JP2925876B2 - Metal surface oxidation treatment method - Google Patents

Metal surface oxidation treatment method

Info

Publication number
JP2925876B2
JP2925876B2 JP1913493A JP1913493A JP2925876B2 JP 2925876 B2 JP2925876 B2 JP 2925876B2 JP 1913493 A JP1913493 A JP 1913493A JP 1913493 A JP1913493 A JP 1913493A JP 2925876 B2 JP2925876 B2 JP 2925876B2
Authority
JP
Japan
Prior art keywords
oxygen gas
metal member
metal
oxide film
oxidation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1913493A
Other languages
Japanese (ja)
Other versions
JPH06235058A (en
Inventor
重雄 清水
崇晴 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1913493A priority Critical patent/JP2925876B2/en
Publication of JPH06235058A publication Critical patent/JPH06235058A/en
Application granted granted Critical
Publication of JP2925876B2 publication Critical patent/JP2925876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属表面の酸化処理方
法に関し、特に超高真空応用機器、超クリーンガスライ
ン、バイオ医薬品原料製造装置、フロン代替洗浄などの
超純水製造装置などの構成部材に使用される金属部材の
表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing a metal surface, and particularly relates to an apparatus for applying ultra-high vacuum, an ultra-clean gas line, an apparatus for producing biopharmaceutical materials, an apparatus for producing ultrapure water such as a substitute for chlorofluorocarbon. The present invention relates to a surface treatment method for a metal member used for a member.

【0002】[0002]

【従来の技術】最近、超高真空応用機器、超クリーンガ
スライン、バイオ医薬品原料製造装置、フロン代替洗浄
に使用される超純水製造装置などの構成部材としては、
耐熱性、耐食性および不純ガスの放出性の点で優れてい
るステンレスス鋼が用いられている。
2. Description of the Related Art Recently, components such as an ultra-high vacuum application device, an ultra-clean gas line, a biopharmaceutical raw material production device, and an ultrapure water production device used for a substitute cleaning of chlorofluorocarbons, include
Stainless steel, which is excellent in heat resistance, corrosion resistance, and emission of impurity gas, is used.

【0003】ところで、ステンレス鋼の場合でも、電解
研磨などの従来の表面加工を行った場合には、精練中に
溶解したガス成分や、表面加工中および保存中に吸着・
吸蔵したダスト、ガスなどを放出することがある。特
に、水中で加工する電解研磨方式では、電気分解に伴う
原子状のガス成分が金属に溶解吸蔵されることと、水中
で形成されるステンレス鋼の不動態膜に水分が取り込ま
れることにより、その後の使用中においては、いつまで
も水分の放出が続き超高真空が達成できず、クリーンな
プロセスガスが水分で汚染されるなどの問題がある。
[0003] Even in the case of stainless steel, if conventional surface processing such as electrolytic polishing is performed, gas components dissolved during scouring and adsorption and absorption during surface processing and storage are also considered.
May release occluded dust, gas, etc. In particular, in the electropolishing method of processing in water, the atomic gas component accompanying the electrolysis is dissolved and occluded in the metal, and the moisture is taken in the passive film of stainless steel formed in water, During use, there is a problem that moisture is continuously released for a long time, an ultra-high vacuum cannot be achieved, and a clean process gas is contaminated with moisture.

【0004】このような不都合を解決するため、ステン
レス鋼部材を、オゾンが所定量含有された乾燥酸素ガス
雰囲気中で、所定の温度(例えば、150 〜300 ℃程
度)で所定の時間(例えば、1〜10時間程度)加熱して
酸化処理を行い、ステンレス鋼部材の表面に酸化皮膜を
形成する表面処理方法が、既に提案されている。
In order to solve such inconvenience, a stainless steel member is placed in a dry oxygen gas atmosphere containing a predetermined amount of ozone at a predetermined temperature (for example, about 150 to 300 ° C.) for a predetermined time (for example, about 150 ° C.). A surface treatment method for heating and performing an oxidation treatment to form an oxide film on the surface of a stainless steel member has been already proposed.

【0005】そして、具体的には、ステンレス鋼部材を
加熱室内にてできるだけ均一に加熱しておき、この加熱
室内にオゾンを含む酸素ガスを供給してその被処理面に
この酸素ガスを接触させることにより、酸化処理が行わ
れていた。
More specifically, a stainless steel member is heated as uniformly as possible in a heating chamber, and an oxygen gas containing ozone is supplied into the heating chamber to bring the oxygen gas into contact with the surface to be treated. As a result, the oxidation treatment was performed.

