JP2517151B2 - Measuring method of substrate concentration by biosensor - Google Patents

Measuring method of substrate concentration by biosensor

Info

Publication number
JP2517151B2
JP2517151B2 JP2088519A JP8851990A JP2517151B2 JP 2517151 B2 JP2517151 B2 JP 2517151B2 JP 2088519 A JP2088519 A JP 2088519A JP 8851990 A JP8851990 A JP 8851990A JP 2517151 B2 JP2517151 B2 JP 2517151B2
Authority
JP
Japan
Prior art keywords
electrode
measuring
biosensor
voltage
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2088519A
Other languages
Japanese (ja)
Other versions
JPH03287064A (en
Inventor
真理子 河栗
俊彦 吉岡
史朗 南海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2088519A priority Critical patent/JP2517151B2/en
Publication of JPH03287064A publication Critical patent/JPH03287064A/en
Application granted granted Critical
Publication of JP2517151B2 publication Critical patent/JP2517151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、バイオセンサを用いて生体試料中の特定成
分(基質濃度)に対応した酸化還元電流を電気化学的に
測定することにより、特定成分を定量する方法に係る。
TECHNICAL FIELD The present invention relates to the determination of a specific component by electrochemically measuring a redox current corresponding to the specific component (substrate concentration) in a biological sample using a biosensor. It relates to the method of quantification.

従来の技術 従来、血液などの生体試料中の特定成分について、試
料液の希釈や撹拌などを行なうことなく簡易に定量でき
るセンサとして、第1図に示すようなバイオセンサが提
案されている。このバイオセンサは、ポリエチレンテレ
フタレートからなる絶縁性の基板1に、スクリーン印刷
により導電性カーボンペーストを印刷し、加熱乾燥する
ことにより、対極2,測定極3からなる電極系を形成す
る。つぎに、各々の電極の電気化学的に作用する部分と
なる対極反応部2′と1mm2の大きさの測定極反応部3′
を残して上記電極系を覆うように絶縁性ペーストを印加
被着し、加熱硬化処理をして絶縁層4を形成する。その
後、対極反応部2′と測定極反応部3′を覆うように親
水性高分子と酸化還元酵素と電子受容体とからなる酵素
反応層5を形成したものである。このようにして形成さ
れた酵素反応層5へ試料液を滴下すると、酵素反応層5
の中に含まれる酸化還元酵素と電子受容体が試料液に溶
解し、試料液中の基質との間で酵素反応が進行し電子受
容体が還元される。反応終了後、上記電極系2′と3′
に電圧を印加することにより、酵素反応により還元され
た電子受容体が電気化学的に酸化され、このとき得られ
る酸化電流値から試料液中の基質濃度を求めていた。
2. Description of the Related Art Conventionally, a biosensor shown in FIG. 1 has been proposed as a sensor that can easily quantify a specific component in a biological sample such as blood without diluting or stirring the sample solution. This biosensor forms an electrode system composed of a counter electrode 2 and a measurement electrode 3 by printing a conductive carbon paste by screen printing on an insulating substrate 1 made of polyethylene terephthalate and heating and drying. Next, a counter electrode reaction part 2'which becomes an electrochemically acting part of each electrode and a measurement electrode reaction part 3'having a size of 1 mm 2.
The insulating layer 4 is formed by applying an insulating paste so as to cover the electrode system while leaving the above, and performing heat curing treatment. After that, an enzyme reaction layer 5 composed of a hydrophilic polymer, an oxidoreductase and an electron acceptor is formed so as to cover the counter electrode reaction part 2'and the measurement electrode reaction part 3 '. When the sample solution is dropped onto the enzyme reaction layer 5 thus formed, the enzyme reaction layer 5
The redox enzyme and the electron acceptor contained in the solution dissolve in the sample solution, and the enzyme reaction proceeds with the substrate in the sample solution to reduce the electron acceptor. After completion of the reaction, the above electrode systems 2'and 3 '
When a voltage is applied to the substrate, the electron acceptor reduced by the enzymatic reaction is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする課題 このような従来のバイオセンサでは、被測定物質と酵
素とを予め反応させ、酵素反応の終了時点から測定を開
始するので、測定結果が得られるまでに長時間を要する
という問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In such a conventional biosensor, the substance to be measured and the enzyme are pre-reacted, and the measurement is started from the end point of the enzyme reaction. Therefore, it takes a long time to obtain the measurement result. There was a problem.

