JPS61223443A - Building control system - Google Patents

Building control system

Info

Publication number
JPS61223443A
JPS61223443A JP60063040A JP6304085A JPS61223443A JP S61223443 A JPS61223443 A JP S61223443A JP 60063040 A JP60063040 A JP 60063040A JP 6304085 A JP6304085 A JP 6304085A JP S61223443 A JPS61223443 A JP S61223443A
Authority
JP
Japan
Prior art keywords
infrared rays
sensors
personel
room
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60063040A
Other languages
Japanese (ja)
Inventor
Toshihiro Murakami
俊博 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP60063040A priority Critical patent/JPS61223443A/en
Publication of JPS61223443A publication Critical patent/JPS61223443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To control the amount of ventilation in accordance with the number of personel in the building by a method wherein sensors, catching infrared rays radiated from human body, are connected to sensor controller to calculate the number of personel in areas charged by respective sensors and input it as a control signal. CONSTITUTION:In case of a general office or general floor, a plurality of infrared rays sensors 1 are distributed and arranged on the ceiling thereof to permit to detect infrared rays in the whole area of the room. Respective infrared rays sensors detect the infrared rays, which are radiated from human bodies and having wavelength of about 6-15mum, and output electric currents in accordance with the strengths of the detected infrared rays whereby the number of personel, existing in the areas charged by respective sensors are operated based on the outputted value of the electric currents. The number of personel in the room is utilized for the input information for the automatic control board in a central control chamber in such a manner and whereby the opening degree of a damper for an air-conditioning equipment, the rotating number of a fan and the starting or stopping of various machines and illuminations may be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建物内の各室の人員の変動に応じて空調設備
等の運転状態を制御するビル管理システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a building management system that controls the operating status of air conditioning equipment, etc. according to changes in the number of people in each room in a building.

〔従来の技術〕[Conventional technology]

従来より、空調設備、防犯設備、防災設備などを中央管
理室で管理する集中ビル管理システムが普及しているが
、その管理の入力情報としては。
Centralized building management systems that manage air conditioning equipment, crime prevention equipment, disaster prevention equipment, etc. in a central control room have been popular for some time, but the input information for such management is...

温度計、湿度計、流量計、圧力計などの物理量検出計な
どの信号と1機器類の運転状態を検出するセンサー類か
らの信号を使用しているのが通常である。これらの情報
は常時コンピューターに入力され、ストック情報と比較
更正演算が行われ、そして、建物内環境が適正な状態に
維持されるように各種機器類に制御信号を送信し、また
異常が発生した場合には機器類の停止や補助機器の稼動
を指令するようにしている。かようなコンピューター制
御による建物自動管理システムは、その管理の適正化、
省エネルギー化、更には省力化に大きく貢献している。
Typically, signals from physical quantity detectors such as thermometers, hygrometers, flow meters, and pressure gauges are used, as well as signals from sensors that detect the operating status of one piece of equipment. This information is constantly input into a computer, compared with stock information, and correction calculations are performed. Control signals are then sent to various equipment to maintain the building environment in an appropriate state, and to detect abnormalities. In such cases, commands are given to stop equipment and start operation of auxiliary equipment. Such a computer-controlled automated building management system can help optimize management,
It greatly contributes to energy saving and even labor saving.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ビル管理における一層の精度向上と省エネルギー化を図
るには、環境の状態変化を迅速且つ正確に把握しこれを
正しく入力することが必要となるが、従来のシステムで
は人員数の変動を直接入力するものではなく1人員の変
動による間接的な変化量(温度、fA度、ドアの開閉や
機器発停動作によるスイッチのオンオフ情報など)を入
力するものであったがために1人員数の経時変化に直接
的に追従できるものではなかった。従って1人員数に応
じて換気量(外気取入れ量)を制御すると言ったことは
実質上できなかった0例えば、一般事務室や会議室を例
にとれば、座席に着座している人員数の多少により、必
要とする取入れ外気量も増減するわけであるが、実際に
は、かようなきめの細かい制御は行われていなかった。
In order to further improve accuracy and save energy in building management, it is necessary to quickly and accurately grasp changes in environmental conditions and input them correctly, but with conventional systems, changes in the number of personnel are input directly. Because it inputs indirect changes due to changes in one person (temperature, fA degrees, on/off information due to opening/closing of doors and equipment start/stop operations, etc.), it is not possible to change the number of people over time. could not be followed directly. Therefore, it is virtually impossible to control the amount of ventilation (amount of outside air intake) according to the number of people.For example, in a general office or conference room, if Depending on the amount, the amount of outside air required to be taken in will increase or decrease, but in reality, such fine-grained control has not been performed.

また、使用が不定期な洗面場(トイレ)、湯沸室、休憩
室その他のベリメーターゾーン等においては1人の出入
りとは関係なく空調制御が実施されていたのが実情であ
る。従って、真の省エネルギーを達成する自動制御とは
言いえなかった。
Furthermore, the reality is that in washrooms (toilets), kettle rooms, rest rooms, and other verimeter zones that are used irregularly, air conditioning is controlled regardless of whether a single person enters or exits. Therefore, it cannot be said that automatic control achieves true energy saving.

本発明は、このような問題を解決しようとするものであ
る。
The present invention attempts to solve such problems.

〔問題点を解決する手段〕[Means to solve problems]

本発明は1人体から放射する赤外線をキャッチするセン
サーを建物内に配設すると共に各センサーをセンサーコ
ントローラーに接続し、このセンサーコントローラーで
各センサーが分担するエリアの人員数を算出し、空調設
備を含む諸設備の自動制御盤の制御信号として前記の算
出人員数を入力することを特徴とし、これによって前記
の問題の解決を図ったものである。
The present invention involves installing sensors in a building that catch infrared rays emitted from human bodies, and connecting each sensor to a sensor controller.The sensor controller calculates the number of people in the area assigned to each sensor, and then controls the air conditioning equipment. The above-mentioned calculated number of personnel is input as a control signal for the automatic control panel of the various equipment included in the system, thereby solving the above-mentioned problem.

人体からは、6〜15μ自程度の遠赤外線が放射されて
おり、これは赤外線センサーによって検出できる。また
、400〜700℃に加熱された物体からは、3〜5μ
易程度の赤外線が放射されるのでこれも赤外線センサー
によって検出できる。前者は在室人員の算出に、また後
者は室内異常(例えば火災等)の検出に利用できる。
The human body emits far infrared rays of about 6 to 15 microns, which can be detected by an infrared sensor. In addition, from objects heated to 400 to 700℃, 3 to 5μ
Since a small amount of infrared radiation is emitted, this can also be detected by an infrared sensor. The former can be used to calculate the number of people in the room, and the latter can be used to detect indoor abnormalities (for example, fire, etc.).

例えば、第1図に示すように、一般事務室や一般フロア
の場合に、11敗の赤外線センサー1を天井部に分散配
置して、室内全域での赤外線を検出できるようにする。
For example, as shown in FIG. 1, in the case of a general office or a general floor, 11 infrared sensors 1 are distributed on the ceiling so that infrared rays can be detected throughout the room.

このようにして分散配置した各センサー1は、第2図に
示すようにセンサーコントローラー2に接続され、この
センサーコントローラー2で室内人員を算出する。この
算出は。
The sensors 1 thus distributed are connected to a sensor controller 2 as shown in FIG. 2, and the sensor controller 2 calculates the number of people in the room. This calculation is.

人間を感知したセンサーの本数およびセンサー1本当た
りの重みから、第3図のフローのようにして行うことが
できる。すなわち、各赤外線センサーは1人体から放射
する6〜15μ腸程度の波長の遠赤外線を検知(アクセ
ス)すると、その強度に応じた電流を出力するが、この
出力電流値からこれが分担するエリアに何人の人員が存
在するかを算出する。
Based on the number of sensors that have detected a human being and the weight per sensor, the process can be performed as shown in the flowchart shown in FIG. In other words, when each infrared sensor detects (accesses) far infrared rays with a wavelength of about 6 to 15 microns emitted from a human body, it outputs a current according to the intensity of the far infrared rays, and from this output current value, it can determine how many people are in the area it is responsible for. Calculate whether the number of personnel exists.

より具体的には、成るセンサーからの出力電流が第4(
a)図に示すように設定点A以上となったときにセンサ
ーは“ON”(ON−アクセスされた)を出出力し、室
内に設定されるセンサーの本数から。
More specifically, the output current from the sensor consisting of the fourth (
a) As shown in the figure, when the set point A is exceeded, the sensor outputs "ON" (ON-accessed), based on the number of sensors set in the room.

(アクセスされたセンサーの本数)×重み=室内人員を
算出する。これを図解して示すと、室内に5本のセンサ
ーを設定した場合を例をとれば、第4(b)図のように
なる。この場合1重みが各センサーとも実質的に等しく
なるようにセンサーを配置すると、アクセス本数×セン
サー1本当たりの重みから室内人員が算出されるが、直
接この人員数を制御用出力信号とすると急激な人員の変
化があった場合に応答に問題が生ずるので、−次遅れフ
ィルターを通過させ、第4(b)図の曲線Bに見られる
ように、センサー出力Cを時平均化してスキャニングし
、室内人員を最終決定するようにする。
Calculate (number of accessed sensors) x weight = number of people in the room. To illustrate this, if we take an example where five sensors are set in a room, the result will be as shown in Fig. 4(b). In this case, if the sensors are arranged so that the weight is substantially equal for each sensor, the number of people in the room can be calculated from the number of accesses x the weight per sensor, but if this number of people is directly used as a control output signal, the number of people in the room will suddenly increase. If there is a change in the number of personnel, a problem will occur in the response, so the sensor output C is passed through a -order lag filter, and the sensor output C is time-averaged and scanned as shown in curve B in Fig. 4(b). Finalize the number of personnel in the room.

この場合の計算式の一例を挙げると。An example of the calculation formula in this case is:

αを時定数、またそのセンサ一定数を60として60 
+α +□×(前回室内人員) で求められる。
60, where α is the time constant and the constant number of sensors is 60.
It is calculated by +α +□×(previous number of people in the room).

第4(C)図は、この場合の信号フロー図を示している
。センサーコントローラーは5分散型DACシステム等
の如き空調自動制御盤がマイコンを有しているときはこ
れに内臓させるとよい。
FIG. 4(C) shows a signal flow diagram in this case. When an automatic air conditioning control panel, such as a 5-distributed DAC system, has a microcomputer, the sensor controller may be incorporated into the microcomputer.

このようにして、室内の人員数を中央管理室の自動制御
盤の入力情報に利用することによって。
In this way, by using the number of people in the room as input information to the automatic control panel in the central control room.

例えば空調機器のダンパ開度制御、ファンの回転数制御
や、各種機械や照明の発停制御ができる。
For example, it can control the damper opening of air conditioners, the rotation speed of fans, and the on/off control of various machines and lighting.

制御フローの一例を第5図〜第6図に示した。An example of the control flow is shown in FIGS. 5 and 6.

この制御フローのの内容としては1次のようなものであ
る。
The contents of this control flow are as follows.

赤外線センサ一本数;室内に設置されているセンサーの
本数を入力しておく。
Number of infrared sensors: Enter the number of sensors installed in the room.

センサー1本当たりの重み;センサー1本当たり何%の
人員が在室しているかの割合を入力(%)。
Weight per sensor: Enter the percentage of people present per sensor (%).

始動時強制人員;始動時に何%の人員が在室しているか
を仮定して入力(%)。
Mandatory personnel at startup: Input (%) assuming what percentage of personnel will be present at startup.

始動時強制人R(A/M)  ; A (オート)は始
動時強制人員を使用していない、M(マニアル)は始動
時強制人員を使用する。
Forced personnel at startup R (A/M); A (auto) does not use forced personnel at startup, M (manual) uses forced personnel at startup.

故障時強制人員;故障時に何%の人員が在室しているか
を仮定して人力(%)。
Manpower required at the time of failure: Manpower (%) assuming what percentage of personnel will be present at the time of failure.

故障時強制人員(A/M)iA(オート)は故障時強制
人員を使用していない、M(マニアル)は故障時強制人
員を使用する。
Mandatory personnel in the event of a failure (A/M) iA (Auto) does not use mandatory personnel in the event of a failure, M (Manual) uses mandatory personnel in the event of a failure.

人員判断インターバル;何秒に一回判断サイクルを繰り
返すかを入力(秒)。
Personnel judgment interval: Enter the number of seconds to repeat the judgment cycle (in seconds).

一次遅れ時定数;αを入力(前記の式参照)。Input first-order lag time constant; α (see formula above).

各ダンパ開度;人員割合に対するダンパ開度何点かを入
力(%)。
Each damper opening: Enter the number of damper openings relative to the personnel ratio (%).

ファン回転数;人員割合に対するファン回転数何点かを
人力(%)。
Fan rotation speed: Human power (%), which is the number of fan rotations relative to the ratio of personnel.

ゼロ入力機器運転時間;在室人員が0%になったとき、
何秒後に機器を停止するかを人力(秒)。
Zero input device operation time: When the number of people in the room becomes 0%,
Manually specify how many seconds later to stop the equipment.

第5図〜第6図の一連の制御は、中央監視盤によって実
施するが、現場からの人員出力のデータを防災センター
に送信することによって、これを防災防犯のための情報
源とすることもできる。
The series of controls shown in Figures 5 and 6 is carried out by a central monitoring panel, but by transmitting the data of personnel output from the field to the disaster prevention center, this can also be used as an information source for disaster prevention and crime prevention. can.

本発明システムによると、前述のように事務室などの給
気量や外気取入れ量の制御を人員数に応じて実施できる
ので、非常に大きな省エネルギー空調ができる。かよう
な事務室などの一般フロアーの他に、使用が不定期な便
所などにおいても非常に大きな省エネルギー効果を発揮
する0例えば便所の換気制御は、第7図に示すように行
えばよい、これによって、第8図に示すように、ファン
稼動が断続的になり、ファン停止時間の分だけ省エネル
ギーが達成できる。また、−船室の外気量の取入れ制御
についても、第9図に示すような制御によって、第10
図に示すように、斜線域の部分の負荷が低減され、この
場合にも大きな省エネルギー効果が得られる。
According to the system of the present invention, as described above, the amount of air supplied and the amount of outside air taken into an office or the like can be controlled according to the number of personnel, so that extremely energy-saving air conditioning can be achieved. In addition to general floors such as offices, it also has a very large energy-saving effect in toilets that are used irregularly.For example, ventilation control in toilets can be performed as shown in Figure 7. As a result, as shown in FIG. 8, the fan operation becomes intermittent, and energy savings can be achieved by the amount of fan stop time. - Also, regarding the intake control of the amount of outside air in the cabin, the 10th
As shown in the figure, the load in the shaded area is reduced, and a large energy saving effect can also be obtained in this case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤外線センサーの配置例を示す概念図。 第2図は赤外線センサーとセンサーコントローラーとの
接続状態を示す図、第3図はセンサーコントローラーに
よる人員数算出のフロー図、第4(a)図はセンサー出
力のタイムチャート、第4(b)図は複数のセンサーの
出力に対する一次遅れフィルターによるスキャニング図
、第4(C)図は各センサーおよびセンサーコントロー
ラーの信号フロー図。 第5図は本発明システムの制御フロー図、第6図は第5
図の制御フロー図の続きの図、第7図は便所の換気ファ
ンの制御フロー図、第8図は第7図の制御による時間と
電力の関係図、第9図は外気取入れ量制御のフロー図、
第10図は第9図の制御による在室人員と負荷との関係
図である。 1・・赤外線センサー。 2・・センサーコントローラー。 第4(a)図 第4(b)図 第8図 Tirhs 第9図 第10図 20係  40% 60%  80係  100%在室
人員/定員(%)
FIG. 1 is a conceptual diagram showing an example of the arrangement of infrared sensors. Figure 2 is a diagram showing the connection state between the infrared sensor and the sensor controller, Figure 3 is a flowchart for calculating the number of personnel by the sensor controller, Figure 4(a) is a time chart of sensor output, and Figure 4(b) is a diagram showing the connection state between the infrared sensor and the sensor controller. 4(C) is a scanning diagram using a first-order delay filter for the outputs of multiple sensors, and FIG. 4(C) is a signal flow diagram of each sensor and sensor controller. Fig. 5 is a control flow diagram of the system of the present invention, and Fig. 6 is a control flow diagram of the system of the present invention.
A continuation of the control flow diagram in Figure 7, Figure 7 is a control flow diagram of the ventilation fan in the toilet, Figure 8 is a diagram of the relationship between time and power according to the control in Figure 7, and Figure 9 is the flow of outside air intake amount control. figure,
FIG. 10 is a diagram showing the relationship between the number of people in the room and the load under the control shown in FIG. 9. 1. Infrared sensor. 2. Sensor controller. Figure 4(a) Figure 4(b) Figure 8 Tirhs Figure 9 Figure 10 20th person 40% 60% 80th person 100% Number of people in the room/capacity (%)

Claims (1)

【特許請求の範囲】[Claims] 人体から放射する赤外線をキヤッチするセンサーを建物
内に配設すると共に各センサーをセンサーコントローラ
ーに接続し、このセンサーコントローラーで各センサー
が分担するエリアの人員数を算出し、空調設備を含む諸
設備の自動制御盤の制御信号として前記の算出人員数を
入力するようにした建物管理システム。
Sensors that catch infrared rays emitted from the human body are installed inside the building, and each sensor is connected to a sensor controller.The sensor controller calculates the number of people in the area assigned to each sensor, and controls various equipment including air conditioning equipment. A building management system in which the calculated number of personnel is input as a control signal to an automatic control panel.
JP60063040A 1985-03-27 1985-03-27 Building control system Pending JPS61223443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60063040A JPS61223443A (en) 1985-03-27 1985-03-27 Building control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60063040A JPS61223443A (en) 1985-03-27 1985-03-27 Building control system

Publications (1)

Publication Number Publication Date
JPS61223443A true JPS61223443A (en) 1986-10-04

Family

ID=13217820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60063040A Pending JPS61223443A (en) 1985-03-27 1985-03-27 Building control system

Country Status (1)

Country Link
JP (1) JPS61223443A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479534A (en) * 1987-09-18 1989-03-24 Matsushita Refrigeration Airflow direction control device for air-conditioning equipment
JPH01163546A (en) * 1987-12-18 1989-06-27 Sanyo Electric Co Ltd Air conditioner
JPH01180018A (en) * 1988-01-08 1989-07-18 Sanyo Electric Co Ltd Controller for electric equipment
JPH01293892A (en) * 1988-05-24 1989-11-27 Heiwa Corp Controlling method for environment in pinball hall
JPH02197747A (en) * 1989-01-25 1990-08-06 Matsushita Electric Ind Co Ltd Air conditioner
CN113606749A (en) * 2021-08-06 2021-11-05 东南大学 Partition on-demand ventilation control method based on personnel pixel density

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597839A (en) * 1982-07-02 1984-01-17 Hitachi Ltd Air conditioning control device
JPS60181530A (en) * 1984-02-28 1985-09-17 Fujitec Co Ltd Congestion degree detecting device for air conditioning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597839A (en) * 1982-07-02 1984-01-17 Hitachi Ltd Air conditioning control device
JPS60181530A (en) * 1984-02-28 1985-09-17 Fujitec Co Ltd Congestion degree detecting device for air conditioning

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479534A (en) * 1987-09-18 1989-03-24 Matsushita Refrigeration Airflow direction control device for air-conditioning equipment
JPH01163546A (en) * 1987-12-18 1989-06-27 Sanyo Electric Co Ltd Air conditioner
JPH01180018A (en) * 1988-01-08 1989-07-18 Sanyo Electric Co Ltd Controller for electric equipment
JPH01293892A (en) * 1988-05-24 1989-11-27 Heiwa Corp Controlling method for environment in pinball hall
JPH02197747A (en) * 1989-01-25 1990-08-06 Matsushita Electric Ind Co Ltd Air conditioner
CN113606749A (en) * 2021-08-06 2021-11-05 东南大学 Partition on-demand ventilation control method based on personnel pixel density

Similar Documents

Publication Publication Date Title
US11162698B2 (en) Thermostat with exhaust fan control for air quality and humidity control
JP2002245102A (en) Method and system for controlling building environment
US5413278A (en) Remotely activated opposing pressure air flow control register
US5271558A (en) Remotely controlled electrically actuated air flow control register
CN1115189A (en) Control method and system for controlling temperatures
KR102327362B1 (en) Intelligent wired/wireless distributed automatic control system
JPH07190457A (en) Air-conditioner room-by-room control method and device
JPS61223443A (en) Building control system
US11567467B2 (en) Method and systems for configuring a modular building control system
GB2231185A (en) Air conditioning system
JPS5960138A (en) Ventilating device
KR101974592B1 (en) System for saving power and controling operation of building
JPS597839A (en) Air conditioning control device
JPH02242037A (en) Air conditioning system controller
JPH0493549A (en) Air-conditioner
JP2012026697A (en) Equipment control system by human sensor
JP3101104B2 (en) Air conditioning system
KR20190088100A (en) System for energy saving and method thereof
KR100779616B1 (en) Bake-out control method
JPS62169953A (en) Air conditioner of underground living room
JP2867608B2 (en) Building management system
JP2001221487A (en) Ventilation method of house
JPS6324229B2 (en)
US20240053047A1 (en) Distributed zone control system
JPH05126382A (en) Automatic air conditioning system