【0006】上記の表面処理方法によると、オゾンの持
つ不純物の酸化・除去作用と相まって、その表面に形成
される酸化皮膜が緻密なものとなり、ステンレス鋼部材
の表面からの不純物の溶出量を非常に少なくすることが
できる。
According to the above-mentioned surface treatment method, the oxide film formed on the surface becomes dense, and the elution amount of the impurity from the surface of the stainless steel member is extremely reduced, in combination with the action of oxidizing and removing impurities contained in ozone. Can be reduced.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述したよう
に、ステンレス鋼部材をオゾンを含む酸素ガスで酸化を
する際に、加熱室内で均一に加熱されたステンレス鋼部
材に酸素ガスを接触させることにより、被処理面に酸化
皮膜が形成されているが、最初に、酸素ガスと接触する
部分でオゾンが分解してその部分が強く酸化されてしま
い、したがって全体的に不均一な酸化になってしまうと
いう問題がある。
However, as described above, when oxidizing a stainless steel member with an oxygen gas containing ozone, the oxygen gas is brought into contact with the uniformly heated stainless steel member in the heating chamber. As a result, an oxide film is formed on the surface to be treated, but first, ozone is decomposed in a portion that comes into contact with the oxygen gas, and that portion is strongly oxidized, and therefore, a nonuniform oxidation is generated as a whole. Problem.

【0008】例えば、配管部材の内壁面の酸化処理を行
う場合には、配管部材を均一に加熱しておき、一端側か
らオゾンを含む酸素ガスが供給されるが、この場合、入
口付近でオゾンが分解して、この部分だけが強く酸化さ
れ、他端側ではオゾンが無い状態となり、オゾン酸化が
行われなくなる。
For example, when oxidizing the inner wall surface of a pipe member, the pipe member is heated uniformly, and oxygen gas containing ozone is supplied from one end side. Is decomposed, only this portion is strongly oxidized, and there is no ozone at the other end side, so that ozone oxidation is not performed.

【0009】そこで、本発明は被処理面全体を均一に酸
化処理し得る金属表面酸化処理方法を提供することを目
的とする。
Accordingly, an object of the present invention is to provide a metal surface oxidation treatment method capable of uniformly oxidizing the entire surface to be treated.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第1の手段は、金属部材にオゾンを含む酸
素ガスを接触させて、その表面に酸化皮膜を形成する際
に、加熱された金属部材の被処理面に沿って酸素ガスを
吹き出させるとともに、酸素ガスの吹出口から遠くなる
にしたがって被処理面の温度を高くして均一な酸化皮膜
を形成する金属表面酸化処理方法である。
In order to solve the above-mentioned problems, a first means of the present invention is to provide a metal member containing an acid containing ozone.
When an oxide film is formed on the surface by contacting elemental gas
Oxygen gas along the surface to be treated of the heated metal member.
Blows away from oxygen gas outlet
The temperature of the surface to be treated is increased in accordance with
Is a metal surface oxidation treatment method for forming

【0011】また、上記課題を解決するため、本発明の
第2の手段は、金属部材にオゾンを含む酸素ガスを接触
させて、その表面に酸化皮膜を形成する際に、加熱され
た金属部材の被処理面に沿って酸素ガスを吹き出させる
とともに、酸素ガスの供給吹出口を、金属部材の被処理
面に沿って順次移動させる金属表面酸化処理方法であ
る。
In order to solve the above-mentioned problems, a second means of the present invention is to contact an oxygen gas containing ozone with a metal member.
To form an oxide film on the surface.
Oxygen gas along the surface of the metal member
In addition, a metal surface oxidation treatment method in which an oxygen gas supply outlet is sequentially moved along a surface to be treated of a metal member.

【0012】また、上記課題を解決するため、本発明の
第3の手段は、金属部材にオゾンを含む酸素ガスを接触
させて、その表面に酸化皮膜を形成する際に、加熱され
た金属部材の被処理面に沿って酸素ガスを吹き出させる
とともに、金属部材の加熱部分を順次移動させる金属表
面酸化処理方法である。
According to a third aspect of the present invention, in order to solve the above-mentioned problems , an oxygen gas containing ozone is brought into contact with a metal member.
To form an oxide film on the surface.
Oxygen gas along the surface of the metal member
In addition, a metal surface oxidation treatment method for sequentially moving a heated portion of a metal member.