本発明はこのような課題を解決するもので、短時間に
正確に測定できる基質濃度の測定方法を提供することを
目的とするものである。
The present invention solves such a problem, and an object of the present invention is to provide a substrate concentration measuring method capable of accurately measuring in a short time.

課題を解決するための手段 このような課題を解決するために本発明の測定方法
は、絶縁性の基板上に測定極と対極とからなる電極系を
設け、この電極系の表面に酸化還元酵素と親水性高分子
及び電子受容体からなる酵素反応層を設け、この酵素と
電子受容体と試料液との反応により生成する物質の濃度
変化を電気化学的に電極系で検知して基質濃度を測定す
るバイオセンサにおいて、測定極と対極との間に一定の
直流電圧を印加しつつ酵素反応層上に試料液を供給し、
流れる電流を測定するものである。
Means for Solving the Problems In order to solve such problems, the measuring method of the present invention provides an electrode system composed of a measuring electrode and a counter electrode on an insulating substrate, and a redox enzyme on the surface of the electrode system. An enzyme reaction layer consisting of a hydrophilic polymer and an electron acceptor is provided, and the change in the concentration of the substance produced by the reaction between this enzyme, the electron acceptor and the sample solution is electrochemically detected by the electrode system to determine the substrate concentration. In the biosensor to be measured, a sample liquid is supplied onto the enzyme reaction layer while applying a constant DC voltage between the measurement electrode and the counter electrode,
It measures the flowing current.

さらには、一定の直流電圧を印加しつつ前記酵素反応
層上に試料液を供給し、次に前記試料液の供給を検知後
一旦電圧の印加を止め、一定時間後に再度定電圧を印加
し流れる電流を測定するものである。
Furthermore, the sample liquid is supplied onto the enzyme reaction layer while applying a constant DC voltage, then the application of the voltage is temporarily stopped after the supply of the sample liquid is detected, and the constant voltage is applied again after a certain period of time to flow. It measures the current.

作用 本発明によれば、試料液の供給開始時期が正確に検出
でき、さらに、短時間に基質濃度の測定が可能となっ
た。また、一度電圧を印加することにより、試料中に含
まれている還元性の物質を電解酸化して除去することが
可能なため、測定の精度を向上させることが可能となっ
た。
Effect According to the present invention, the time when the supply of the sample liquid is started can be accurately detected, and further, the substrate concentration can be measured in a short time. In addition, since the reducing substance contained in the sample can be electrolytically oxidized and removed by once applying the voltage, the accuracy of the measurement can be improved.

実 施 例 以下、本発明の基質濃度の測定方法の一実施例につい
てグルコースセンサをもとに説明する。
Example An example of the substrate concentration measuring method of the present invention will be described below with reference to a glucose sensor.

(実施例1) 第1図および第2図は、グルコースセンサの構成につ
いて示したものである。第1図はセンサの斜視図、第2
図は第1図のA−Bで示す線で切断したときの縦断面図
である。ポリエチレンテレフタレートからなる絶縁性の
基板1に、スクリーン印刷により導電性カーボンペース
トを印刷し、加熱乾燥することにより、対極2,測定極3
からなる電極系を形成する。つぎに、各々の電極の電気
化学的に作用する部分となる対極反応部2′と1mm2の大
きさの測定極反応部3′(1mm2)を露出させるように絶
縁性ペースト印刷し、加熱硬化処理をして絶縁層4を形
成する。この対極反応部2′と測定極反応部3′の表面
を覆うようにセルロース系の親水性高分子の一種である
カルボキシメチルセルロース(CMC)の0.5重量%水溶液
を塗布乾燥し、さらに、CMCの0.5重量%水溶液1gに酸化
酵素としてグルコースオキシダーゼ(GOD)10mgと電子
受容体のフェリシアン化カリウム20mgを溶かした溶液を
滴下し、40℃で10分間乾燥して酵素反応層5を形成し
た。対極を基準にして測定極に+0.5Vの定電圧を印加し
つつ、酵素反応層5にグルコース水溶液を滴下すると酸
化電流が流れる。この電流は試料中のグルコースがグル
コースオキシダーゼにより酸化される際フェリシアン化
カリウムがフェロシアン化カリウムに還元され、このフ
ェロシアン化カリウムが電極上で電解酸化されるために
流れるものである。この酸化電流、例えばピーク電流値
とグルコース濃度の間に相関関係が得られ、グルコース
濃度が500mg/dlまで良好な直線性を示した。印加電圧は
+0.5Vに設定したが、電子受容体の還元体が酸化され、
かつガス発生などを伴わない電圧であればよい。酸化電
流のピークは遅くとも5秒以内に得られるので、従来の
バイオセンサで反応終了に1〜2分必要としていた測定
が、大幅に測定時間を短縮できた。なお、ピーク電流以
外に、電流が最大になるまで流れた総電気量を測定した
結果もグルコース濃度と相関しセンサへの試料の供給の
仕方がバラついても総電気量の再現性は良好であった。
Example 1 FIGS. 1 and 2 show the structure of a glucose sensor. FIG. 1 is a perspective view of the sensor, and FIG.
The drawing is a vertical sectional view taken along the line A-B in FIG. By printing a conductive carbon paste by screen printing on an insulating substrate 1 made of polyethylene terephthalate and heating and drying, a counter electrode 2 and a measurement electrode 3
To form an electrode system. Next, insulating paste printing to expose the 'size of the measuring electrode reaction portion 3 with 1 mm 2' counter reaction unit 2 to be electrochemically acting portion of each of the electrodes (1 mm 2), the heating The insulating layer 4 is formed by performing a curing process. A 0.5% by weight aqueous solution of carboxymethylcellulose (CMC), which is a kind of cellulosic hydrophilic polymer, is applied and dried so as to cover the surfaces of the counter electrode reaction part 2'and the measurement electrode reaction part 3 ', and 0.5% of CMC is further applied. A solution prepared by dissolving 10 mg of glucose oxidase (GOD) as an oxidase and 20 mg of potassium ferricyanide as an electron acceptor was added dropwise to 1 g of a weight% aqueous solution and dried at 40 ° C. for 10 minutes to form an enzyme reaction layer 5. When a glucose aqueous solution is dropped on the enzyme reaction layer 5 while applying a constant voltage of +0.5 V to the measurement electrode based on the counter electrode, an oxidation current flows. This current flows because potassium ferricyanide is reduced to potassium ferrocyanide when glucose in the sample is oxidized by glucose oxidase, and this potassium ferrocyanide is electrolytically oxidized on the electrode. A correlation was obtained between this oxidation current, for example, the peak current value and the glucose concentration, and good linearity was exhibited up to a glucose concentration of 500 mg / dl. The applied voltage was set to + 0.5V, but the reduced form of the electron acceptor was oxidized,
Moreover, any voltage may be used as long as it does not generate gas. Since the peak of the oxidation current can be obtained within 5 seconds at the latest, the measurement time required by the conventional biosensor for 1 to 2 minutes to complete the reaction could be greatly shortened. In addition to the peak current, the result of measuring the total amount of electricity flowing until the current reaches its maximum is also correlated with the glucose concentration, and the reproducibility of the total amount of electricity is good even if the method of supplying the sample to the sensor varies. It was

(実施例2) 実施例1と同様にセンサを形成し、対極を基準にして
測定極にアノード方向へ+0.5Vの定電圧を印加する。グ
ルコース水溶液を滴下し、酸化電流の立ち上がりを検出
後、電圧の印加をやめ、10秒後にもう一度+0.5Vの電圧
を0.1秒印加し、酸化電流の最大値を測定した。さら
に、50秒後、すなわち、測定開始から1分後に+0.5Vの
電圧を同様に印加し5秒後の電流値を測定した。10秒後
の最大電流値と1分後の最大電流値は両者ともグルコー
ス濃度と相関があり、10秒後の応答は700mg/dl、1分後
の応答は1000mg/dlの高濃度まで直線性があった。
(Example 2) A sensor is formed in the same manner as in Example 1, and a constant voltage of +0.5 V is applied to the measurement electrode in the anode direction based on the counter electrode. An aqueous glucose solution was dropped, and after the rise of the oxidation current was detected, the voltage application was stopped, and after 10 seconds, a voltage of +0.5 V was applied again for 0.1 second to measure the maximum value of the oxidation current. Furthermore, after 50 seconds, that is, 1 minute after the start of measurement, a voltage of +0.5 V was applied in the same manner, and the current value after 5 seconds was measured. The maximum current value after 10 seconds and the maximum current value after 1 minute both correlate with glucose concentration. The response after 10 seconds is 700 mg / dl, and the response after 1 minute is linear up to a high concentration of 1000 mg / dl. was there.

実施例1の場合よりも直線性がのびたのは、フェリシ
アン化カリウムが溶解しながら反応しているため、5秒
では高濃度のグルコースに対応するフェリシアン化カリ
ウムが供給できなかったのを10秒待つことにより、より
高濃度のフェリシアン化カリウムを供給できたためと考
えられる。さらに、血液のような粘度の高い試料に対し
ては、酸化電流の立ち上がりがばらつき、実施例1の測
定方法では再現性が悪かった。これは、酸素反応層の溶
解速度が粘度の高い試料によりばらついたためと考えら
れる。しかし、実施例2のように10秒間測定を待つこと
により、かなり再現性を向上させることができた。
The linearity was extended more than in the case of Example 1 because potassium ferricyanide was reacting while being dissolved, and after waiting 10 seconds, potassium ferricyanide corresponding to a high concentration of glucose could not be supplied at 5 seconds. It is considered that the higher concentration of potassium ferricyanide could be supplied. Further, for a sample having a high viscosity such as blood, the rising of the oxidation current was uneven, and the reproducibility was poor in the measuring method of Example 1. It is considered that this is because the dissolution rate of the oxygen reaction layer varied depending on the sample having high viscosity. However, by waiting the measurement for 10 seconds as in Example 2, the reproducibility could be improved considerably.

10秒後のデータをそのままグルコース濃度に換算して
もよいが、500mg/dl以上と検知した場合は、上記構成の
グルコースセンサでは反応終了まで1分30秒程度必要な
ため、測定時間をのばすようにすると、より精度の高い
測定が可能となる。すなわち、高濃度であると判定(測
定)した場合には測定時間を延長してから再度電圧を印
加して測定することにより、より精度の高い測定値を得
ることができるさらに、試料中にアスコルビン酸のよう
な還元性の物質が含まれている場合、電極上でフェロシ
アン化カリウムと同様酸化されて誤差の要因となるが、
10秒後に一度電圧を印加して酸化することにより、1分
後の測定への影響を除去することが可能となった。
The data after 10 seconds may be directly converted to glucose concentration, but if it is detected as 500 mg / dl or more, the glucose sensor with the above configuration requires about 1 minute 30 seconds to complete the reaction, so extend the measurement time. When it is set, more accurate measurement becomes possible. In other words, when it is determined (measured) that the concentration is high, the measurement time can be extended and the voltage can be applied again to perform measurement to obtain a more accurate measured value. When a reducing substance such as an acid is contained, it is oxidized on the electrode like potassium ferrocyanide and causes an error.
It was possible to remove the influence on the measurement after 1 minute by applying a voltage once to oxidize after 10 seconds.

このように、試料を滴下する前に電圧を印加しておく
ことにより、試料がいつセンサに供給されたかを検知で
き、10秒間の待機時間も正確にできるため、スタート時
を指示する必要もなく測定の精度が向上した。
In this way, by applying the voltage before dropping the sample, it is possible to detect when the sample is supplied to the sensor, and the waiting time of 10 seconds can be accurate, so there is no need to indicate the start time. The accuracy of measurement is improved.

なお、本発明のバイオセンサは上記実施例に示したグ
ルコースセンサに限らず、アルコールセンサやコレステ
ロールセンサなど、酸化還元酵素の関与する系に用いる
ことができる。酸化還元酵素として、実施例では、グル
コースオキシダーゼを用いたが、他の酵素、たとえばア
ルコールオキシダーゼ,コレステロールオキシダーゼ,
キサンチンオキシダーゼなども用いることができる。ま
た、電子受容体として、上記実施例に用いたフェリシア
ン化カリウムが安定に反応するので測定精度を高めるの
に適しているが、P−ベンゾキノンを使えば、反応速度
が大きいので高速化に適している。また、2,6−ジクロ
ロフェノールインドフェノール,メチレンブルー,フェ
ナジンメトサルフェート,β−ナフトキノン4−スルホ
ン酸カリウム,フェロセンなどが電子受容体として使用
できる。
The biosensor of the present invention is not limited to the glucose sensor shown in the above examples, but can be used in systems involving oxidoreductase such as alcohol sensor and cholesterol sensor. As the oxidoreductase, glucose oxidase was used in the examples, but other enzymes such as alcohol oxidase, cholesterol oxidase,
Xanthine oxidase can also be used. Further, potassium ferricyanide used in the above-mentioned examples stably reacts as an electron acceptor, so that it is suitable for increasing the measurement accuracy. However, if P-benzoquinone is used, the reaction rate is large and thus it is suitable for speeding up. . Also, 2,6-dichlorophenolindophenol, methylene blue, phenazine methosulfate, potassium β-naphthoquinone 4-sulfonate, ferrocene and the like can be used as the electron acceptor.

発明の効果 以上の実施例の説明からも明らかなように、本発明に
よれば、絶縁性の基板上に電極系を印刷し、酸化還元酵
素と親水性高分子と電子受容体とからなる酵素反応相を
形成したセンサにおいて、乾燥状態のセンサに定電圧を
印加しつつ、試料液をセンサに供給したときに流れる電
流を測定するもので、測定時間を10秒間と大幅に短縮で
きる。さらに、乾燥状態で電圧を印加しているため、試
料の供給時を電流の立ち上がりで検知でき、正確に時間
が検知できるため、測定の精度を高め、操作を簡易化で
きた。また、乾燥状態のセンサに電圧を印加しつつ試料
液の供給時を検知後、一旦電圧の印加を止め再度電圧を
印加して、流れる電流を測定することにより高濃度の試
料や血液のような粘度の高い試料に対しても10秒で測定
が可能となった。あるいは、10秒後の応答値をもとに、
測定時間の調整をすることにより試料供給1分後の測定
の精度を高めたり、試料中に存在して測定の際誤差要因
となる還元性の物質を10秒後に電圧を印加して電解除去
することも可能となった。
EFFECTS OF THE INVENTION As is clear from the description of the above embodiments, according to the present invention, an enzyme system comprising an oxidoreductase, a hydrophilic polymer and an electron acceptor is printed by printing an electrode system on an insulating substrate. In a sensor in which a reaction phase is formed, a constant voltage is applied to a sensor in a dry state, and a current flowing when a sample liquid is supplied to the sensor is measured. The measurement time can be significantly shortened to 10 seconds. Furthermore, since the voltage is applied in a dry state, the time when the sample is supplied can be detected by the rise of the current, and the time can be accurately detected. Therefore, the accuracy of measurement can be improved and the operation can be simplified. In addition, after detecting the supply of the sample solution while applying the voltage to the dry sensor, stop the application of the voltage and apply the voltage again to measure the flowing current. It was possible to measure even a highly viscous sample in 10 seconds. Alternatively, based on the response value after 10 seconds,
By adjusting the measurement time, the accuracy of the measurement 1 minute after the sample is supplied can be improved, or the reducing substance existing in the sample and causing an error in the measurement can be electrolytically removed by applying a voltage after 10 seconds. It became possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に用いるバイオセンサの斜視
図、第2図は第1図のバイオセンサのA−B線縦断面図
である。 1……基板、2……対極、2′……対極反応部、3……
測定極、3′……測定極反応部、4……絶縁層、5……
酵素反応層。
FIG. 1 is a perspective view of a biosensor used in one embodiment of the present invention, and FIG. 2 is a vertical sectional view taken along the line AB of the biosensor of FIG. 1 ... Substrate, 2 ... Counter electrode, 2 '... Counter electrode reaction part, 3 ...
Measuring electrode 3 '... Measuring electrode reaction part, 4 ... Insulating layer, 5 ...
Enzyme reaction layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性の基板上に、測定極と対極とからな
る電極系を設け、前記電極系の表面に酸化還元酵素と親
水性高分子及び電子受容体からなる酵素反応層を設け、
前記酵素と前記電子受容体と試料液との反応により生成
する物質の濃度変化を電気化学的に前記電極系で検知し
て前記基質濃度を測定するバイオセンサにおいて、前記
測定極と対極との間に一定の直流電圧を印加しつつ前記
酵素反応層上に試料液を供給し、流れる電流を測定する
バイオセンサによる基質濃度の測定方法。
1. An electrode system comprising a measuring electrode and a counter electrode is provided on an insulating substrate, and an enzyme reaction layer comprising an oxidoreductase, a hydrophilic polymer and an electron acceptor is provided on the surface of the electrode system.
In the biosensor for measuring the substrate concentration by electrochemically detecting the concentration change of the substance produced by the reaction of the enzyme, the electron acceptor and the sample liquid, between the measurement electrode and the counter electrode. A method for measuring a substrate concentration by a biosensor, in which a sample liquid is supplied onto the enzyme reaction layer while applying a constant DC voltage to the sample and the flowing current is measured.
【請求項2】絶縁性の基板上に、測定極と対極とからな
る電極系を設け、前記電極系の表面に酸化還元酵素と親
水性高分子及び電子受容体からなる酵素反応層を設け、
前記酵素と前記電子受容体と試料液との反応により生成
する物質の濃度変化を電気化学的に前記電極系で検知し
て前記基質濃度を測定するバイオセンサにおいて、前記
測定極と対極との間に一定の直流電圧を印加しつつ前記
酵素反応層上に試料液を供給し、次に前記試料液の供給
を検知後一旦電圧の印加を止め、一定時間後に再度定電
圧を印加し流れる電流を測定するバイオセンサによる基
質濃度の測定方法。
2. An electrode system comprising a measuring electrode and a counter electrode is provided on an insulating substrate, and an enzyme reaction layer comprising a redox enzyme, a hydrophilic polymer and an electron acceptor is provided on the surface of the electrode system.
In the biosensor for measuring the substrate concentration by electrochemically detecting the concentration change of the substance produced by the reaction of the enzyme, the electron acceptor and the sample liquid, between the measurement electrode and the counter electrode. The sample solution is supplied onto the enzyme reaction layer while applying a constant direct current voltage to the enzyme reaction layer, and then the application of the voltage is stopped once the supply of the sample solution is detected, and a constant voltage is applied again after a certain time to flow the current. A method for measuring a substrate concentration by a measuring biosensor.
JP2088519A 1990-04-03 1990-04-03 Measuring method of substrate concentration by biosensor Expired - Lifetime JP2517151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088519A JP2517151B2 (en) 1990-04-03 1990-04-03 Measuring method of substrate concentration by biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088519A JP2517151B2 (en) 1990-04-03 1990-04-03 Measuring method of substrate concentration by biosensor

Publications (2)

Publication Number Publication Date
JPH03287064A JPH03287064A (en) 1991-12-17
JP2517151B2 true JP2517151B2 (en) 1996-07-24

Family

ID=13945078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088519A Expired - Lifetime JP2517151B2 (en) 1990-04-03 1990-04-03 Measuring method of substrate concentration by biosensor

Country Status (1)

Country Link
JP (1) JP2517151B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960265B2 (en) * 1991-10-18 1999-10-06 松下電器産業株式会社 Biosensor and measurement method using the same
USRE44522E1 (en) 2001-09-14 2013-10-08 Arkray, Inc. Concentration measuring method, concentration test instrument, and concentration measuring apparatus
CN100516857C (en) 2002-10-31 2009-07-22 松下电器产业株式会社 Determination method for automatically identifying analyte liquid kind
US7763468B2 (en) 2003-10-29 2010-07-27 Arkray, Inc. Specimen analysis method and specimen analysis device
CN100427937C (en) * 2006-01-24 2008-10-22 南京师范大学 Online detecting method for concentration of high concentration acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2201248B (en) * 1987-02-24 1991-04-17 Ici Plc Enzyme electrode sensors

Also Published As

Publication number Publication date
JPH03287064A (en) 1991-12-17

Similar Documents

Publication Publication Date Title
JP3297630B2 (en) Biosensor
JP3267936B2 (en) Biosensor
CA2890945C (en) Gated amperometry
JPH02310457A (en) Biosensor
JP3102627B2 (en) Biosensor, quantitative method and quantitative device using the same
US6214612B1 (en) Cholesterol sensor containing electrodes, cholesterol dehydrogenase, nicotinamide adenine dinucleotide and oxidized electron mediator
JP2001183330A (en) Biosensor
JPS63317757A (en) Glucose sensor
JP2960265B2 (en) Biosensor and measurement method using the same
JP2000162176A (en) Measuring method and measuring device using biosensor
JP2658769B2 (en) Biosensor
JP3024394B2 (en) Biosensor and measurement method using the same
JP3267933B2 (en) Substrate quantification method
JP2517151B2 (en) Measuring method of substrate concentration by biosensor
JPH09274010A (en) Determination method for substrate
JP4352108B2 (en) Substrate quantification method
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JPH02245650A (en) Biosensor
US11255834B2 (en) Physical characteristic determination of a biological sample
JP2001249103A (en) Biosensor
JP2000081408A (en) Biosensor
JPH02157646A (en) Biosensor
JP2702818B2 (en) Biosensor and manufacturing method thereof
JP3078966B2 (en) Lactic acid sensor
JPH02102448A (en) Biosensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

EXPY Cancellation because of completion of term