JP2517098B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2517098B2
JP2517098B2 JP1015450A JP1545089A JP2517098B2 JP 2517098 B2 JP2517098 B2 JP 2517098B2 JP 1015450 A JP1015450 A JP 1015450A JP 1545089 A JP1545089 A JP 1545089A JP 2517098 B2 JP2517098 B2 JP 2517098B2
Authority
JP
Japan
Prior art keywords
air
array sensor
air conditioner
infrared
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1015450A
Other languages
Japanese (ja)
Other versions
JPH02197747A (en
Inventor
久仁 小川
良一 高山
信二 中
幸治 野村
佳弘 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1015450A priority Critical patent/JP2517098B2/en
Publication of JPH02197747A publication Critical patent/JPH02197747A/en
Application granted granted Critical
Publication of JP2517098B2 publication Critical patent/JP2517098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Air Conditioning Control Device (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機に関するものであり、特に吹き出
し風の方向や強度を自動的に制御して、常に快適空調空
間を維持できる空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner that can automatically control the direction and intensity of blown air to always maintain a comfortable air-conditioned space.

従来の技術 室内に於ける人の位置を検出して、吹き出し風の方向
を自動的に制御する装置の従来例としては、例えば特公
昭61−38778号に記載の装置(第1の従来例)がある。
これは、空気調和機の前面に設置した複数個の発光素子
と発光素子及び対象とする領域の壁面に設置した光反射
板とで構成されている。光の進行方向に障害物が無い場
合には、発光素子からの光が対応する方向の壁面の光反
射板で反射され受光素子に戻ってくる。この受光素子の
信号の有無により、障害物の存在とその方向を検出し、
空気調和機の送風ファンからの吹き出し風の方向を調節
するための偏向板を自動的に制御している。
2. Description of the Related Art As a conventional example of a device for detecting the position of a person in a room and automatically controlling the direction of blown air, for example, a device described in Japanese Patent Publication No. 61-38778 (first conventional example). There is.
This is composed of a plurality of light emitting elements installed on the front surface of the air conditioner, a light emitting element and a light reflecting plate installed on the wall surface of the target area. When there is no obstacle in the light traveling direction, the light from the light emitting element is reflected by the light reflecting plate on the wall surface in the corresponding direction and returns to the light receiving element. The presence or absence of an obstacle and its direction are detected by the presence or absence of a signal from this light receiving element,
The deflection plate for adjusting the direction of the air blown from the blower fan of the air conditioner is automatically controlled.

他の従来例として、室内に於ける人の存在を検出する
のに焦電型赤外線1点検出素子を用いた例えば特開昭63
−143441号に記載の装置(第2の従来例)がある。
As another conventional example, a pyroelectric infrared single-point detecting element is used to detect the presence of a person in a room, for example, Japanese Patent Laid-Open No. 63-63.
There is an apparatus (second conventional example) described in No. 143441.

発明が解決しようとする課題 しかしながら第1の従来例では、発光素子と光反射板
と受光素子との間の正確な光軸合わせが必要であり、装
置の設置が非常に複雑となる。また、設置出来る場所に
ついても制限があった。更に空気調和機の前面に設置出
来る発光素子と受光素子の数は高々3〜5組程度である
ため、対象とする領域内での検出精度は非常に悪い。ま
た、光軸上に存在する障害物が人であるという認定も不
可能であった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the first conventional example, it is necessary to accurately align the optical axis among the light emitting element, the light reflecting plate, and the light receiving element, which makes installation of the apparatus very complicated. In addition, there were restrictions on the locations where they could be installed. Furthermore, since the number of light emitting elements and light receiving elements that can be installed in front of the air conditioner is about 3 to 5 pairs at most, the detection accuracy in the target area is very poor. Moreover, it was impossible to recognize that the obstacle existing on the optical axis is a person.

第2の従来例の装置では1点測定であるため人の位置
を検出する事は不可能である。また、この欠点をなくす
ため、前記焦電型赤外線1点検出素子を回転または振動
光学系を用いて2次元走査を行なう方式もあるが、装置
が大型で消費電力が大きく機械的故障寿命も短いという
欠点を有するため空気調和機に搭載するには不適当であ
る。
Since the second conventional device measures one point, it is impossible to detect the position of a person. In order to eliminate this drawback, there is also a system in which the pyroelectric infrared one-point detecting element is used for two-dimensional scanning by using a rotating or vibrating optical system. However, the device is large, power consumption is large, and mechanical failure life is short. Therefore, it is unsuitable for mounting on an air conditioner because it has the drawback.

本発明の目的は従来の技術の課題を解決し、感度及び
空間分解能が改良され、高解像度が得られる、小型で冷
却の必要のない焦電薄膜型赤外線アレイセンサを用い
て、人体・壁・床などが発する赤外線を直接検知するこ
とにより、容易により精度の高い人体位置情報と室内輻
射分布を得て、空調時の快適性をさらに向上する空気調
和機を提供することである。
The object of the present invention is to solve the problems of the prior art, improve the sensitivity and spatial resolution, obtain a high resolution, and use a small-sized pyroelectric thin film type infrared array sensor that does not require cooling. An object of the present invention is to provide an air conditioner that directly obtains more accurate human body position information and indoor radiation distribution by directly detecting infrared rays emitted from the floor, etc., and further improves comfort during air conditioning.

課題を解決するための手段 本発明の空気調和機は室内に於ける人体と輻射分布を
検出するための焦電薄膜型赤外線2次元アレイセンサ
と、前記アレイセンサからの信号に応じて吹き出し風の
風向制御手段と、風量制御手段とを有している。
Means for Solving the Problems An air conditioner of the present invention is a pyroelectric thin film type infrared two-dimensional array sensor for detecting a human body and radiation distribution in a room, and a blown air blown according to a signal from the array sensor. It has wind direction control means and air volume control means.

作用 本発明の空気調和機において発明の核となる部分は、
人の位置や室内輻射分布を検出するために小型・高性能
・安価でかつ冷却不要で取扱いが簡単な空気調和機に登
載するのに最適な焦電薄膜型の赤外線2次元アレイセン
サを開発した点である。これにより、人体位置や室内輻
射分布の検出に空間分解能と感度とを大きく改良でき高
精度の情報を得ることが可能となった。その結果、吹き
出し風の方向や強度を調整するための制御も精度よく行
なうことが出来るようになり、空調時の快適性が大幅に
向上するものである。
Action The core part of the invention in the air conditioner of the present invention is
We have developed a pyroelectric thin film type infrared two-dimensional array sensor that is suitable for mounting on an air conditioner that is small, high-performance, inexpensive, does not require cooling, and is easy to handle for detecting the position of people and indoor radiation distribution. It is a point. As a result, the spatial resolution and sensitivity for detecting the human body position and the indoor radiation distribution can be greatly improved, and highly accurate information can be obtained. As a result, the control for adjusting the direction and strength of the blown air can be performed accurately, and the comfort during air conditioning is greatly improved.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図にセパレート型の空気調和機の室内側本体1の
側面図を示す。この本体1の内部には室内熱交換器2と
送風ファン3とが配置されており、前記送風ファン3作
動時に、本体1の前面に形成されている吸い込みグリル
4から室内空気が吸い込まれ、前記室内熱交換器2を通
過した空気が吹き出しグリル5から吹き出されるように
なっている。前記吹き出しグリル5の出口には、吹き出
し風の吹き出し方向およびその強度を制御するために、
水平および垂直方向フラップ6aを備えた風向偏向機構6
が設置されている。尚、空気調和機の室外機や、冷凍サ
イクルなど本発明の要旨に直接関連しない部分について
は図示並びに説明を省略する。
FIG. 1 shows a side view of the indoor main body 1 of the separate type air conditioner. An indoor heat exchanger 2 and a blower fan 3 are arranged inside the main body 1, and when the blower fan 3 is operated, indoor air is sucked from a suction grill 4 formed on the front surface of the main body 1, The air that has passed through the indoor heat exchanger 2 is blown out from the blowing grill 5. At the outlet of the blowing grille 5, in order to control the blowing direction and strength of the blowing air,
Wind direction deflection mechanism 6 with horizontal and vertical flaps 6a
Is installed. It should be noted that the illustration and description of the outdoor unit of the air conditioner and parts such as the refrigeration cycle that are not directly related to the gist of the present invention are omitted.

また、前記本体1の前面には、人体位置や室内輻射分
布を検出する焦電薄膜型の赤外線2次元アレイセンサ7
も設置されている。この赤外線2次元アレイセンサの構
造と基本的な作用を第2図を用いて説明する。焦電薄膜
21の両面に電極22、23を形成し、横方向の一列を構成す
る。これらの電極22、23は1画素に相当する部分が縦横
2次元に配列されている。横方向の1列を構成する各画
素は、隣り合う画素同士が電極22と電極23で交互に配線
され、1列の画素が全て直列に結線されている。縦方向
には、これと同様の列が並んでいる。ここで、焦電薄膜
21の全面において、分極の方向は電極22から電極23の方
向である。したがって、各列の隣合う画素(例えばA,
B)においては分極方向が逆転して接続されていること
になる。各々の列の一端の電極26から各列に相当する出
力信号を読み出し、もう一端の電極27は接地されてい
る。この2次元センサアレイの前方で1画素の横幅に相
当するスリット24を横方向に機械的に走査することによ
って、各画素に赤外線を入射させる。
On the front surface of the main body 1, a pyroelectric thin film type infrared two-dimensional array sensor 7 for detecting the position of the human body and the indoor radiation distribution.
Is also installed. The structure and basic operation of this infrared two-dimensional array sensor will be described with reference to FIG. Pyroelectric thin film
Electrodes 22 and 23 are formed on both surfaces of 21 to form a lateral row. These electrodes 22 and 23 are arranged in a two-dimensional vertical and horizontal manner in a portion corresponding to one pixel. In each pixel forming one column in the horizontal direction, adjacent pixels are alternately wired by electrodes 22 and 23, and pixels in one column are all connected in series. Similar rows are arranged in the vertical direction. Where the pyroelectric thin film
On the entire surface of 21, the polarization direction is from electrode 22 to electrode 23. Therefore, adjacent pixels in each column (eg A,
In B), the polarization directions are reversed and connected. An output signal corresponding to each column is read from the electrode 26 at one end of each column, and the electrode 27 at the other end is grounded. Infrared rays are made incident on each pixel by mechanically scanning the slit 24 corresponding to the lateral width of one pixel in the lateral direction in front of the two-dimensional sensor array.

スリット24の移動に伴って、隣り合う画素A、B、C
に照射される赤外線量は、第4図(a)の様に変化す
る。画素Aの出力電圧の変化は素子の温度変化に比例
し、素子の温度変化は吸収した赤外線量に比例するた
め、熱拡散などによる熱量の損失が十分小さいとする
と、出力電圧は照射した赤外線量の積分値に比例し、第
4図(b)の様な波形となる。さらにスリット24が移動
して、隣の画素Bに赤外線が照射すると、画素Bは画素
Aとは分極の極性が逆方向に接続されているため、その
出力電圧は画素Aとは逆極性で時間が遅れた第4図
(c)に示す波形となる。同様に画素Cが照射されたと
き、画素Bと逆極性の第4図(d)に示す波形となる。
以下同様にスリット24が移動し、他の画素にも赤外線が
入射していくと、電極26における出力信号は第4図
(e)の様な波形となる。この出力波形のうちt=t1
t2、t3の各電圧値の絶対値が各画素の出力、つまり各画
素に照射した赤外線量に対応した信号であり、順次電極
26から出力される。
Along with the movement of the slit 24, the adjacent pixels A, B, C
The amount of infrared rays radiated on the object changes as shown in FIG. The change in the output voltage of the pixel A is proportional to the temperature change of the element, and the temperature change of the element is proportional to the absorbed infrared ray amount. Therefore, assuming that the loss of the heat amount due to heat diffusion is sufficiently small, the output voltage is the infrared ray amount irradiated. In proportion to the integral value of, the waveform becomes as shown in FIG. When the slit 24 further moves and infrared rays irradiate the adjacent pixel B, since the polarization polarity of the pixel B is connected in the direction opposite to that of the pixel A, its output voltage has the opposite polarity to the pixel A Has a delayed waveform as shown in FIG. 4 (c). Similarly, when the pixel C is illuminated, the waveform has a polarity opposite to that of the pixel B as shown in FIG.
Similarly, when the slit 24 moves and infrared rays enter other pixels, the output signal at the electrode 26 has a waveform as shown in FIG. 4 (e). Of this output waveform, t = t 1 ,
The absolute value of each voltage value of t 2 and t 3 is the signal corresponding to the output of each pixel, that is, the amount of infrared rays irradiated to each pixel.
It is output from 26.

この赤外線2次元アレイセンサにおいては、横方向の
各1列の出力がすでに時系列信号に変換されており、出
力電圧が一定周波数の信号となるようにしているため、
次のようなメリットがある。
In this infrared two-dimensional array sensor, the output of each row in the horizontal direction has already been converted into a time-series signal, and the output voltage is a signal of a constant frequency.
It has the following advantages.

(1)素子と処理回路間の配線が1列あたり一本で済む
ため作製が容易でかつ低コストになる。
(1) Since only one wiring is required between the element and the processing circuit per column, the fabrication is easy and the cost is low.

(2)処理回路が1列あたり一つで済むため装置が小型
になりかつ低コストになる。
(2) Since only one processing circuit is required per column, the device becomes compact and the cost is low.

(3)バンドパスフィルターなどによりS/Nの向上が容
易なため高感度になる。
(3) Since the S / N ratio can be easily improved with a bandpass filter, etc., high sensitivity is achieved.

(4)1方向の走査回路を省略でき、マイクロプロセッ
サなどへの取り込みが容易なため、風向制御機構とのマ
ッチングがとりやすい。
(4) Since the scanning circuit in one direction can be omitted and the circuit can be easily incorporated into a microprocessor or the like, matching with the wind direction control mechanism is easy.

(5)周囲温度の変化、ある種の圧電ノイズなどを隣接
素子間で打ち消し合うため高感度になる。
(5) A change in ambient temperature, a certain kind of piezoelectric noise, etc. are canceled out by adjacent elements, resulting in high sensitivity.

本実施例では、32x32個の画素を400μmピッチで同一
基板上に形成した赤外線2次元アレイセンサを用いて、
空調対象空間をを空気調和機から見て前後左右1024の単
位領域に分割し、各単位領域における熱源から、人体抽
出温度をあらかじめ決定しておき、人体らしき物体の抽
出を行う。抽出されたその物体の大きさは、センサから
の距離に依存するため、画像内の位置に応じてあらかじ
め設定された大きさの範囲内にある物を人体と判別し人
体らしき領域のみを選択する。その後、TVなど人体とほ
ぼ等しい温度をもつ静止物体と人体を識別する。このよ
うにして、温度・大きさ・動き等の条件を満たす物体の
みを人体として認識する。この場合1列あたり32個の画
素を直列に接続することになり、1ラインの静電容量が
低下する。しかし、本実施例では、焦電体に2〜3μm
の膜厚の薄膜を用いているため各画素の容量は200pF程
度と大きく、1ラインの静電容量は信号処理回路の入力
インピーダンス2pF程度に比べてかなり高く維持でき、
信号電圧の低下を招くことはない。本発明において焦電
体に薄膜を用いる利点がこの点にもあらわれている。ま
た、焦電薄膜の材料には、成膜と同時に分極軸の揃う材
料(PbLaTiO3系)があり、これを用いることにより、全
焦電素子の分極を揃える分極処理をする必要がなく作製
が容易になる。
In this embodiment, an infrared two-dimensional array sensor in which 32 × 32 pixels are formed on the same substrate at a pitch of 400 μm,
The air-conditioned space is divided into front, rear, left and right 1024 unit areas as viewed from the air conditioner, and the human body extraction temperature is determined in advance from the heat source in each unit area, and a human body-like object is extracted. Since the size of the extracted object depends on the distance from the sensor, an object within a size range preset according to the position in the image is discriminated as a human body and only the human-like region is selected. . After that, the human body is distinguished from a stationary object such as a TV having a temperature almost equal to that of the human body. In this way, only objects that satisfy conditions such as temperature, size, and movement are recognized as human bodies. In this case, 32 pixels are connected in series per column, and the capacitance of one line is reduced. However, in this embodiment, the pyroelectric material has a thickness of 2 to 3 μm.
Since the thin film with the thickness of is used, the capacitance of each pixel is as large as about 200 pF, and the capacitance of one line can be kept considerably higher than the input impedance of the signal processing circuit of about 2 pF.
The signal voltage is not lowered. The advantage of using a thin film for the pyroelectric body in the present invention also appears in this point. In addition, there is a material (PbLaTiO 3 system) that has the same polarization axis as the material of the pyroelectric thin film at the same time as it is formed. It will be easier.

次に第5図を用いて、前記赤外線2次元アレイセンサ
7の検出結果に基づく吹き出し風の制御について説明す
る。赤外線2次元アレイセンサ7から室内における人体
の検知信号が信号処理装置8に入力されると、その検出
温度と形状などから人であるか否かの判断を行い、人で
あると判断した場合には処理信号を人体位置情報として
制御装置9に入力する。この制御装置9では、吹き出し
風の方向や強度を調整し快適な空調効果を与え得るフラ
ップ偏向角や送風ファンの回転数を決定する。風向制御
の場合はさらに、決定されたフラップ偏向角度信号を決
定する。こうして決定されたフラップ偏向角度信号をス
テップモータ制御装置10に出力する。前記フラップ6aは
ステップモータ11によりそれぞれ前記偏向角度信号に応
じて制御される。この制御されたフラップと送風ファン
の働きにより、例えば人がいる位置へ強風を直接送った
り、逆に人を避けるように弱風を送ったりする。また、
複数の人が存在する場合には順番に空調された風を送る
ことも可能である。このようにして、人の存在位置に依
存するきめ細やかな快適空調が実現出来たわけである。
Next, with reference to FIG. 5, the control of the blowing air based on the detection result of the infrared two-dimensional array sensor 7 will be described. When the detection signal of the human body in the room is input from the infrared two-dimensional array sensor 7 to the signal processing device 8, it is determined whether or not the person is a person based on the detected temperature and shape, and when it is determined that the person is the person. Inputs the processed signal to the control device 9 as human body position information. The control device 9 adjusts the direction and intensity of the blown air to determine the flap deflection angle and the rotation speed of the blower fan that can provide a comfortable air conditioning effect. In the case of wind direction control, the determined flap deflection angle signal is further determined. The flap deflection angle signal thus determined is output to the step motor control device 10. The flap 6a is controlled by a step motor 11 according to the deflection angle signal. By the functions of the controlled flap and the blower fan, for example, a strong wind is directly sent to a position where a person is present, or conversely, a weak wind is sent so as to avoid the person. Also,
It is also possible to send air-conditioned air in sequence when there are multiple people. In this way, delicate and comfortable air conditioning that depends on the location of people can be realized.

尚、ここで空調対象空間を単位領域に分割する数は32
x32に限定するものではなく、空調対象空間の広さや形
状に応じて最適な分割数を選ぶ。例えば、6〜10畳の居
間ならば8x8個の単位焦電センサからなる赤外線2次元
アレイセンサを用いて、64の単位領域に分割する程度で
あってもその効果は十分に発揮できる。
Note that the number of subdivided air-conditioned spaces is 32 here.
The number of divisions is not limited to x32, and the optimum number of divisions is selected according to the size and shape of the air-conditioned space. For example, in the case of a living room of 6 to 10 tatami mats, the effect can be sufficiently exerted even if the infrared two-dimensional array sensor composed of 8 × 8 unit pyroelectric sensors is used and divided into 64 unit areas.

発明の効果 本発明の空気調和機によれば、室内の人の位置や輻射
分布を検出する赤外線2次元アレイセンサと、前記セン
サからの信号に応じて、吹き出し風の風向制御手段と、
風量制御手段とにより、きめ細やかな快適空調空間を応
答性良く、手軽に実現できるものであり、産業上の利用
価値は高い。
Advantageous Effects of Invention According to the air conditioner of the present invention, an infrared two-dimensional array sensor that detects the position and radiation distribution of a person in a room, and a wind direction control unit for blowing air according to a signal from the sensor,
By means of the air volume control means, it is possible to realize a finely tuned comfortable air-conditioned space with good responsiveness and easily, and its industrial utility value is high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における空気調和機本体の側
面図、第2図は同実施例における赤外線2次元アレイセ
ンサの構造を示す平面図、第3図はその断面図、第4図
はその基本的な作用を示す図、第5図は赤外線2次元ア
レイセンサの検出結果に基づく吹き出し風の制御につい
て説明する図である。 1……空気調和機本体、2……室内熱交換器、3……送
風ファン、4……吸い込みグリル、5……吹き出しグリ
ル、6a……垂直方向フラップ、6……風向偏向機構。7
……赤外線2次元アレイセンサ、9……制御装置。
FIG. 1 is a side view of an air conditioner body in an embodiment of the present invention, FIG. 2 is a plan view showing the structure of an infrared two-dimensional array sensor in the embodiment, FIG. 3 is a sectional view thereof, and FIG. Is a diagram showing its basic operation, and FIG. 5 is a diagram for explaining control of blowing air based on the detection result of the infrared two-dimensional array sensor. 1 ... Air conditioner body, 2 ... Indoor heat exchanger, 3 ... Blower fan, 4 ... Suction grille, 5 ... Blowout grille, 6a ... Vertical flap, 6 ... Wind direction deflection mechanism. 7
...... Infrared two-dimensional array sensor, 9 ... Control device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01V 8/12 9406−2G G01V 9/04 A (72)発明者 野村 幸治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 冨田 佳弘 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−13953(JP,A) 特開 昭61−45937(JP,A) 特開 昭59−120831(JP,A) 特開 昭50−35676(JP,A) 実開 昭58−145431(JP,U)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location G01V 8/12 9406-2G G01V 9/04 A (72) Inventor Koji Nomura Kadoma, Osaka Prefecture 1006 Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshihiro Tomita Osaka Kadoma City Kadoma 1006 Address Matsushita Electric Industrial Co., Ltd. (56) Reference JP 62-13953 (JP, A) JP Sho 61-45937 (JP, A) JP 59-120831 (JP, A) JP 50-35676 (JP, A) Actually developed 58-145431 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】室内に於ける人体と輻射分布を検出する赤
外線2次元アレイセンサと、前記アレイセンサからの信
号に応じて吹き出し風の風向制御手段と、風量制御手段
とを有し、前記赤外線2次元アレイセンサが、焦電薄膜
の両面に電極が2次元に画素毎に配列し、1列を構成す
る各画素は上部電極と下部電極が交互に配線され、1列
の画素が全て直列に結線された構成を有し、光学スリッ
トで焦電薄膜の前面を列方向に走査することを特徴とす
る空気調和機。
1. An infrared two-dimensional array sensor for detecting a human body and radiation distribution in a room, a wind direction control means for blowing air according to a signal from the array sensor, and an air volume control means. In a two-dimensional array sensor, electrodes are two-dimensionally arranged on both sides of a pyroelectric thin film for each pixel, and upper and lower electrodes are alternately wired in each pixel forming one column, and all pixels in one column are connected in series. An air conditioner having a wired configuration, wherein the front surface of the pyroelectric thin film is scanned in the column direction by an optical slit.
JP1015450A 1989-01-25 1989-01-25 Air conditioner Expired - Lifetime JP2517098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015450A JP2517098B2 (en) 1989-01-25 1989-01-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015450A JP2517098B2 (en) 1989-01-25 1989-01-25 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02197747A JPH02197747A (en) 1990-08-06
JP2517098B2 true JP2517098B2 (en) 1996-07-24

Family

ID=11889138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015450A Expired - Lifetime JP2517098B2 (en) 1989-01-25 1989-01-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP2517098B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302080A (en) * 2002-04-09 2003-10-24 Tokyo Gas Co Ltd Bathroom air conditioner, bathroom hot-water supplier and bathing time control device
AU2004286118B2 (en) * 2003-10-31 2007-10-04 Daikin Industries, Ltd. Air conditioner and control method thereof
JP2011102670A (en) * 2009-11-10 2011-05-26 Panasonic Electric Works Co Ltd Electric power meter linkage type sensor device
US8929592B2 (en) 2012-03-13 2015-01-06 Mitsubishi Electric Research Laboratories, Inc. Camera-based 3D climate control
CN108151247B (en) * 2017-12-14 2020-08-04 广东美的制冷设备有限公司 Air conditioner control method, air conditioner and air conditioning system
JP7032371B2 (en) * 2019-11-29 2022-03-08 レノボ・シンガポール・プライベート・リミテッド Electronic devices and control methods
CN112228952A (en) * 2020-10-19 2021-01-15 浙江工业大学 Human body infrared induction warm air blower tracking air supply control system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842276A (en) * 1973-06-15 1974-10-15 Rca Corp Thermal radiation detector
JPS58145431U (en) * 1982-03-26 1983-09-30 株式会社堀場製作所 Cooler and heater with energy saving sensor
JPS59120831A (en) * 1982-12-27 1984-07-12 Nippon Denso Co Ltd Apparatus for detecting infrared rays
JPS60104647U (en) * 1983-12-22 1985-07-17 サンデン株式会社 Cooling/heating equipment
JPS6145937A (en) * 1984-08-10 1986-03-06 Sumitomo Bakelite Co Ltd Structure of infrared sensor
JPS61223443A (en) * 1985-03-27 1986-10-04 Takasago Thermal Eng Co Ltd Building control system
JPS6213953A (en) * 1985-07-10 1987-01-22 Mitsubishi Electric Corp Air conditioner
JPH0660940B2 (en) * 1988-05-25 1994-08-10 ダイキン工業株式会社 Human body position detecting device and air conditioner including the device

Also Published As

Publication number Publication date
JPH02197747A (en) 1990-08-06

Similar Documents

Publication Publication Date Title
US7498576B2 (en) Temperature detecting system and method
ES2788007T3 (en) Using an air conditioner
EP1026521B1 (en) Method and apparatus for detecting an object
US4769545A (en) Motion detector
US5313060A (en) Multi-sensor doubled row direction sensitive counting and switching device
KR0151302B1 (en) Sensor and sensing method by using infrared rays for place judgement
JP2517098B2 (en) Air conditioner
JPH0933343A (en) Position discriminating device of human body using infrared ray sensor
JPH0727027B2 (en) Human body position detecting device and air conditioner including the device
US5281818A (en) Pyro-electric type infrared detector
JPH08338880A (en) Thermal object measuring device, personal audience rating monitoring system and distance detector
US4749862A (en) Scanning fire-monitoring system
JPH0379942A (en) Air conditioner
JPH07103552A (en) Human body sensor, air-conditioner and display unit of the conditioner
JPH02183752A (en) Infrared ray detecting device for air conditioner
JP2006177848A (en) Temperature distribution detection device
JPH07101120B2 (en) Air conditioner
JPH0862342A (en) Human body detecting device
JPH01297589A (en) Human body position detector and air conditioner having the same
JPH0886884A (en) Heat-radiating body detector
JP2005181116A (en) Infrared sensor device
JPH06258137A (en) Pyroelectric infrared ray sensor
JPH0862044A (en) Thermal image detector
JPH09101204A (en) Pyroelectric infrared detector
CA2222663C (en) Composite fresnel lens having array of lens segments providing long narrow detection range