【0013】さらに、上記課題を解決するため、本発明
の第4の手段は、所定の温度下で金属部材にオゾンを含
む酸素ガスを接触させて、その表面に酸化皮膜を形成す
る際に、酸素ガスの供給方向を、その途中で逆方向に切
り換える金属表面酸化処理方法である。
Further, in order to solve the above-mentioned problem, a fourth means of the present invention provides a method for forming an oxide film on the surface of a metal member by contacting the metal member with oxygen gas at a predetermined temperature. This is a metal surface oxidation treatment method in which the supply direction of oxygen gas is switched to the opposite direction on the way.

【0014】[0014]

【作用】上記第1の手段によると、加熱された金属部材
の被処理面に沿って酸素ガスを吹き出させるとともに、
供給する酸素ガスの吹出口から遠くなるにしたがって表
面処理面の温度が高くなるようにしているので、金属部
材の表面に形成される金属皮膜の厚さが全体に亘ってほ
ぼ均一となる。
According to the first means, a heated metal member is provided.
While blowing oxygen gas along the surface to be treated,
As the distance from the supply oxygen gas outlet increases,
Since the temperature of the surface treatment surface is set to be high , the thickness of the metal film formed on the surface of the metal member becomes substantially uniform throughout.

【0015】また、上記第2の手段によると、加熱され
た金属部材の被処理面に沿って酸素ガスを吹き出させる
とともに、酸素ガスの供給吹出口を金属部材の表面に沿
って移動させることにより、酸化箇所のオゾン濃度を一
定に維持するようにしているので、金属部材の表面に形
成される金属皮膜の厚さが全体に亘ってほぼ均一とな
る。
According to the second means, the heating means
Oxygen gas along the surface of the metal member
At the same time, the oxygen gas supply outlet is moved along the surface of the metal member to keep the ozone concentration at the oxidized portion constant, so that the thickness of the metal film formed on the surface of the metal member is reduced. Is substantially uniform throughout.

【0016】また、上記第3の手段によると、加熱され
た金属部材の被処理面に沿って酸素ガスを吹き出させる
とともに、金属部材の加熱部分を順次移動させることに
より、酸化箇所の温度を一定に維持するようにしている
ので、金属部材の表面に形成される金属皮膜の厚さが全
体に亘ってほぼ均一となる。
According to the third means, the heating means
Oxygen gas along the surface of the metal member
At the same time, by sequentially moving the heating portion of the metal member, the temperature of the oxidized portion is kept constant, so that the thickness of the metal film formed on the surface of the metal member is substantially uniform throughout. Become.

【0017】さらに、上記第4の手段によると、酸素ガ
スの供給方向を途中で切り換えることにより、オゾン濃
度が変化している場合でも、金属部材の表面に形成され
る金属皮膜の厚さが全体に亘ってほぼ均一となる。
Further, according to the fourth means, even when the ozone concentration is changed, the thickness of the metal film formed on the surface of the metal member is reduced by switching the supply direction of the oxygen gas halfway. And is substantially uniform over the entire area.

【0018】[0018]

【実施例】以下、本発明の第1の実施例を図1〜図6に
基づき説明する。本第1の実施例においては、金属部材
として、ステンレス鋼製の配管部材の内面に酸化皮膜を
形成する場合について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. In the first embodiment, a case where an oxide film is formed on the inner surface of a stainless steel piping member as a metal member will be described.

【0019】すなわち、図1に示すように、ステンレス
鋼製の配管部材1の一端側から、所定量のオゾンを含む
酸素ガスaを、被処理面に沿って他端側に向かって供給
する。そして、この時の配管部材1の加熱温度を、図2
のグラフの実線にて示すように、一端側から他端側に行
くにしたがって順次高くさせるとともに、配管部材1の
内部に供給する酸素ガスaのオゾン濃度を、図2の破線
にて示すように、順次低下させるようにしている。
That is, as shown in FIG. 1, an oxygen gas a containing a predetermined amount of ozone is supplied from one end of a stainless steel piping member 1 along the surface to be treated toward the other end. The heating temperature of the pipe member 1 at this time is shown in FIG.
As shown by the solid line in the graph of FIG. 1, the ozone concentration of the oxygen gas a supplied to the inside of the pipe member 1 is gradually increased from one end to the other end as shown by the broken line in FIG. , Are sequentially lowered.

【0020】なお、オゾン濃度は、配管部材1の入口側
から出口側に行くにしたがって、すなわち時間の経過と
ともに温度に応じて自己分解が進むため、自然に濃度が
低下する。
The concentration of the ozone drops naturally as it goes from the inlet side to the outlet side of the pipe member 1, that is, the self-decomposition progresses with the passage of time according to the temperature.

【0021】したがって、上述したように、加熱温度を
入口側から出口側に向かって順次高くすることにより、
オゾン濃度が逆に低下し、全体的に見ると、配管部材1
の内壁面に形成される酸化皮膜の膜厚が均一になる。
Therefore, as described above, by sequentially increasing the heating temperature from the inlet side to the outlet side,
Conversely, the ozone concentration decreases, and overall, the piping member 1
The thickness of the oxide film formed on the inner wall surface becomes uniform.

【0022】ここで、加熱温度とオゾン濃度とを変化さ
せるようにした理由をもう少し詳しく説明すると、下記
のようになる。すなわち、図3に示すように、オゾンの
分解には強い温度特性があるとともに、300 ℃を越え
るとオゾンは自己分解してしまい、オゾンによる酸化作
用を望むことができなくなる。したがって、形成される
酸化膜厚は温度に対し、ピークを持つ曲線となる。
Here, the reason why the heating temperature and the ozone concentration are changed will be described in more detail as follows. That is, as shown in FIG. 3, the decomposition of ozone has a strong temperature characteristic, and when the temperature exceeds 300 ° C., the ozone is self-decomposed, so that the oxidizing effect of ozone cannot be expected. Therefore, the formed oxide film has a peak with respect to the temperature.

【0023】また、被処理部材を均一に加熱した場合に
は、図4に示すように、時間の経過とともに、すなわち
入口側と出口側とでは、オゾン濃度が変化する。このた
め、オゾン濃度(C)をパラメータとした時の時間と酸
化膜厚との関係を示すと、図5のようになる。すなわ
ち、酸化時間を一定にした場合、オゾン濃度(C)に応
じて形成される酸化膜厚(A)が決まる。
When the member to be processed is heated uniformly, as shown in FIG. 4, the ozone concentration changes over time, that is, between the inlet side and the outlet side. Therefore, the relationship between the time when the ozone concentration (C) is used as a parameter and the oxide film thickness is as shown in FIG. That is, when the oxidation time is constant, the oxide film thickness (A) to be formed is determined according to the ozone concentration (C).

【0024】したがって、図6に示すように、被処理部
材の表面に均一な膜厚(A)の酸化皮膜を形成する場合
には、オゾン濃度(C)が高い部分(例えば、配管部材
の場合には、入口側)では、加熱温度(T)を低温に保
持するとともに、オゾン濃度(C)が低い部分(例え
ば、配管部材の場合には、出口側)では、加熱温度
(T)を高温に保持すればよい。
Therefore, as shown in FIG. 6, when an oxide film having a uniform thickness (A) is formed on the surface of the member to be processed, a portion having a high ozone concentration (C) (for example, a pipe member) At the inlet side), the heating temperature (T) is maintained at a low temperature, and at a portion where the ozone concentration (C) is low (for example, in the case of a pipe member, at the outlet side), the heating temperature (T) is increased. Should be kept.

【0025】さらに、具体例について説明すると、ステ
ンレス鋼製の配管部材(SUS316L,管径が20
A,長さ2m)の内壁面に、酸化皮膜を形成する場合、
濃度が50000ppmのオゾンを含む酸素ガスを1リットル/
分の割合で流すとともに、加熱温度を、入口側では200
℃に、出口側では250 ℃に保持すると、管内壁面に形
成される酸化皮膜の膜厚のばらつきを10%以内に納める
ことができた。
Further, a specific example will be described. A stainless steel pipe member (SUS316L, having a pipe diameter of 20 mm) is used.
A, When forming an oxide film on the inner wall surface of 2m length,
1 liter of oxygen gas containing 50,000 ppm ozone
Minutes, and the heating temperature is set to 200 on the inlet side.
When the temperature was maintained at 250 ° C on the outlet side, the variation in the thickness of the oxide film formed on the inner wall of the tube could be kept within 10%.

【0026】なお、入口側および出口側の温度が250
℃となるような均一加熱を行うと、酸化皮膜の厚さのば
らつきが10%を越えてしまった。次に、本発明の第2の
実施例を図7に基づき説明する。
The temperature on the inlet and outlet sides is 250
When uniform heating was performed to reach ℃, the thickness variation of the oxide film exceeded 10%. Next, a second embodiment of the present invention will be described with reference to FIG.

【0027】本第2の実施例においては、図7に示すよ
うに、ステンレス鋼製の配管部材11を所定温度に均一
に加熱しておき、その内壁面にオゾンの供給パイプ12
を挿入して、その先端部から所定濃度のオゾンを含む酸
素ガスaを、被処理面に沿って吹き出すとともに、その
供給パイプ12を内壁面に沿って矢印bにて示すように
順次移動させる処理方法である。
In the second embodiment, as shown in FIG. 7, a pipe member 11 made of stainless steel is uniformly heated to a predetermined temperature, and an ozone supply pipe 12
Is inserted, and oxygen gas a containing a predetermined concentration of ozone is blown out from the tip thereof along the surface to be processed , and the supply pipe 12 is sequentially moved along the inner wall surface as shown by arrow b. Is the way.

【0028】このように、オゾンを含んだ酸素ガスaを
配管部材11の内壁面に供給する供給パイプ12を、内
壁面に沿って移動させるようにしたので、内壁面に吹き
出されたオゾンの濃度が一定となり、したがって内壁面
に形成される酸化皮膜の膜厚も均一になる。
As described above, since the supply pipe 12 for supplying the oxygen gas a containing ozone to the inner wall surface of the pipe member 11 is moved along the inner wall surface, the concentration of ozone blown out to the inner wall surface is increased. Is constant, and the thickness of the oxide film formed on the inner wall surface is also uniform.

【0029】ここで、具体例について説明すると、ステ
ンレス鋼製の配管部材(SUS316L,管径が20
A,長さ2m)の内壁面に酸化皮膜を形成する場合、外
径が12mmで、内径が8mmのガラスパイプを配管部材の内
部に挿入するとともに、第1の実施例と同様に、所定濃
度のオゾンを含む酸素ガスを所定量で吹き出させ、かつ
このガラスパイプを1cm/分の速度でもって移動させな
がら、2時間の酸化処理を行った。
Here, a specific example will be described. A stainless steel pipe member (SUS316L, pipe diameter of 20 mm) is used.
A, when an oxide film is formed on the inner wall surface having a length of 2 m), a glass pipe having an outer diameter of 12 mm and an inner diameter of 8 mm is inserted into the inside of the pipe member, and a predetermined concentration is formed in the same manner as in the first embodiment. An oxygen gas containing ozone was blown out in a predetermined amount, and the glass pipe was moved at a speed of 1 cm / min to perform an oxidation treatment for 2 hours.

【0030】この場合も、配管部材の内壁面に形成され
る酸化皮膜の膜厚のばらつきを10%以内に納めることが
できた。次に、本発明の第3の実施例を説明する。
Also in this case, the variation in the thickness of the oxide film formed on the inner wall surface of the piping member could be kept within 10%. Next, a third embodiment of the present invention will be described.

【0031】上記第2の実施例においては、オゾンを含
む酸化ガスを酸化処理を行う箇所まで導くようにした
が、本第3の実施例では、図8に示すように、配管部材
21を部分的に加熱するリングヒータ22を、所定速度
でもって例えば矢印c方向に移動させ、すなわち加熱箇
所を移動させるようにしたものである。
In the above-described second embodiment, the oxidizing gas containing ozone is guided to the position where the oxidation treatment is performed. In the third embodiment, as shown in FIG. The ring heater 22 to be heated is moved at a predetermined speed, for example, in the direction of the arrow c, that is, the heated portion is moved.

【0032】勿論、加熱中においては、配管部材21内
に、所定濃度のオゾンを含む酸化ガスが、被処理面に沿
って流されている。この場合、被処理箇所だけが常に一
定の温度に維持されることになるため、やはり配管部材
の内壁面に形成される酸化皮膜の膜厚のばらつきを所定
範囲内に納めることができる。
Of course, during the heating , an oxidizing gas containing a predetermined concentration of ozone is introduced into the pipe member 21 along the surface to be processed.
Has been washed away. In this case, since only the portion to be treated is always maintained at a constant temperature, the variation in the thickness of the oxide film formed on the inner wall surface of the pipe member can be kept within a predetermined range.

【0033】次に、本発明の第4の実施例を説明する。
本第4の実施例では、図9に示すように、配管部材31
内に供給するオゾンを含む酸化ガスaの供給方向、すな
わち流す方向をその途中で切り換えるようにしたもので
ある。なお、図9中、32は加熱ヒータである。
Next, a fourth embodiment of the present invention will be described.
In the fourth embodiment, as shown in FIG.
The supply direction of the oxidizing gas a containing ozone to be supplied into the inside, that is, the flowing direction is switched midway. In FIG. 9, reference numeral 32 denotes a heater.

【0034】すなわち、最初は、図9の実線にて示すよ
うに、酸化ガスaを一端側から他端側に向かって流しな
がら酸化処理を行い、所定時間経過した後は、破線にて
示すように、酸化ガスaを他端側から一端側に所定時間
だけ流しながら酸化処理を行う。
That is, first, as shown by the solid line in FIG. 9, the oxidizing treatment is performed while flowing the oxidizing gas a from one end to the other end, and after a lapse of a predetermined time, as shown by the broken line. Next, the oxidation treatment is performed while flowing the oxidizing gas a from the other end to the one end for a predetermined time.

【0035】このように、オゾンを含む酸化ガスの流す
方向を切り換えることにより、一定方向に流した場合に
生じる酸化皮膜の厚みの変化を互いに補うことになり、
全体として見た場合には、形成される酸化皮膜の膜厚を
均一にすることができる。
As described above, by changing the flowing direction of the oxidizing gas containing ozone, the change in the thickness of the oxide film caused when the oxidizing gas flows in a certain direction is compensated for each other.
When viewed as a whole, the thickness of the oxide film to be formed can be made uniform.

【0036】[0036]

【発明の効果】以上のように本発明の第1の金属表面酸
化処理方法によると、金属部材にオゾンを含む酸素ガス
を接触させて、その表面に酸化皮膜を形成する際に、加
熱された金属部材の被処理面に沿って酸素ガスを吹き出
させるとともに、供給する酸素ガスの吹出口から遠くな
るにしたがって被処理面の温度が高くなるようにしてい
るので、金属部材の表面に形成される金属皮膜の厚さを
全体に亘ってほぼ均一にすることができる。
As described above, according to the first metal surface oxidation treatment method of the present invention, the oxygen gas containing ozone is contained in the metal member.
Contact to form an oxide film on the surface.
Oxygen gas is blown out along the surface of the heated metal member
And keep it away from the oxygen gas outlet
The temperature of the surface to be treated increases as
Therefore, the thickness of the metal film formed on the surface of the metal member can be made substantially uniform throughout.

【0037】また、上記第2の金属表面酸化処理方法に
よると、金属部材にオゾンを含む酸素ガスを接触させ
て、その表面に酸化皮膜を形成する際に、加熱された金
属部材の被処理面に沿って酸素ガスを吹き出させるとと
もに、酸素ガスの供給吹出口を、金属部材の被処理面に
沿って順次移動させることにより、酸化箇所のオゾン濃
度を一定に維持するようにしているので、金属部材の表
面に形成される金属皮膜の厚さを全体に亘ってほぼ均一
にすることができる。
According to the second metal surface oxidation treatment method, an oxygen gas containing ozone is brought into contact with the metal member.
To form an oxide film on the surface.
When oxygen gas is blown out along the surface of the metal member
In particular, since the supply outlet of the oxygen gas is sequentially moved along the surface to be processed of the metal member, the ozone concentration at the oxidized portion is kept constant, so that the oxygen gas is formed on the surface of the metal member. The thickness of the metal film can be made substantially uniform throughout.

【0038】また、上記第3の金属表面酸化処理方法に
よると、金属部材にオゾンを含む酸素ガスを接触させ
て、その表面に酸化皮膜を形成する際に、加熱された金
属部材の被処理面に沿って酸素ガスを吹き出させるとと
もに、金属部材の加熱部分を順次移動させることによ
り、酸化箇所の温度を一定に維持するようにしているの
で、金属部材の表面に形成される金属皮膜の厚さを全体
に亘ってほぼ均一にすることができる。
According to the third metal surface oxidation treatment method, an oxygen gas containing ozone is brought into contact with the metal member.
To form an oxide film on the surface.
When oxygen gas is blown out along the surface of the metal member
In addition, the temperature of the oxidized portion is kept constant by sequentially moving the heated portion of the metal member, so that the thickness of the metal film formed on the surface of the metal member is substantially uniform throughout. Can be

【0039】さらに、上記第4の金属表面酸化処理方法
によると、酸素ガスの供給方向を途中で切り換えること
により、オゾン濃度が変化している場合でも、金属部材
の表面に形成される金属皮膜の厚さを全体に亘ってほぼ
均一にすることができる。金属部材の被処理面に形成さ
れる酸化膜厚を一定にすることができる。
Further, according to the fourth metal surface oxidation treatment method, even if the ozone concentration is changed, the metal film formed on the surface of the metal member can be changed by switching the supply direction of the oxygen gas in the middle. The thickness can be substantially uniform throughout. The oxide film thickness formed on the surface to be processed of the metal member can be made constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の金属表面酸化処理方法
を説明する要部断面図である。
FIG. 1 is a sectional view of a main part for explaining a metal surface oxidation treatment method according to a first embodiment of the present invention.

【図2】同第1の実施例における入口からの距離と加熱
温度およびオゾン濃度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a distance from an inlet, a heating temperature, and an ozone concentration in the first embodiment.

【図3】同第1の実施例における加熱温度と酸化膜厚お
よびオゾン濃度との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a heating temperature, an oxide film thickness and an ozone concentration in the first embodiment.

【図4】同第1の実施例における加熱温度をパラメータ
とした時の時間とオゾン濃度との関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between time and ozone concentration when a heating temperature is used as a parameter in the first embodiment.

【図5】同第1の実施例におけるオゾン濃度をパラメー
タとした時の時間と酸化膜厚との関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between time and oxide film thickness when the ozone concentration is used as a parameter in the first embodiment.

【図6】同第1の実施例における酸化皮膜の膜厚をパラ
メータとした時のオゾン濃度と加熱温度との関係を示す
グラフである。
FIG. 6 is a graph showing the relationship between the ozone concentration and the heating temperature when the thickness of the oxide film in the first embodiment is used as a parameter.

【図7】本発明の第2の実施例の金属表面酸化処理方法
を説明する要部断面図である。
FIG. 7 is a sectional view of a principal part explaining a metal surface oxidation treatment method according to a second embodiment of the present invention.

【図8】本発明の第3の実施例の金属表面酸化処理方法
を説明する要部側面図である。
FIG. 8 is a main part side view for explaining a metal surface oxidation treatment method according to a third embodiment of the present invention.

【図9】本発明の第4の実施例の金属表面酸化処理方法
を説明する要部側面図である。
FIG. 9 is a main part side view for explaining a metal surface oxidation treatment method according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

a 酸化ガス 1 配管部材 11 配管部材 21 配管部材 31 配管部材 a Oxidizing gas 1 Piping member 11 Piping member 21 Piping member 31 Piping member

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−274254(JP,A) 特開 昭63−310118(JP,A) 特開 平3−134153(JP,A) 特開 昭55−8441(JP,A) 特開 昭63−238259(JP,A) 特公 昭62−2624(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C23C 8/06 - 8/34 C23C 10/06 - 10/16 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-3-274254 (JP, A) JP-A-63-310118 (JP, A) JP-A-3-134153 (JP, A) JP-A 55- 8441 (JP, A) JP-A-63-238259 (JP, A) JP-B-62-2624 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 8/06-8 / 34 C23C 10/06-10/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属部材にオゾンを含む酸素ガスを接触さ
せて、その表面に酸化皮膜を形成する際に、加熱された
金属部材の被処理面に沿って酸素ガスを吹き出させると
ともに、酸素ガスの吹出口から遠くなるにしたがって被
処理面の温度を高くして均一な酸化皮膜を形成すること
を特徴とする金属表面酸化処理方法。
An oxygen gas containing ozone is brought into contact with a metal member.
To form an oxide film on the surface.
When oxygen gas is blown out along the surface of the metal member
In both cases, as the distance from the oxygen gas outlet increases,
A metal surface oxidation treatment method comprising forming a uniform oxide film by increasing the temperature of a treated surface .
【請求項2】金属部材にオゾンを含む酸素ガスを接触さ
せて、その表面に酸化皮膜を形成する際に、加熱された
金属部材の被処理面に沿って酸素ガスを吹き出させると
ともに、酸素ガスの供給吹出口を、金属部材の被処理面
に沿って順次移動させることを特徴とする金属表面酸化
処理方法。
2. An oxygen gas containing ozone is brought into contact with a metal member.
To form an oxide film on the surface.
When oxygen gas is blown out along the surface of the metal member
In both cases, a metal surface oxidation treatment method characterized by sequentially moving an oxygen gas supply outlet along a surface to be treated of a metal member.
【請求項3】金属部材にオゾンを含む酸素ガスを接触さ
せて、その表面に酸化皮膜を形成する際に、加熱された
金属部材の被処理面に沿って酸素ガスを吹き出させると
ともに、金属部材の加熱部分を順次移動させることを特
徴とする金属表面酸化処理方法。
3. An oxygen gas containing ozone is brought into contact with a metal member.
To form an oxide film on the surface.
When oxygen gas is blown out along the surface of the metal member
In both cases, the metal surface oxidation treatment method is characterized by sequentially moving a heated portion of the metal member.
【請求項4】所定の温度下で金属部材にオゾンを含む酸
素ガスを接触させて、その表面に酸化皮膜を形成する際
に、酸素ガスの供給方向を、その途中で逆方向に切り換
えることを特徴とする金属表面酸化処理方法。
4. An oxygen gas containing ozone is brought into contact with a metal member at a predetermined temperature to form an oxide film on the surface of the metal member. Characteristic metal surface oxidation treatment method.
JP1913493A 1993-02-08 1993-02-08 Metal surface oxidation treatment method Expired - Fee Related JP2925876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1913493A JP2925876B2 (en) 1993-02-08 1993-02-08 Metal surface oxidation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1913493A JP2925876B2 (en) 1993-02-08 1993-02-08 Metal surface oxidation treatment method

Publications (2)

Publication Number Publication Date
JPH06235058A JPH06235058A (en) 1994-08-23
JP2925876B2 true JP2925876B2 (en) 1999-07-28

Family

ID=11990997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1913493A Expired - Fee Related JP2925876B2 (en) 1993-02-08 1993-02-08 Metal surface oxidation treatment method

Country Status (1)

Country Link
JP (1) JP2925876B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987754B2 (en) * 1996-01-17 1999-12-06 岩谷産業株式会社 Passivation treatment method for high purity gas in piping
JP4505097B2 (en) * 2000-02-25 2010-07-14 岩谷産業株式会社 Metal surface passivation treatment method
CN109680242A (en) * 2019-01-22 2019-04-26 江苏飞达环保科技有限公司 A kind of steel and iron parts surface rust protection processing system

Also Published As

Publication number Publication date
JPH06235058A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
JP3261683B2 (en) Semiconductor cleaning method and cleaning apparatus
JP3576598B2 (en) Method for forming oxidation passivation film, ferritic stainless steel, fluid supply system, and fluid contact parts
EP0761597A1 (en) Cleaning of metallic contaminants from the surface of polycrystalline silicon
IE922721A1 (en) Halogenated carboxylic acid cleaning agents for fabricating¹integrated circuits and a process for using the same
US5789086A (en) Stainless steel surface having passivation film
EP1071835B1 (en) Method for developing an enhanced oxide coating on a component formed from austenitic stainless steel or nickel alloy steel
JP3433452B2 (en) Internal oxidation treatment method for ferritic stainless steel pipe
JP2925876B2 (en) Metal surface oxidation treatment method
US5439596A (en) Method of producing pure water, system therefor and cleaning method therefor
EP0738684B1 (en) Ozone generating apparatus
JPH04183846A (en) Stainless steel material for high purity gas and its production
EP0146115B1 (en) Process for producing aluminum material for use in vacuum
JP3286697B2 (en) Method and process apparatus for forming an oxide passivation film on a weld
JP2918385B2 (en) Surface treatment method for stainless steel members
US5906688A (en) Method of forming a passivation film
JP3864585B2 (en) Method of oxidizing the inner surface of stainless steel pipe
JPH0971812A (en) Dry corrosion resistance heat treatment of stainless steel and stainless steel
JP3255998B2 (en) Surface treatment method and surface treatment device
WO1995018880A1 (en) Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
US5591267A (en) Reduced pressure device
JP2739538B2 (en) Production method of surface modified metal body with low desorption moisture
JPH10280123A (en) Stainless steel member for ozone-containing ultrapure water and its production
JP3018029B2 (en) Metal passivation treatment method
JP2616830B2 (en) Stainless steel material with dense surface
JPH06108224A (en) Surface treatment of stainless steel member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees