JP2004083965A - Method for producing austenitic stainless steel pipe and austenitic stainless steel pipe - Google Patents

Method for producing austenitic stainless steel pipe and austenitic stainless steel pipe Download PDF

Info

Publication number
JP2004083965A
JP2004083965A JP2002244531A JP2002244531A JP2004083965A JP 2004083965 A JP2004083965 A JP 2004083965A JP 2002244531 A JP2002244531 A JP 2002244531A JP 2002244531 A JP2002244531 A JP 2002244531A JP 2004083965 A JP2004083965 A JP 2004083965A
Authority
JP
Japan
Prior art keywords
steel pipe
stainless steel
austenitic stainless
concentration
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002244531A
Other languages
Japanese (ja)
Other versions
JP4100093B2 (en
Inventor
Toshiyuki Nakai
中井 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002244531A priority Critical patent/JP4100093B2/en
Publication of JP2004083965A publication Critical patent/JP2004083965A/en
Application granted granted Critical
Publication of JP4100093B2 publication Critical patent/JP4100093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an austenitic stainless steel pipe with which an oxidizing passive film showing good corrosion resistance when used to a heat-exchange pipe in which water, steam or mixture thereof is a main fluid, can be formed only with a finish solid-solution heat treatment, and to provide this steel pipe. <P>SOLUTION: In the method for producing the austenitic stainless steel pipe, the finish solid-solution heat treatment is performed under hydrogen atmosphere controlling the dew point in the range of -25°C to 0°C, or under mixed gas atmosphere having ≥ 50 vol% hydrogen gas and the balance inert gas. In the inner surface of the austenitic stainless steel pipe obtained with this method, the oxidizing passive film having 2 - 10 mm thickness and ≥ 0.01 ratio (Cr/Fe) of Cr concentration (at%) and Fe concentration (at%) at the most surface part is present. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、オーステナイト系ステンレス鋼管の製造方法に関し、より詳しくは固溶化熱処理と同時に、鋼が本来具備する不動態皮膜以上に良好な耐食性を発揮する酸化不動態皮膜を鋼表面に形成させ得るようにしたオーステナイト系ステンレス鋼管の製造方法とこの方法により製造された鋼管で、水または水蒸気、あるいはこれらの混合物を主要な流体とする熱交換に使用して好適なオーステナイト系ステンレス鋼管に関する。
【0002】
【従来の技術】
オーステナイト系ステンレス鋼は耐食性に優れれることから様々な用途に使用されている。例えば、オーステナイト系ステンレス鋼からなる鋼管は、ボイラや熱交換器等の伝熱管や化学プラントの配管、半導体製造装置のクリーンガス配管等に多く用いられている。これらの用途に使用されるオーステナイト系ステンレス鋼管には、オーステナイト系ステンレス鋼が本来具備する以上の高い耐食性やガス放出が少ないことが要求される。
【0003】
オーステナイト系ステンレス鋼の耐食性は、周知のように、鋼表面のCr酸化物を主体とする不動態皮膜によっている。例えば、母材のCr量を多くすると不動態皮膜が形成されやすくなる。また、鋼中に存在するSやO(酸素)などの不純物量を少なくするとガス放出量が減少する。しかし、Cr等の合金元素の増加や不純物量の低減は母材のコスト上昇を招く。
【0004】
このため、オーステナイト系ステンレス鋼本来の不動態皮膜以上に良好な耐食性やガス放出抑制効果のある不動態皮膜を鋼表面に形成させるための様々な工夫が従来からなされており、例えば以下のような方法が提案されている。
【0005】
(a) 鋼表面を電解研磨または電解複合研磨し、次いでベーキングを行って鋼表面の水分を除去した後、OまたはHO濃度が100ppb程度の水素ガスまたは水素ガスと不活性ガスとの混合ガス雰囲気中で300〜600℃に加熱することにより、最表面のCrとFeとの比(Cr/Fe)が1以上で、最大厚さが2nm程度のCr酸化物を主体とする酸化不動態皮膜を形成させる方法(特開平6−116632号公報の段落0008に記載される従来法)。
【0006】
(b) 鋼表面を電解複合研磨して表層に加工歪みを付与し、次いでベーキングを行って鋼表面の水分を除去した後、HO濃度が500ppb〜2%の不活性ガス雰囲気中で450〜600℃に加熱することにより、最表面にFe酸化物が存在しない厚さ2nm以上のCr酸化物主体の外層とFe酸化物を含むCr酸化物主体の内層とからなる2層構造の酸化不動態皮膜を形成させる方法(特開平6−116632号公報)。
【0007】
(c) 鋼表面を研磨し、次いで大気雰囲気中で300〜500℃に加熱することにより、「Cr含有酸化物量>Cr非含有酸化物量」の厚さ5〜100nmの内層と、「Cr非含有酸化物量>Cr含有酸化物量」の厚さ5nm以下の外層とからなる2層構造の酸化不動態皮膜を形成させるか、この皮膜形成後に外層のみを除去する方法(特開平3−153858号公報)。
【0008】
(d) Cr含有量が20〜30%未満、オーステナイト結晶粒度番号が7以下の高Crオーステナイト系ステンレス鋼を、水蒸気中またはFeが生じない低酸素分圧の雰囲気中で700〜1000℃に加熱することにより、鋼表面にCr酸化物からなる酸化不動態皮膜を形成させる方法(特開平3−176824号公報)。
【0009】
しかし、上記(a) 〜(d) の方法は、いずれも、固溶化熱処理が施された後のオーステナイト系ステンレス鋼を対象とする方法であり、これらの方法をオーステナイト系ステンレス鋼管の製造に適用すると、熱処理費用が嵩み、製品の製造コストが高くなるという欠点があった。これは次の理由による。
【0010】
オーステナイト系ステンレス鋼管は、一般に、表1に示す基本工程を経て製造される。このため、上記(a) 〜(d) の方法は最終熱処理の後、即ち工程7と工程8の間で実施することになるからである。
【0011】
【表1】

Figure 2004083965
【0012】
上記の工程7(固溶化熱処理)は、通常、大気雰囲気中で行われる。しかし、表面が特に美麗なことが要求される場合には、工程7の固溶化熱処理を光輝熱処理とすることもある。この光輝熱処理は、雰囲気ガスとして水素ガスを用いた還元性雰囲気の連続炉を使用して行われる。その際、雰囲気ガスの水素ガスとしては、光輝熱処理が目的であるので、できるだけ高純度のものを使用し、露点は概ね−30℃以下とされる。また、加熱温度は通常の固溶化熱処理温度である950〜1200℃とされる。
【0013】
しかし、最終の熱処理である固溶化熱処理を光輝熱処理とした製品鋼管は、これを例えば水や水蒸気、あるいはこれらの混合物を主要な流体とする熱交換用に使用した場合、使用条件によっては耐食性が不十分な場合があり、その解決が望まれていた。
【0014】
【発明が解決しようとする課題】
本発明は、上記の実状に鑑みてなされたもので、最終熱処理の固溶化熱処理を光輝熱処理とした場合でも、使用条件によらず、水や水蒸気、あるいはこれらの混合物に対して十分な耐食性を発揮する熱交換管等として用いて好適なオーステナイト系ステンレス鋼管が確実に得られるだけでなく、この鋼管を低コストで製造することができるオーステナイト系ステンレス鋼管の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の要旨は、下記(1)のオーステナイト系ステンレス鋼管の製造方法、および下記(2)のオーステナイト系ステンレス鋼管にある。
(1)固溶化熱処理を行う際の炉内の雰囲気を、露点が−25℃から0℃までの範囲内に制御された水素ガス雰囲気、または露点が−25℃から0℃までの範囲内に制御された50体積%以上の水素ガスと残部が不活性ガスである混合ガス雰囲気とすることを特徴とするオーステナイト系ステンレス鋼管の製造方法。
(2)上記(1)に記載の方法により製造されたオーステナイト系ステンレス鋼管であって、少なくとも内表面に、厚さが2〜100nm、最表面のCr濃度(原子%)とFe濃度(原子%)との比(Cr/Fe)が0.01以上の酸化不動態皮膜を有することを特徴とするオーステナイト系ステンレス鋼管。
【0016】
上記(1)の方法においては、加熱温度を950〜1200℃とするのが好ましい。
【0017】
上記(2)の酸化不動態皮膜の厚さとは、次のようにして求められる厚さである。例えば、後述の図2に示すように、オージェ電子分光分析器(AES)によって皮膜厚さ方向の各元素の濃度(原子%)分布を測定する。そして、酸素濃度の分布曲線からその濃度が最表面濃度の1/2になる深さを求める。その深さ(図2のL)が上記の皮膜厚さである。
【0018】
本発明者は、最終熱処理の固溶化熱処理を光輝熱処理とした製品鋼管の表面を詳細に調べた結果、以下のことを知見し、本発明を完成させた。
【0019】
高純度で、かつ露点が−30℃以下の水素雰囲気中で光輝熱処理された製品鋼管の内表面には、前述のように定義される厚さで1nm程度と極めて薄い酸化皮膜がある。この皮膜は損傷しやすく、しかもCr酸化物が最表面にほとんど存在しないために保護皮膜としての性能が不十分である。
【0020】
そこで、水や水蒸気、あるいはこれらの混合物に対して十分な耐食性を発揮する酸化不動態皮膜とこの酸化不動態皮膜を形成させるための条件を見出すための実験を行った結果、次のことが判明した。
【0021】
(1) 水や水蒸気、あるいはこれらの混合物に対する耐食性は、前述のように定義される厚さが2〜100nmで、かつ最表面におけるCr濃度(原子%)がFe濃度(原子%)の0.01倍以上の酸化不動態皮膜であれば確保される。
【0022】
(2) 上記(1) の酸化不動態皮膜は、炉内の雰囲気を、露点が−25℃から0℃までの範囲内に制御された水素ガス雰囲気、または露点が−25℃から0℃までの範囲内に制御された50体積%以上の水素ガスと残部が不活性ガスである混合ガス雰囲気、にすれば形成される。
【0023】
【発明の実施の形態】
以下、本発明の方法における雰囲気ガスの条件および熱交換用オーステナイト系ステンレス鋼管の酸化不動態皮膜の条件を上記のように定めた理由について詳しく説明する。
(1)雰囲気ガスの露点と混合ガスの水素ガス量と残部ガスについて
水素ガスまたは混合ガスの露点が−25℃未満では最表面のCr濃度がFe濃度の0.01倍以上の酸化不動態皮膜が形成されず、所望の耐食性が確保されない。一方、露点が0℃を超えると、炉内の構造物やヒーター等の酸化を速め、炉の寿命が著しく短くなる。よって、雰囲気ガスの露点は−25〜0℃とした。好ましいのは−20〜−10℃である。
【0024】
混合ガスの場合における水素ガスの割合が50体積%未満では、酸化不動態皮膜の厚さが厚くなりすぎ、かえって耐食性を損う。また、残部のガスをCOガスやCOガスとしたのでは浸炭が生じ、母材の耐食性が損なわれる。よって、混合ガスの水素ガス量は50体積%以上、残部は不活性ガスとした。好ましい水素ガス量は80体積%以上である。なお、不活性ガスとしてはアルゴンガスやヘリウムガス、および窒素ガスを挙げることができる。
(2)鋼管内面の酸化不動態皮膜の厚さと最表面のCr濃度について
酸化不動態皮膜の厚さが2nm未満では、酸化が不十分で、最表面にCr酸化物が存在する被膜とならず、所望の耐食性が確保されない。一方、100nmを超えると、皮膜を構成する酸化物の粒径が粗大になりすぎ、かえって耐食性が損なわれる。よって、酸化不動態皮膜の厚さは2〜100nmとした。好ましいのは2〜5nmである。
【0025】
酸化不動態皮膜の最表面のCr濃度(原子%)がFe濃度(原子%)の0.01倍未満では、所望の耐食性が確保されないので、0.01倍以上とした。好ましいのは0.1倍以上である。なお、最表面のCr濃度は、高ければ高いほどよいので、その上限は特に制限しない。
【0026】
上記の酸化不動態皮膜は、被処理鋼管を上記の雰囲気中でオーステナイト系ステンレス鋼の固溶化熱処理温度である950〜1200℃に加熱することにより形成させることができる。従って、本発明の方法によれば、前述した従来技術のように固溶化熱処理とは別の酸化不動態皮膜形成のための特別な熱処理が不要なので、その分だけ製造コストが安くなる。
【0027】
なお、形成させるべき酸化不動態皮膜の厚さは、被処理鋼管の化学組成、加熱温度および炉内雰囲気に応じて保持時間を適宜調整する(例えば、後述する実施例に示す条件を採用する)ことにより所望の厚さとすればよいので、保持時間については特に制限しない。
【0028】
また、鋼管母材のオーステナイト系ステンレス鋼は、オーステナイト系のステンレス鋼でありさえすればよく、その化学組成に特別な制約はないが、代表的なものを例示すれば、JIS規格に規定されるSUS304、SUS304L、SUS347、SUS347H、SUS316、SUS316Lおよびこれらの相当鋼等を挙げることができる。
【0029】
【実施例】
表2に示す化学組成を有するSUS304L相当鋼からなり、冷間仕上げ後、脱脂、洗浄した外径16mm、肉厚1mm、長さ15mのオーステナイト系ステンレス鋼管を準備した。
【0030】
【表2】
Figure 2004083965
【0031】
準備した鋼管は、図1に示すような連続炉を用い、表2に示す種々の条件で固溶化熱処理した。その際、鋼管内面の空気を雰囲気ガスで置換するために炉内の圧力を0.98〜98Paのプラス圧とした。
【0032】
固溶化熱処理後の各鋼管は、内面に形成された酸化不動態皮膜の厚さと最表面のCr濃度を調べた後、硫酸濃度が10体積%の沸騰水溶液中に6時間浸漬する加速腐食試験に供し、その耐食性を調べた。
【0033】
酸化不動態皮膜の厚さと最表面のCr濃度は、AESを用いて皮膜厚さ方向の各元素の濃度(原子%)分布を測定し、前述したとおりの方法によりそれぞれ求めた。また、耐食性は、試験による腐食減量を試験時間で除し、平均腐食速度を求めることにより評価した。
【0034】
以上の結果を、固溶化熱処理条件と併せて表3に示すとともに、試番1と4のAESによる分析結果を図2と図3に示した。
【0035】
【表3】
Figure 2004083965
【0036】
表3および図3に示すように、本発明で規定する条件で固溶化熱処理した試番2〜5および6の鋼管の内面には、本発明で規定する条件を満たす酸化不動態皮膜が形成されており、加速腐食試験における平均腐食速度が0.17〜0.35g/m/hと遅く、耐食性が良好である。また、これらの鋼管の表面の光輝状態は、本来の光輝熱処理品には及ばないものの、大気雰囲気中品に比べればはるかに美麗であった。
【0037】
これに対し、雰囲気ガスの露点が低すぎる試番1と6の鋼管の内面には、厚さは本発明で規定する条件を満たすものの、最表面にCr酸化物が存在しない酸化不動態皮膜皮膜(図2参照)が形成されており、平均腐食速度が0.55〜0.63g/m/hと速く、耐食性が不十分である。
【0038】
また、露点は本発明で規定する条件を満たすものの、混合ガス中の水素濃度が低すぎる試番8の鋼管の内面には、最表面にCr酸化物は存在するが、厚さが120nmと厚すぎる酸化不動態皮膜皮膜が形成されており、平均腐食速度が1.5g/m/hと極めて速く、耐食性が悪い。
【0039】
【発明の効果】
本発明の方法によれば、熱処理工程を増やすことなく、水や水蒸気、あるいはその混合物を主要な流体とする熱交換に使用して良好な耐食性を発揮する安価なオーステナイト系ステンレス鋼管を確実に製造することができる。また、本発明のオーステナイト系ステンレス鋼管は耐食性に優れるので、これを熱交換管に用いた機器装置は安全性が向上するだけでなく、寿命も長くなる。
【図面の簡単な説明】
【図1】固溶化熱処理の実施の形態を示す模式図である。
【図2】オージェ電子分光分析器による分析結果の一例を示す図である。
【図3】オージェ電子分光分析器による分析結果の他の一例を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an austenitic stainless steel pipe, and more particularly, to form a passivation film having better corrosion resistance than a passivation film originally provided on steel at the same time as solution heat treatment on a steel surface. The present invention relates to a method for producing an austenitic stainless steel pipe and an austenitic stainless steel pipe suitable for use in heat exchange using water or steam or a mixture thereof as a main fluid.
[0002]
[Prior art]
Austenitic stainless steels are used for various applications because of their excellent corrosion resistance. For example, steel tubes made of austenitic stainless steel are widely used for heat transfer tubes such as boilers and heat exchangers, piping for chemical plants, and clean gas piping for semiconductor manufacturing equipment. Austenitic stainless steel pipes used for these applications are required to have higher corrosion resistance and less outgassing than austenitic stainless steel originally has.
[0003]
As is well known, the corrosion resistance of austenitic stainless steel depends on a passive film mainly composed of Cr oxide on the steel surface. For example, when the amount of Cr in the base material is increased, a passive film is easily formed. Further, when the amount of impurities such as S and O (oxygen) present in the steel is reduced, the amount of outgassing decreases. However, an increase in alloying elements such as Cr and a reduction in the amount of impurities cause an increase in the cost of the base material.
[0004]
For this reason, various measures have been made in the past to form a passivation film having better corrosion resistance and gas release suppression effect on the steel surface than the austenitic stainless steel original passivation film, such as the following: A method has been proposed.
[0005]
(A) The steel surface is subjected to electrolytic polishing or electrolytic combined polishing, and then baked to remove water from the steel surface, and then a hydrogen gas or a hydrogen gas having an O 2 or H 2 O concentration of about 100 ppb is mixed with an inert gas. By heating to 300 to 600 ° C. in a mixed gas atmosphere, the ratio of Cr to Fe on the outermost surface (Cr / Fe) is 1 or more and the maximum thickness is about 2 nm. A method of forming a dynamic film (a conventional method described in paragraph 0008 of JP-A-6-116632).
[0006]
(B) The surface of the steel is electrolytically polished to impart processing strain to the surface layer, and then baked to remove the water on the surface of the steel, and then subjected to 450 ppm in an inert gas atmosphere having an H 2 O concentration of 500 ppb to 2 %. By heating to -600 ° C., a two-layered structure composed of an outer layer mainly composed of a Cr oxide having a thickness of 2 nm or more in which no Fe oxide is present on the outermost surface and an inner layer mainly composed of a Cr oxide containing Fe oxide is formed. A method of forming a dynamic film (JP-A-6-116632).
[0007]
(C) A steel surface is polished and then heated to 300 to 500 ° C. in an air atmosphere to form an inner layer of “Cr-containing oxide content> Cr-free oxide content” having a thickness of 5 to 100 nm and “Cr-free oxide content”. A method of forming an oxidation passivation film having a two-layer structure consisting of an outer layer having a thickness of 5 nm or less with "amount of oxide> amount of Cr-containing oxide" or removing only the outer layer after forming the film (Japanese Patent Laid-Open No. 3-153858). .
[0008]
(D) A high Cr austenitic stainless steel having a Cr content of less than 20 to 30% and an austenite grain size number of 7 or less is subjected to 700 to 1000 in steam or a low oxygen partial pressure atmosphere in which Fe 2 O 3 is not generated. A method in which an oxidation passivation film made of Cr oxide is formed on a steel surface by heating to a temperature of 0 ° C. (JP-A-3-176824).
[0009]
However, all of the above methods (a) to (d) are directed to austenitic stainless steel after solution heat treatment, and these methods are applied to the production of austenitic stainless steel pipes. Then, there is a disadvantage that the heat treatment cost increases and the production cost of the product increases. This is for the following reason.
[0010]
Austenitic stainless steel pipes are generally manufactured through the basic steps shown in Table 1. For this reason, the above methods (a) to (d) are performed after the final heat treatment, that is, between the steps 7 and 8.
[0011]
[Table 1]
Figure 2004083965
[0012]
The above step 7 (solution heat treatment) is usually performed in an air atmosphere. However, if the surface is required to be particularly beautiful, the solution heat treatment in step 7 may be a bright heat treatment. This bright heat treatment is performed using a continuous furnace in a reducing atmosphere using hydrogen gas as an atmosphere gas. At this time, the hydrogen gas as the atmosphere gas is used for the purpose of bright heat treatment, and therefore, a gas having a purity as high as possible is used, and the dew point is set to approximately −30 ° C. or less. The heating temperature is 950 to 1200 ° C., which is a normal solution heat treatment temperature.
[0013]
However, when the product steel tube is used as the final heat treatment, the solution heat treatment is a bright heat treatment, for example, when it is used for heat exchange using water, steam, or a mixture thereof as a main fluid, the corrosion resistance depends on the use conditions. In some cases, it was not enough, and a solution was desired.
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and even when the solution heat treatment of the final heat treatment is a bright heat treatment, regardless of the use conditions, sufficient corrosion resistance to water, steam, or a mixture thereof. An object of the present invention is to provide a method for manufacturing an austenitic stainless steel pipe that not only reliably obtains an austenitic stainless steel pipe suitable for use as a heat exchange pipe and the like but also can manufacture this steel pipe at low cost. .
[0015]
[Means for Solving the Problems]
The gist of the present invention resides in a method for producing an austenitic stainless steel pipe of the following (1) and an austenitic stainless steel pipe of the following (2).
(1) The atmosphere in the furnace at the time of performing the solution heat treatment is set to a hydrogen gas atmosphere in which the dew point is controlled in a range of −25 ° C. to 0 ° C. or a dew point in a range of −25 ° C. to 0 ° C. A method for manufacturing an austenitic stainless steel pipe, characterized in that the mixed gas atmosphere is a controlled 50% by volume or more of hydrogen gas and the balance is an inert gas.
(2) An austenitic stainless steel pipe manufactured by the method described in (1) above, wherein at least the inner surface has a thickness of 2 to 100 nm, and the Cr concentration (at%) and the Fe concentration (at%) of the outermost surface. An austenitic stainless steel pipe characterized by having an oxidation passivation film having a ratio (Cr / Fe) of 0.01 or more to (a).
[0016]
In the method (1), the heating temperature is preferably set to 950 to 1200 ° C.
[0017]
The thickness of the oxidation passivation film of the above (2) is a thickness determined as follows. For example, as shown in FIG. 2 described later, the concentration (atomic%) distribution of each element in the film thickness direction is measured by an Auger electron spectrometer (AES). Then, a depth at which the concentration becomes 1/2 of the outermost surface concentration is obtained from the distribution curve of the oxygen concentration. The depth (L in FIG. 2) is the above film thickness.
[0018]
The present inventor has conducted detailed studies on the surface of a product steel pipe in which the solution heat treatment of the final heat treatment is performed as a bright heat treatment, and as a result, has found the following, and has completed the present invention.
[0019]
The inner surface of the product steel pipe which has been subjected to bright heat treatment in a hydrogen atmosphere having a high purity and a dew point of −30 ° C. or less has an oxide film as extremely thin as about 1 nm as defined above. This film is easily damaged, and its performance as a protective film is insufficient because Cr oxide hardly exists on the outermost surface.
[0020]
Therefore, we conducted an experiment to find an oxidation passivation film that exhibits sufficient corrosion resistance to water, water vapor, or a mixture of these, and conditions for forming this oxidation passivation film. did.
[0021]
(1) The corrosion resistance to water, water vapor, or a mixture thereof is such that the thickness as defined above is 2 to 100 nm, and the Cr concentration (atomic%) at the outermost surface is 0.1% of the Fe concentration (atomic%). An oxidation passivation film of 01 times or more is ensured.
[0022]
(2) The oxidation passivation film of the above (1) is prepared by changing the atmosphere in the furnace to a hydrogen gas atmosphere whose dew point is controlled within a range of -25 ° C to 0 ° C, or a dew point of -25 ° C to 0 ° C. Is formed in a mixed gas atmosphere in which hydrogen gas of 50% by volume or more and the balance are inert gas are controlled within the range described above.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reason why the conditions of the atmosphere gas and the conditions of the oxidation passivation film of the austenitic stainless steel tube for heat exchange in the method of the present invention are determined as described above will be described in detail.
(1) Regarding the dew point of the atmosphere gas, the amount of hydrogen gas in the mixed gas, and the remaining gas When the dew point of the hydrogen gas or the mixed gas is lower than −25 ° C., the oxidation passivation film in which the Cr concentration on the outermost surface is 0.01 times or more the Fe concentration Are not formed, and desired corrosion resistance is not ensured. On the other hand, when the dew point exceeds 0 ° C., the oxidation of the structures and heaters in the furnace is accelerated, and the life of the furnace is significantly shortened. Therefore, the dew point of the atmosphere gas was set to -25 to 0 ° C. Preferred is -20 to -10C.
[0024]
If the ratio of the hydrogen gas in the case of the mixed gas is less than 50% by volume, the thickness of the oxidation passivation film becomes too large, and the corrosion resistance is rather deteriorated. Further, if the remaining gas is CO gas or CO 2 gas, carburization occurs and the corrosion resistance of the base material is impaired. Therefore, the hydrogen gas amount of the mixed gas was 50% by volume or more, and the balance was an inert gas. The preferred amount of hydrogen gas is 80% by volume or more. Note that examples of the inert gas include an argon gas, a helium gas, and a nitrogen gas.
(2) Regarding the thickness of the oxidation passivation film on the inner surface of the steel pipe and the concentration of Cr on the outermost surface If the thickness of the oxidation passivation film is less than 2 nm, the oxidation is insufficient and the film does not have a Cr oxide on the outermost surface. , The desired corrosion resistance is not ensured. On the other hand, if it exceeds 100 nm, the particle size of the oxide constituting the film becomes too large, and the corrosion resistance is rather deteriorated. Therefore, the thickness of the oxidation passivation film is set to 2 to 100 nm. Preferred is 2-5 nm.
[0025]
If the Cr concentration (atomic%) on the outermost surface of the oxidation passivation film is less than 0.01 times the Fe concentration (atomic%), the desired corrosion resistance is not ensured, so that it is set to 0.01 times or more. It is preferably at least 0.1 times. Since the higher the Cr concentration on the outermost surface, the better, the upper limit is not particularly limited.
[0026]
The above-mentioned oxidation passivation film can be formed by heating the steel pipe to be treated to 950 to 1200 ° C., which is the solution heat treatment temperature for austenitic stainless steel in the above atmosphere. Therefore, according to the method of the present invention, a special heat treatment for forming an oxide passivation film, which is different from the solution heat treatment as in the prior art described above, is not required, and the manufacturing cost is reduced accordingly.
[0027]
The thickness of the oxide passivation film to be formed is appropriately adjusted for the holding time in accordance with the chemical composition of the steel pipe to be treated, the heating temperature, and the atmosphere in the furnace (for example, the conditions described in Examples described later are employed). The holding time is not particularly limited, since the desired thickness may be obtained.
[0028]
Further, the austenitic stainless steel of the steel pipe base material may be any austenitic stainless steel, and there is no particular restriction on the chemical composition thereof, but typical examples are specified in JIS standards. SUS304, SUS304L, SUS347, SUS347H, SUS316, SUS316L, and their equivalent steels can be mentioned.
[0029]
【Example】
An austenitic stainless steel pipe made of SUS304L equivalent steel having a chemical composition shown in Table 2, cold-finished, degreased and washed, and having an outer diameter of 16 mm, a wall thickness of 1 mm, and a length of 15 m was prepared.
[0030]
[Table 2]
Figure 2004083965
[0031]
The prepared steel pipe was subjected to solution heat treatment under various conditions shown in Table 2 using a continuous furnace as shown in FIG. At that time, the pressure in the furnace was set to a positive pressure of 0.98 to 98 Pa in order to replace the air on the inner surface of the steel pipe with the atmospheric gas.
[0032]
After the solution heat treatment, each steel pipe was subjected to an accelerated corrosion test in which the thickness of the oxide passivation film formed on the inner surface and the Cr concentration of the outermost surface were examined, and the steel pipe was immersed in a boiling aqueous solution having a sulfuric acid concentration of 10% by volume for 6 hours. And tested for its corrosion resistance.
[0033]
The thickness of the oxidation passivation film and the Cr concentration on the outermost surface were obtained by measuring the concentration (atomic%) distribution of each element in the thickness direction of the film using AES, and by the methods described above. The corrosion resistance was evaluated by dividing the weight loss due to the test by the test time and calculating the average corrosion rate.
[0034]
The above results are shown in Table 3 together with the solution heat treatment conditions, and the analysis results by AES of Test Nos. 1 and 4 are shown in FIGS. 2 and 3.
[0035]
[Table 3]
Figure 2004083965
[0036]
As shown in Table 3 and FIG. 3, an oxide passivation film satisfying the conditions specified in the present invention is formed on the inner surfaces of the steel pipes of Nos. 2 to 5 and 6 subjected to solution treatment under the conditions specified in the present invention. The average corrosion rate in the accelerated corrosion test is as low as 0.17 to 0.35 g / m 2 / h, and the corrosion resistance is good. The bright state of the surface of these steel pipes was not as good as that of the original bright heat-treated product, but was much more beautiful than the product in the air atmosphere.
[0037]
On the other hand, on the inner surfaces of the test tubes 1 and 6 in which the dew point of the atmospheric gas is too low, the oxidation passivation film having no Cr oxide on the outermost surface although the thickness satisfies the conditions specified in the present invention. (See FIG. 2), the average corrosion rate is as fast as 0.55 to 0.63 g / m 2 / h, and the corrosion resistance is insufficient.
[0038]
Further, although the dew point satisfies the condition specified in the present invention, the inner surface of the steel pipe of Test No. 8 in which the hydrogen concentration in the mixed gas is too low contains Cr oxide on the outermost surface, but has a thickness of 120 nm. Excessive oxidation passivation film is formed, the average corrosion rate is extremely fast as 1.5 g / m 2 / h, and the corrosion resistance is poor.
[0039]
【The invention's effect】
According to the method of the present invention, an inexpensive austenitic stainless steel pipe that exhibits good corrosion resistance by using it for heat exchange with water, steam, or a mixture thereof as a main fluid can be reliably produced without increasing the number of heat treatment steps. can do. Further, since the austenitic stainless steel pipe of the present invention is excellent in corrosion resistance, the equipment using the same as a heat exchange pipe not only improves safety but also has a longer life.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a solution heat treatment.
FIG. 2 is a diagram illustrating an example of an analysis result obtained by an Auger electron spectrometer.
FIG. 3 is a diagram showing another example of an analysis result by an Auger electron spectrometer.

Claims (3)

固溶化熱処理を行う際の炉内の雰囲気を、露点が−25℃から0℃までの範囲内に制御された水素ガス雰囲気、または露点が−25℃から0℃までの範囲内に制御された50体積%以上の水素ガスと残部が不活性ガスである混合ガス雰囲気とすることを特徴とするオーステナイト系ステンレス鋼管の製造方法。The atmosphere in the furnace during the solution heat treatment was controlled such that the dew point was controlled in a range of -25 ° C to 0 ° C in a hydrogen gas atmosphere, or the dew point was controlled in a range of -25 ° C to 0 ° C. A method for producing an austenitic stainless steel pipe, wherein a mixed gas atmosphere in which 50% by volume or more of hydrogen gas and the balance is an inert gas is used. 熱処理の加熱温度を950〜1200℃とすることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼管の製造方法。The method for producing an austenitic stainless steel pipe according to claim 1, wherein the heating temperature of the heat treatment is 950 to 1200C. 請求項1または2に記載の方法により製造されたオーステナイト系ステンレス鋼管であって、少なくとも内表面に、厚さが2〜100nm、最表面のCr濃度(原子%)とFe濃度(原子%)との比(Cr/Fe)が0.01以上の酸化不動態皮膜を有することを特徴とするオーステナイト系ステンレス鋼管。
ここで、酸化不動態皮膜の厚さとは、皮膜厚さ方向のO(酸素)濃度(原子%)が皮膜最表面のO濃度の1/2となる位置までの皮膜最表面からの距離のことである。
An austenitic stainless steel pipe manufactured by the method according to claim 1, wherein at least an inner surface has a thickness of 2 to 100 nm, and a Cr concentration (at%) and a Fe concentration (at%) of the outermost surface. An austenitic stainless steel pipe characterized by having an oxidation passivation film having a ratio (Cr / Fe) of 0.01 or more.
Here, the thickness of the oxidation passivation film is the distance from the outermost surface of the film to a position where the O (oxygen) concentration (atomic%) in the thickness direction of the film becomes 1/2 of the O concentration at the outermost surface of the film. It is.
JP2002244531A 2002-08-26 2002-08-26 Method for producing austenitic stainless steel pipe Expired - Fee Related JP4100093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244531A JP4100093B2 (en) 2002-08-26 2002-08-26 Method for producing austenitic stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244531A JP4100093B2 (en) 2002-08-26 2002-08-26 Method for producing austenitic stainless steel pipe

Publications (2)

Publication Number Publication Date
JP2004083965A true JP2004083965A (en) 2004-03-18
JP4100093B2 JP4100093B2 (en) 2008-06-11

Family

ID=32052965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244531A Expired - Fee Related JP4100093B2 (en) 2002-08-26 2002-08-26 Method for producing austenitic stainless steel pipe

Country Status (1)

Country Link
JP (1) JP4100093B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084597A (en) * 2007-09-27 2009-04-23 Nippon Seisen Co Ltd Hydrogen resistant stainless steel spring wire, and hydrogen resistant spring product using the same
JP2013069376A (en) * 2011-09-22 2013-04-18 Nhk Spring Co Ltd Method for manufacturing metal component
CN103114190A (en) * 2013-03-14 2013-05-22 镇海石化建安工程有限公司 Continuous bright solution thermal treatment device for stainless steel welded tube
JP2016216782A (en) * 2015-05-20 2016-12-22 新日鐵住金株式会社 Austenitic stainless steel
JPWO2019167885A1 (en) * 2018-03-02 2020-04-16 株式会社トクヤマ Austenitic stainless steel member and manufacturing method thereof
CN113106220A (en) * 2021-04-13 2021-07-13 湖州合创金属材料有限公司 Passivation method of corrosion-resistant steel for high-purity pipe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084597A (en) * 2007-09-27 2009-04-23 Nippon Seisen Co Ltd Hydrogen resistant stainless steel spring wire, and hydrogen resistant spring product using the same
JP2013069376A (en) * 2011-09-22 2013-04-18 Nhk Spring Co Ltd Method for manufacturing metal component
CN103114190A (en) * 2013-03-14 2013-05-22 镇海石化建安工程有限公司 Continuous bright solution thermal treatment device for stainless steel welded tube
JP2016216782A (en) * 2015-05-20 2016-12-22 新日鐵住金株式会社 Austenitic stainless steel
JPWO2019167885A1 (en) * 2018-03-02 2020-04-16 株式会社トクヤマ Austenitic stainless steel member and manufacturing method thereof
KR20200100201A (en) * 2018-03-02 2020-08-25 가부시키가이샤 도쿠야마 Stainless steel member and its manufacturing method
TWI709669B (en) * 2018-03-02 2020-11-11 日商德山股份有限公司 Austin iron series stainless steel component and manufacturing method thereof
KR102186923B1 (en) 2018-03-02 2020-12-04 가부시키가이샤 도쿠야마 Stainless steel member and its manufacturing method
US10906021B2 (en) 2018-03-02 2021-02-02 Tokuyama Corporation Stainless steel member and production method thereof
CN113106220A (en) * 2021-04-13 2021-07-13 湖州合创金属材料有限公司 Passivation method of corrosion-resistant steel for high-purity pipe
CN113106220B (en) * 2021-04-13 2022-07-12 湖州合创金属材料有限公司 Passivation method of corrosion-resistant steel for high-purity pipe

Also Published As

Publication number Publication date
JP4100093B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
CA2520700C (en) A method of producing a ni based alloy
US8034198B2 (en) Austenitic stainless steel tube for boiler with excellent resistance to high temperature steam oxidation
JP2996245B2 (en) Martensitic stainless steel with oxide scale layer and method for producing the same
JP4720590B2 (en) Method for producing Cr-containing nickel-base alloy tube
WO2002014566A1 (en) Nickel-based alloy product and process for producing the same
JP2009068079A (en) Steel tube with excellent steam oxidation resistance
WO2012026344A1 (en) Cr-containing austenite alloy pipe and production method for same
WO2009139387A1 (en) Ni-cr alloy material
JP4100093B2 (en) Method for producing austenitic stainless steel pipe
WO2013150947A1 (en) Cr-containing austenitic alloy
CN1321203C (en) Titanium alloy superior in hydrogen absorption resistance
JPH06322512A (en) Surface treatment for stainless steel material for semiconductor-manufacturing equipment
JP4556740B2 (en) Method for producing Ni-based alloy
JP6516238B2 (en) Austenitic stainless steel and method for producing the same
JP2007169776A (en) Stainless steel pipe for oil well excellent in enlarging characteristic and its production method
JP6005963B2 (en) Method for producing a cast product having an alumina barrier layer
JP2991050B2 (en) Stainless steel pipe for high purity gas
CN109563589A (en) Austenite stainless steel
JP3499418B2 (en) Stainless steel having oxidation passivation film and method for forming the same
WO2015109552A1 (en) Stainless steel seamless pipe
JP6505415B2 (en) Surface treatment method of Fe-Cr-Ni alloy material excellent in workability and corrosion resistance
JP2720716B2 (en) Austenitic stainless steel for high-purity gas with excellent corrosion resistance and method for producing the same
US20060177679A1 (en) Method for manufacturing a Ni-based alloy article and product therefrom
JPH07126828A (en) Production of high corrosion resistant austenitic stainless steel member for semiconductor producing device
JP7324844B2 (en) Steel sheet having corrosion resistance in low-concentration sulfuric acid/hydrochloric acid complex condensed atmosphere and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees