、さらに優れた耐食性も発現するという
知見を得た。The removal of residual moisture from the surface of the stainless steel material after polishing and washing can be easily realized by so-called baking in which heat treatment is performed at about 200 ° C. or more. Furthermore, after heat-treating the steel material from which the residual moisture was removed in various atmospheres and temperatures, the present inventors investigated the adsorption and desorption behavior of water on the steel material surface and the corrosion resistance to corrosive gas. As a result, the outermost layer of austenitic stainless steel with a specific chemical composition of Ti and Al is heated at a temperature of 750 ° C or more and less than 900 ° C in an inert gas with extremely low oxygen partial pressure or vacuum. It has been found that when an oxide film having a high Cr content in the part is provided, the surface of the stainless steel material is inactivated against moisture adsorption, and further excellent corrosion resistance is exhibited.
【0012】本発明の要旨は次の鋼材の製造方法にあ
る。The gist of the present invention resides in the following method for producing a steel material .
【0013】(1) 平滑化処理した表面に最外層部のCr含
有率が60原子%以上である厚さ 100Åを超え1000Å以下
の酸化被膜を有するオーステナイト系ステンレス鋼材の
製造方法であって、TiおよびAlの合計含有量が0.02重量
%未満のオーステナイト系ステンレス鋼材を、予め表面
の最大粗さが1μm以下となるように処理した後、酸素
分圧が10 -5 Pa以下の不活性ガスあるいは真空雰囲気中で
750℃以上900℃未満の温度で加熱処理することを特徴と
する高純度ガス用オーステナイト系ステンレス鋼材の製
造方法。 (1) The outermost layer contains Cr on the smoothed surface.
Thickness with prevalence of more than 60 atom% More than 100 mm and less than 1000 mm
Of austenitic stainless steel with oxide film
The production method, wherein the total content of Ti and Al is 0.02 weight
% Of austenitic stainless steel
After processing so that the maximum roughness is 1 μm or less, oxygen
In an inert gas with a partial pressure of 10 -5 Pa or less or in a vacuum atmosphere
Heat treatment at temperatures between 750 ° C and 900 ° C
Of austenitic stainless steel for high purity gas
Construction method.
【0014】[0014]
【発明の実施の形態】本発明における鋼材の化学組成、
酸化被膜の性状および製造条件の限定理由を説明する。BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of a steel material according to the present invention,
The reasons for limiting the properties of the oxide film and the manufacturing conditions will be described.
【0015】TiおよびAl: TiおよびAlは、その合計含有量を0.02重量%未満とす
る。これは、TiおよびAlが、鋼の主要成分であるCrに比
較して酸化物を生成しやすく、本発明のように低酸素分
圧下で熱処理を行う場合には、Ti+Alで0.02重量%以上
含有するとTiおよびAlが優先的に酸化され、本発明が目
的とする最外層部のCr含有率が60原子%以上の酸化被膜
が生成されないからである。Ti and Al: The total content of Ti and Al is less than 0.02% by weight. This is because Ti and Al are more likely to form oxides than Cr, which is the main component of steel. When heat treatment is performed under a low oxygen partial pressure as in the present invention, the content of Ti + Al is 0.02% by weight or more. This is because Ti and Al are preferentially oxidized, and an oxide film having a Cr content of 60 atomic% or more in the outermost layer intended by the present invention is not formed.
【0016】酸化被膜厚さおよびCr含有率: ステンレス鋼材表面の酸化被膜の厚さに関しては、 100
Å以下では耐食性が改善されず、一方、1000Åを超える
と水分脱離特性が劣化する。これは、100Å 以下では酸
化被膜が均一に鋼材表面を覆えず欠陥が生じるため、こ
の欠陥部から腐食を発生するからである。また、1000Å
を超えると酸化被膜のミクロ的表面積が増加するため、
水分の吸着が生じやすくなるからである。Oxide film thickness and Cr content: Regarding the thickness of the oxide film on the surface of stainless steel, 100
If it is less than Å, the corrosion resistance is not improved, while if it exceeds 1000 Å, the moisture desorption characteristics deteriorate. This is because when the thickness is less than 100 mm, the oxide film cannot uniformly cover the surface of the steel material, and a defect is generated. Also, 1000Å
Exceeding increases the microscopic surface area of the oxide film,
This is because moisture is likely to be adsorbed.
【0017】酸化被膜の最外層部のCr含有率が60原子%
未満では、耐食性、水分脱離特性がともに向上しない。The Cr content of the outermost layer of the oxide film is 60 atomic%.
If it is less than 1, both the corrosion resistance and the moisture desorption characteristics are not improved.
【0018】加熱処理条件: 酸化被膜を付与するための加熱処理雰囲気を、酸素分圧
10-5Pa以下の不活性ガスあるいは真空中とする理由は、
酸素分圧が10-5Paを超える雰囲気では酸化被膜中のFe含
有率が増加し、Cr主体の被膜が得られず、水分脱離特
性、耐食性がともに低下するからである。Heat treatment conditions: The heat treatment atmosphere for forming the oxide film is set to an oxygen partial pressure.
The reason for using an inert gas of 10 -5 Pa or less or in a vacuum is as follows.
This is because in an atmosphere where the oxygen partial pressure exceeds 10 -5 Pa, the Fe content in the oxide film increases, a Cr-based film cannot be obtained, and both the moisture desorption characteristics and the corrosion resistance decrease.
【0019】加熱温度が 750℃より低いと、酸化被膜が
所定の膜厚まで成長しないため、上記の特性が改善され
ない。一方、900℃以上になると、750℃未満の場合と同
様に所定の膜厚が得られない。加熱温度は、好ましくは
800℃以上900℃未満である。If the heating temperature is lower than 750 ° C., the oxide film does not grow to a predetermined thickness, so that the above characteristics are not improved. On the other hand, when the temperature exceeds 900 ° C., a predetermined film thickness cannot be obtained as in the case where the temperature is lower than 750 ° C. The heating temperature is preferably
800 ° C or higher and lower than 900 ° C.
【0020】[0020]
【実施例】表1に示す化学組成を有する外径6.4mm 、肉
厚1mm、長さ4mのSUS316 L鋼のシームレス鋼管の
内面を、電解研磨によってRmax が 0.5μmになるよう
に平滑化し、高純度水によって洗浄後、99.999%Arガス
を通じながら 200℃に加熱して乾燥した。EXAMPLE The inner surface of a SUS316L steel seamless steel pipe having an outer diameter of 6.4 mm, a wall thickness of 1 mm and a length of 4 m having the chemical composition shown in Table 1 was smoothed by electrolytic polishing so that Rmax became 0.5 μm. After washing with pure water, it was dried by heating to 200 ° C. while passing 99.999% Ar gas.
【0021】これらの鋼管を表2に示す種々の条件で加
熱処理して酸化被膜を付与後、鋼管中央部から切り出し
たサンプルを用いて2次イオン質量分析器により、鋼管
内表面から断面深さ方向の元素分析を行い、Cr含有率及
び被膜厚さを測定した。図1は、表2に示す試験No.6の
サンプルの内表面の外層部の元素分析の例を示す図であ
る。図1では全金属元素検出量を 100%として、それぞ
れの金属元素の濃度を縦軸に、純鉄のスパッタ強度から
換算した深さを横軸にして、各金属元素の含有率の深さ
方向分布を示してある。なお、本例では最外層部のCr含
有率は71原子%、最高Cr含有率は74原子%で、被膜厚さ
は 220Åであった。After subjecting these steel pipes to heat treatment under various conditions shown in Table 2 to give an oxide film, a secondary ion mass spectrometer was used to measure the cross-sectional depth from the inner surface of the steel pipe using a sample cut from the center of the steel pipe. Elemental analysis was performed in the directions to measure the Cr content and the coating thickness. FIG. 1 is a diagram showing an example of elemental analysis of the outer layer on the inner surface of the sample of Test No. 6 shown in Table 2. In FIG. 1, the detected amount of all metal elements is 100%, the concentration of each metal element is on the vertical axis, the depth converted from the sputter strength of pure iron is on the horizontal axis, and the content of each metal element is in the depth direction. The distribution is shown. In this example, the outermost layer had a Cr content of 71 at%, a maximum Cr content of 74 at%, and a coating thickness of 220 mm.
【0022】残ったサンプルのうちの長さ2mを用い
て、20℃、相対湿度52%の雰囲気中に48時間放置した
後、管内に乾燥したArガスを2リットル/minで流し、管
出側ガス中の水分量を質量分析計で分析した。評価は水
分量が50ppb 以下となるのに要する時間(表2に示すH2
O 脱離時間)によった。After leaving the remaining sample for 2 hours in an atmosphere of 20 ° C. and a relative humidity of 52% using a 2 m length of the remaining sample, a dry Ar gas was flowed into the tube at a flow rate of 2 liter / min. The amount of water in the gas was analyzed with a mass spectrometer. The evaluation was based on the time required for the water content to become 50 ppb or less (H 2 shown in Table 2).
O desorption time).
【0023】耐食性試験は、残ったサンプルのうちの長
さ1mの供試管内に99.9%塩素ガスを 0.5MPaの圧力で
封入し、液体窒素で一旦冷却後、大気開放して5日間放
置後縦割りし、管内面の発錆状況を目視観察する方法で
実施した。In the corrosion resistance test, 99.9% chlorine gas was sealed in a test tube having a length of 1 m among the remaining samples at a pressure of 0.5 MPa, cooled once with liquid nitrogen, opened to the atmosphere, left standing for 5 days, and then left vertically. The test was performed by cracking and visually observing the rusting condition on the inner surface of the pipe.
【0024】これらの試験結果を併せて表2に示す。耐
食性試験結果の白丸は、腐食による発錆がないことを、
黒丸は腐食による発錆が生じたことを、それぞれ示す。Table 2 also shows the results of these tests. The white circle in the corrosion resistance test result indicates that there is no rust due to corrosion.
Black circles indicate that rust was generated due to corrosion.
【0025】表2からわかるように、本発明で定める範
囲内の化学組成および加熱処理条件のステンレス鋼管で
は、Ar通気後の水分脱離が速い。さらに、塩素ガスに対
する耐食性も良好である。本発明例では、TiおよびAlの
含有量が考慮された適切な鋼材とその製造方法により、
酸化被膜の厚さが100超〜500Åの範囲の例のように、比
較的薄くても、表面最外層部のCr含有率が高いので、優
れた特性を有していることがわかる。As can be seen from Table 2, in a stainless steel tube having a chemical composition and a heat treatment condition within the ranges specified in the present invention, moisture desorption after Ar ventilation is fast. Furthermore, corrosion resistance to chlorine gas is also good. In the present invention example, by a suitable steel material and its manufacturing method in which the content of Ti and Al is considered,
It can be seen that even if the oxide film has a relatively small thickness, such as the case where the thickness of the oxide film is more than 100 to 500 mm, since the Cr content of the outermost layer on the surface is high, it has excellent characteristics.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】本発明によれば、鋼材表面に雰囲気中水
分が吸着し難く、また表面からの水分脱離が速く、しか
も腐食性ガスに対しても良好な耐食性を有する高純度ガ
ス用オーステナイト系ステンレス鋼材が得られる。According to the present invention, austenitic gas for high-purity gas, in which moisture in the atmosphere is hardly adsorbed on the surface of the steel material, moisture is quickly desorbed from the surface, and has good corrosion resistance to corrosive gases. Series stainless steel material is obtained.
【図1】本発明による鋼材表面の最外層部における深さ
方向の元素の濃度分布の一例を示す図である。FIG. 1 is a diagram showing an example of a concentration distribution of elements in a depth direction in an outermost layer portion of a steel material surface according to the present invention.
Claims (1)
が60原子%以上である厚さ 100Åを超え1000Å以下の酸
化被膜を有するオーステナイト系ステンレス鋼材の製造
方法であって、TiおよびAlの合計含有量が0.02重量%未
満のオーステナイト系ステンレス鋼材を、予め表面の最
大粗さが1μm以下となるように処理した後、酸素分圧
が10 -5 Pa以下の不活性ガスあるいは真空雰囲気中で750
℃以上900℃未満の温度で加熱処理することを特徴とす
る高純度ガス用オーステナイト系ステンレス鋼材の製造
方法。 1. The Cr content of the outermost layer on the smoothed surface
Not less than 60 atom% and acid thickness not less than 100 mm and not more than 1000 mm
Of Austenitic Stainless Steel with Activated Coating
The total content of Ti and Al is less than 0.02% by weight.
Fill austenitic stainless steel material
After processing so that the roughness is 1 μm or less, oxygen partial pressure
Is 750 in inert gas or vacuum atmosphere of 10 -5 Pa or less.
Heat treatment at a temperature between ℃ and 900 ℃
Of austenitic stainless steel for high purity gas
Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4186940A JP2737551B2 (en) | 1992-07-14 | 1992-07-14 | Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4186940A JP2737551B2 (en) | 1992-07-14 | 1992-07-14 | Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0633216A JPH0633216A (en) | 1994-02-08 |
JP2737551B2 true JP2737551B2 (en) | 1998-04-08 |
Family
ID=16197388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4186940A Expired - Fee Related JP2737551B2 (en) | 1992-07-14 | 1992-07-14 | Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737551B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252631A (en) * | 1994-03-16 | 1995-10-03 | Tadahiro Omi | Austenitic stainless steel for forming passive film and formation of passive film |
KR20010110492A (en) * | 2000-06-05 | 2001-12-13 | 이구택 | A method for surface treatment of stainless steel for electronic members |
CN113699480A (en) * | 2021-08-23 | 2021-11-26 | 华能国际电力股份有限公司 | Method and device for simultaneously improving corrosion resistance of inner wall and outer wall of power station boiler tube |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE407081B (en) * | 1977-07-27 | 1979-03-12 | Hultquist Gunnar B | METHODS TO PROVIDE SURFACES WITH IMPROVED CORROSION PROPERTIES FOR FORMAL OF IRON CHROME OILS |
JP2541011B2 (en) * | 1990-11-16 | 1996-10-09 | 住友金属工業株式会社 | High purity gas stainless steel material and method for producing the same |
-
1992
- 1992-07-14 JP JP4186940A patent/JP2737551B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0633216A (en) | 1994-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5942184A (en) | Stainless steel for high-purity gases | |
US5259935A (en) | Stainless steel surface passivation treatment | |
JP3433452B2 (en) | Internal oxidation treatment method for ferritic stainless steel pipe | |
JP2517727B2 (en) | Method for manufacturing stainless steel member for semiconductor manufacturing equipment | |
EP0512782B1 (en) | Stainless steel surface passivation treatment | |
JP2541011B2 (en) | High purity gas stainless steel material and method for producing the same | |
JP2737551B2 (en) | Manufacturing method of austenitic stainless steel for high purity gas with excellent corrosion resistance | |
JP3218802B2 (en) | Surface treatment of stainless steel for semiconductor manufacturing equipment | |
JP2720716B2 (en) | Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same | |
JP2007520631A (en) | Alloy surface that forms stable carbides resistant to metal dusting | |
JP3596234B2 (en) | Ozone-containing stainless steel for water and method for producing the same | |
JP2783128B2 (en) | Stainless steel member for clean room and method of manufacturing the same | |
González Carrasco et al. | The role of microstructure on oxidation of Ni-Cr-Al base alloys at 1023 and 1123 K in air | |
JP2952949B2 (en) | Ferritic stainless steel pipe for high purity gas | |
JP3902254B2 (en) | Method for dry corrosion resistance heat treatment of stainless steel and stainless steel | |
JPH0860307A (en) | Stainless steel tube for high purity gas | |
JP2932966B2 (en) | Ferritic stainless steel for high purity gas | |
JPH10280123A (en) | Stainless steel member for ozone-containing ultrapure water and its production | |
JP3499418B2 (en) | Stainless steel having oxidation passivation film and method for forming the same | |
JP3119165B2 (en) | Manufacturing method of stainless steel for high purity gas | |
JP2004083965A (en) | Method for producing austenitic stainless steel pipe and austenitic stainless steel pipe | |
JPH07126828A (en) | Production of high corrosion resistant austenitic stainless steel member for semiconductor producing device | |
JPH093655A (en) | Production of stainless steel member excellent in corrosion resistance | |
Tomari et al. | The effect of dry passivation treatments on the corrosion resistance, moisture release and structure of the surface oxide film on electropolished stainless steel | |
JP2001140044A (en) | Low dust generation and high corrosion resistant stainless steel pipe for piping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |