JP2513768B2 - Microporous polypropylene film - Google Patents
Microporous polypropylene filmInfo
- Publication number
- JP2513768B2 JP2513768B2 JP63048149A JP4814988A JP2513768B2 JP 2513768 B2 JP2513768 B2 JP 2513768B2 JP 63048149 A JP63048149 A JP 63048149A JP 4814988 A JP4814988 A JP 4814988A JP 2513768 B2 JP2513768 B2 JP 2513768B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- polypropylene
- δnp
- microporous
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 polypropylene Polymers 0.000 title claims description 35
- 239000004743 Polypropylene Substances 0.000 title claims description 34
- 229920001155 polypropylene Polymers 0.000 title claims description 34
- 239000011148 porous material Substances 0.000 claims description 22
- 239000003990 capacitor Substances 0.000 description 14
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000002904 solvent Substances 0.000 description 8
- VOWAEIGWURALJQ-UHFFFAOYSA-N Dicyclohexyl phthalate Chemical compound C=1C=CC=C(C(=O)OC2CCCCC2)C=1C(=O)OC1CCCCC1 VOWAEIGWURALJQ-UHFFFAOYSA-N 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000012760 heat stabilizer Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 235000003403 Limnocharis flava Nutrition 0.000 description 1
- 244000278243 Limnocharis flava Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Cell Separators (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、電池・電解コンデンサ等(以下電気素子と
称する)の電極隔離用セパレータあるいは各種のフイル
タ、分離膜等に用いられる新規なポリプロピレン系微孔
性フイルムに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel polypropylene-based separator used for separators for electrode isolation of batteries, electrolytic capacitors, etc. (hereinafter referred to as electric elements), various filters, separation membranes and the like. It relates to a microporous film.
[従来の技術] 従来より、微孔性ポリプロピレンフイルムとして、高
剪断下でポリプロピレンを溶融押出しシート成形するこ
とにより特定の結晶構造を形成し、さらにアニール、延
伸する(特公昭46−40119号公報)ことにより得られる
フイルムあるいは、ポリオレフインと有機液体と無機微
粒子とをブレンド溶融押出し、成形後、該有機液体を抽
出する方法(特公昭59−37292号公報)により得られる
フイルムが知られている。[Prior Art] Conventionally, as a microporous polypropylene film, polypropylene is melt-extruded under high shear to form a specific crystal structure by sheet forming, and further annealed and stretched (Japanese Patent Publication No. 46-40119). There is known a film obtained by the above method, or a film obtained by a method of blending and extruding a polyolefin, an organic liquid and inorganic fine particles, molding the mixture, and then extracting the organic liquid (Japanese Patent Publication No. 59-37292).
[発明が解決しようとする課題] しかしながら、前者微孔性フイルムは下記のような問
題点を有していた。すなわち、 (1)空孔率が、45%未満と低くく、例えば電解コンデ
ンサのセパレータとして使用する際に含有できる電解液
量が限定されるためにドライアップし易い。[Problems to be Solved by the Invention] However, the former microporous film had the following problems. That is, (1) Porosity is as low as less than 45%, and for example, when used as a separator of an electrolytic capacitor, the amount of an electrolytic solution that can be contained is limited, so that it is easy to dry up.
(2)高度に一軸に配向しているために裂け易く、スリ
ット時に亀裂が入ったり、また素子形成後に低温にさら
されるとストレスによりクラックが入る可能性がある。(2) Since it is highly uniaxially oriented, it is easy to tear, and cracks may occur at the time of slitting, or cracks may occur due to stress when exposed to low temperatures after element formation.
また後者の微孔性フイルムでは空孔率が50%以上と高
いものの機械特性に劣り、電気素子のセパレータとして
用いるために、例えば4〜10mmの短冊上にスリットする
際に伸びを生じ易く、安定して均一な品質の電気素子が
製造できないという問題があった。The latter microporous film has a high porosity of 50% or more, but is inferior in mechanical properties, and since it is used as a separator of an electric element, it easily expands when slitting on a strip of 4 to 10 mm, for example, and is stable. Then, there is a problem that an electric element of uniform quality cannot be manufactured.
本発明は、特に電解コンデンサーあるいは電気素子の
セパレータとして用いられる場合の機械適性を良好と
し、スリット性・素子巻性が良好であり、かつ空孔率が
高く、長期信頼性に優れた新規な微孔性ポリプロピレン
フイルムを提供することを課題とする。The present invention has a good mechanical suitability particularly when used as a separator of an electrolytic capacitor or an electric element, has good slitability and element winding property, has a high porosity, and is excellent in long-term reliability. An object is to provide a porous polypropylene film.
本発明は、平均孔径が0.06〜3μmである多数の空孔
を有するフイルムであって、該空孔はフイルムの厚み方
向に貫通孔を形成し、空孔率が50〜85%であり、かつ下
式で示されるフイルムの配向度ΔNpが0.05〜0.30で、か
つ長手方向の破断伸度が70〜200%であることを特徴と
する微孔性ポリプロピレンフイルムに関するものであ
る。The present invention is a film having a large number of pores having an average pore diameter of 0.06 to 3 μm, wherein the pores form through holes in the thickness direction of the film, and the porosity is 50 to 85%, and The present invention relates to a microporous polypropylene film having a degree of orientation ΔNp of the film represented by the following formula of 0.05 to 0.30 and a breaking elongation of 70 to 200% in the longitudinal direction.
ΔNp=ΔNb/ΔNa (ΔNbは微孔性ポリプロピレンフイルムの複屈折、ΔNa
はSmuelsの計算式によるポリプロピレンの極限複屈折の
値で33×10-3) 本発明において、ポリプロピレンとは極限粘度
(「η」)が1.2〜3.5dl/g,好ましくは2.3〜3.2dl/g,メ
ルトインデックス(MI)が0.1〜10g/10分、さらに重量
平均分子量が30×104を越えるものであると耐寒性・耐
溶剤性がバランスするので好ましい。ΔNp = ΔNb / ΔNa (ΔNb is the birefringence of microporous polypropylene film, ΔNa
Is the value of the ultimate birefringence of polypropylene according to the Smuels calculation formula 33 × 10 −3 ) In the present invention, polypropylene has an intrinsic viscosity (“η”) of 1.2 to 3.5 dl / g, preferably 2.3 to 3.2 dl / g. It is preferable that the melt index (MI) is 0.1 to 10 g / 10 minutes and the weight average molecular weight is more than 30 × 10 4 because cold resistance and solvent resistance are balanced.
またアイソタクチックインデックス(II)は、90%以
上、好ましくは96%以上のものが、結晶性に優れ耐熱性
・耐溶剤性に優れるので好ましい。また、溶融結晶化温
度(Tmc)は、106℃以上、好ましくは110℃以上である
と耐溶剤性が良好となるので好ましい。Further, an isotactic index (II) of 90% or more, preferably 96% or more is preferable because it has excellent crystallinity and excellent heat resistance and solvent resistance. Further, the melt crystallization temperature (Tmc) is preferably 106 ° C. or higher, and more preferably 110 ° C. or higher because the solvent resistance becomes good.
さらに該ポリプロピレンにはポリプロピレン以外の成
分、例えばエチレン、ブテン−1等のαオレフィン共重
合体等を上記特性に反しない範囲で含有していても良い
が、耐溶剤性等の観点から、以上の共重合成分あるいは
ブレンド物は、プロピレン単位に対して5モル%以下と
しておくことが好ましい。また、公知の添加剤、例えば
滑剤、アンチブロッキング剤、酸化防止剤、熱安定剤、
帯電防止剤、結晶核剤などを目的に反しない範囲で添加
しても良い。Further, the polypropylene may contain a component other than polypropylene, for example, an α-olefin copolymer such as ethylene or butene-1 within a range not deviating from the above characteristics, but from the viewpoint of solvent resistance and the like, the above It is preferable that the content of the copolymer component or the blend is 5 mol% or less based on the propylene unit. In addition, known additives such as lubricants, antiblocking agents, antioxidants, heat stabilizers,
You may add antistatic agents, crystal nucleating agents, etc. in the range which does not violate the purpose.
本発明微孔性フイルムにおいて、平均孔径は0.06〜3
μmであることが必要であり、好ましくは0.1〜2μm
である。電気素子のセパレータとして、用いた際に、平
均孔径が小さすぎる場合には、電解液の粘度変化による
等価直列抵抗(ESR)の変化率が増大し、例えば経時変
化(例えばドライアップ等)により電解液の粘度が上昇
する際に著しくESRが増大するために使用上問題を生じ
る。一方、平均孔径が大きすぎる場合、微細な導電物質
の移動を防ぐことができず、漏れ電流の増大あるいはシ
ョートの発生等の問題を生じる。In the microporous film of the present invention, the average pore size is 0.06-3.
It is necessary that the thickness is 0.1 μm, preferably 0.1 to 2 μm.
Is. If the average pore size is too small when used as a separator for electric elements, the rate of change in equivalent series resistance (ESR) due to changes in the viscosity of the electrolytic solution increases, and electrolysis due to, for example, aging (such as dry-up) When the viscosity of the liquid increases, the ESR increases remarkably, which causes a problem in use. On the other hand, if the average pore size is too large, it is not possible to prevent the movement of the fine conductive material, which causes a problem such as an increase in leakage current or the occurrence of a short circuit.
また、本発明微孔性フイルムの空孔率Prは、50〜85%
であることが必要であり、好ましくは60〜75%である。
空孔率が低すぎる場合、セパレータとして使用した際
に、電解液保持量が十分でないことにより、ドライアッ
プによるESR増大が大きく問題を生じる。一方空孔率が
高すぎる場合、機械特性(特に厚み方向の剛性)が悪化
し、異物によるピンホールの発生頻度が増大し、ショー
ト発生率が増大する。The porosity Pr of the microporous film of the present invention is 50 to 85%.
It is necessary to be, and preferably 60 to 75%.
If the porosity is too low, when the electrolyte is used as a separator, the amount of the electrolyte retained is not sufficient, and the increase in ESR due to dry-up causes a large problem. On the other hand, if the porosity is too high, the mechanical properties (in particular, the rigidity in the thickness direction) deteriorate, the frequency of pinholes caused by foreign matter increases, and the short circuit occurrence rate increases.
つぎに本発明微孔性フイルムの配向度ΔNpは、0.05〜
0.30であることが必要であり、好ましくは、0.08〜0.20
である。配向度ΔNpが0.05未満であるとフイルムが機械
変形し易くスリット性・素子巻性に劣る。一方0.30を越
えると一軸方向に裂け易く、熱寸法安定性に劣り、また
耐寒性が悪化する。Next, the orientation degree ΔNp of the microporous film of the present invention is 0.05 to
It is necessary to be 0.30, preferably 0.08 to 0.20
Is. If the degree of orientation ΔNp is less than 0.05, the film is likely to be mechanically deformed, resulting in poor slitability and element winding property. On the other hand, if it exceeds 0.30, it tends to tear in the uniaxial direction, the thermal dimensional stability is poor, and the cold resistance deteriorates.
さらに、耐溶剤性を良好とし、長期信頼性を良好とす
る上で、ΔNpと空孔率Pr(%)により定義されるΔNp/
(1−Pr/100)が0.1〜0.8の範囲であると好ましい。Furthermore, in order to improve solvent resistance and long-term reliability, ΔNp / ΔNp / which is defined by porosity Pr (%)
(1-Pr / 100) is preferably in the range of 0.1 to 0.8.
また、長手方向の破断伸度は、70〜200%、好ましく
は80〜150%である。長手方向の伸度が70%未満である
と数mmの小幅スリットする時にクラックを生じ易く均一
なスリット品を得ることが困難になり、200%を越える
とスリット時および素子巻時に取り扱い性に問題を生じ
る。The breaking elongation in the longitudinal direction is 70 to 200%, preferably 80 to 150%. If the elongation in the longitudinal direction is less than 70%, cracks are likely to occur when slitting a few mm in a small width, making it difficult to obtain a uniform slit product. If it exceeds 200%, there is a problem in handleability during slitting and element winding. Cause
また、フイルム厚みは、電気素子のセパレータとして
用いた際の素子のコンパクト性および取り扱い性の観点
から10〜50μmが好ましく、より好ましくは20〜40μm
である。Further, the film thickness is preferably 10 to 50 μm, more preferably 20 to 40 μm from the viewpoints of compactness and handling of the element when used as a separator of an electric element.
Is.
さらに、本発明微孔性ポリプロピレンフイルムを電解
コンデンサ・電気二重層コンデンサ用のセパレータとし
て用いる場合には、電解液との親和性をよくするために
親水化処理を施しておくことが好ましい。親水化処理
は、非イオン系界面活性剤、アニオンもしくはカチオン
系界面活性剤等のコーティング、コロナ放電もしくはプ
ラズマ処理、グラフト処理、紫外線処理またはこれらの
組み合わせによって行なうことができる。Further, when the microporous polypropylene film of the present invention is used as a separator for an electrolytic capacitor / electric double layer capacitor, it is preferable that a hydrophilic treatment is performed in order to improve the affinity with the electrolytic solution. The hydrophilic treatment can be performed by coating with a nonionic surfactant, anionic or cationic surfactant, corona discharge or plasma treatment, graft treatment, ultraviolet treatment, or a combination thereof.
本発明微孔性ポリプロピレンフイルムは、通常長手方
向が、屈折率の最大方向と一致するようにしておき、ス
リット時には、該方向に沿って行なうと機械的特性が良
好となり好ましい。In the microporous polypropylene film of the present invention, the longitudinal direction is usually made to coincide with the maximum direction of the refractive index, and when slitting, it is preferable to perform along the direction so that the mechanical properties are good.
次に本発明微孔性ポリプロピレンフイルムの代表的な
製造方法について述べるが、もちろんこれに限定される
ものではない。Next, a typical method for producing the microporous polypropylene film of the present invention will be described, but it is not limited to this.
すなわち極限粘度1.2〜4.2dl/g,好ましくは2.6〜3.2d
l/gのポリプロピレン樹脂100重量部に、抽出可能な常温
有機固体例えばジシクロヘキシルフタレート(DCHP)ま
たはトリフエニルフォスフェイト(TPP)のような塩化
ビニル等の可塑剤として使用しているフタル酸エステル
または燐酸エステル等を90〜250重量部、好ましくは100
〜230重量部を添加する。この範囲の添加量であると製
膜性が良好となり、均一で連続貫通孔性に優れた微細孔
が形成され、機械特性に優れた微孔性フイルムとなるの
で好ましい。また、ポリプロピレン樹脂には、熱安定
剤、酸化防止剤、すべり剤、帯電防止剤等を添加しても
良い。しかしながら、製造工程中に無機微粒子等の不溶
物を添加することは、形成される孔径の均一性に劣り、
10μm以上のボイド上空孔を生じ易くなるため、添加し
ないことが好ましく、たとえ添加する場合でも、ポリプ
ロピレン樹脂100重量部に対し5重量部としておくこと
が好ましい。That is, the intrinsic viscosity is 1.2 to 4.2 dl / g, preferably 2.6 to 3.2 d
Phthalic acid ester or phosphoric acid used as a plasticizer for 100 parts by weight of l / g polypropylene resin, such as vinyl chloride, such as an extractable room temperature organic solid such as dicyclohexyl phthalate (DCHP) or triphenyl phosphate (TPP). 90 to 250 parts by weight of ester and the like, preferably 100
~ 230 parts by weight are added. When the amount added is in this range, the film-forming property becomes good, uniform fine pores having excellent continuous through-hole properties are formed, and a microporous film having excellent mechanical properties is obtained, which is preferable. Further, a heat stabilizer, an antioxidant, a slip agent, an antistatic agent, etc. may be added to the polypropylene resin. However, adding insoluble matter such as inorganic fine particles during the manufacturing process is inferior in the uniformity of the pore size formed,
Void voids of 10 μm or more are likely to occur, so it is preferable not to add it, and even if it is added, it is preferably 5 parts by weight with respect to 100 parts by weight of the polypropylene resin.
次に上記組成物を溶融押出した後に、キャスティング
ドラム上、あるいは水槽中でシート状あるいはチューブ
状に成形する。この際にドラフト比5以上、好ましくは
7以上で引き取り、該有機固体の融点以上、該ポリプロ
ピレン樹脂の溶融結晶化温度以下で冷却固化し巻取る。
ここで、ドラフト比および冷却速度を上げる程、ポリプ
ロピレン樹脂と有機固体との均一な相分離構造を形成
し、均一で連続貫通孔性に優れた微孔ポリプロピレンフ
イルムが得られる。Next, after melt-extruding the above composition, it is formed into a sheet or tube on a casting drum or in a water tank. At this time, it is taken up at a draft ratio of 5 or more, preferably 7 or more, cooled and solidified at a temperature not lower than the melting point of the organic solid and not higher than the melting and crystallization temperature of the polypropylene resin, and wound.
Here, as the draft ratio and the cooling rate are increased, a uniform phase-separated structure of the polypropylene resin and the organic solid is formed, and a uniform and fine through-hole polypropylene film having excellent continuous through-hole property can be obtained.
次に、トリクロルメタン、トリクロルエタン、アセト
ン、メチルエチルケトン、酢酸エチル、メタノール、ト
ルエン、キシレン等の有機固体の良溶媒を用いて、該有
機固体の添加量の95%以上、好ましくは98%以上を抽出
する。Next, using a good solvent for the organic solid such as trichloromethane, trichloroethane, acetone, methyl ethyl ketone, ethyl acetate, methanol, toluene, xylene, 95% or more, preferably 98% or more of the added amount of the organic solid is extracted. To do.
次に、微孔性フィルの配向度ΔNpを本発明の範囲内と
するためには、引続き該抽出フィルムを該ポリプロピレ
ンの溶融結晶化温度以上、融点−5℃以下の温度範囲で
1〜60秒間熱処理後、ポリプロピレン樹脂のガラス転移
点以上、融点−10℃以下の温度で少なくとも一軸に1.5
〜6倍に延伸することが好ましい。その際に厚み変化率
(延伸後厚み/延伸前厚み)を0.2〜0.5とすることが好
ましく、また延伸速度が10000%/分以下好ましくは500
0%/分以下の低速度で延伸する工程が最終工程とする
ことが好ましい。すなわち、本発明のフイルムを得るた
めには、低速度延伸工程のみによっても良いが、通常の
高速延伸工程の後に低速度延伸工程を行なう方法でもよ
く、さらに、該高速延伸方向と該低速延伸方向とは直交
するようにしておくと好ましい。さらに、延伸後、ポリ
プロピレンの溶融結晶化温度以上、融点−5℃以下の温
度範囲で熱固定することが好ましい。Next, in order to bring the degree of orientation ΔNp of the microporous fill into the range of the present invention, the extraction film is continuously heated in the temperature range from the melting crystallization temperature of the polypropylene to the melting point of -5 ° C for 1 to 60 seconds. After heat treatment, at least uniaxially 1.5 at the temperature above the glass transition point of polypropylene resin and below the melting point -10 ° C.
It is preferable to stretch to 6 times. At that time, the thickness change rate (thickness after stretching / thickness before stretching) is preferably 0.2 to 0.5, and the stretching speed is 10,000% / min or less, preferably 500.
The step of stretching at a low speed of 0% / minute or less is preferably the final step. That is, in order to obtain the film of the present invention, only the low speed stretching step may be performed, but a method of performing the low speed stretching step after the usual high speed stretching step may be used. It is preferable to be orthogonal to. Furthermore, it is preferable to heat-set after stretching in a temperature range of not lower than the melting crystallization temperature of polypropylene and not higher than the melting point of -5 ° C.
このようにして得られた微孔性ポリプロピレンフイル
ムは特に電解コンデンサ、電池、電気二重層コンデンサ
等の電気素子のセパレータとして優れた特性を有するば
かりでなく、孔径の均一性、機械特性、耐溶剤性に優れ
るために、ミクロフイルター、透湿防水用途等にも優れ
た特性を発揮する。The microporous polypropylene film thus obtained not only has excellent properties as a separator for electric elements such as electrolytic capacitors, batteries and electric double layer capacitors, but also has uniform pore size, mechanical properties and solvent resistance. Because of its excellent performance, it also exhibits excellent properties for microfilters, moisture-permeable waterproofing applications, etc.
[特性の測定方法および効果の評価方法] 次に本発明に関する測定方法および評価方法について
まとめてしめす。[Characteristic measuring method and effect evaluating method] Next, the measuring method and the evaluating method relating to the present invention will be summarized.
(1)極限粘度(「η」) ASTM D 1601に準拠し、試料0.1gを135℃のテトラ
リン100mlに完全溶解させ、この溶液を粘度計で135℃の
恒温槽中で、測定して比粘度Sより次式にしたがって極
限粘度を求める。(1) Intrinsic viscosity (“η”) In accordance with ASTM D 1601, 0.1 g of a sample is completely dissolved in 100 ml of tetralin at 135 ° C, and this solution is measured with a viscometer in a thermostat at 135 ° C to obtain a specific viscosity. The intrinsic viscosity is calculated from S according to the following formula.
[η]=S/{0.1×(1+0.22×S)} (2)メルトインデックス(MI) ASTM−D1238−62Tに従い測定する。[Η] = S / {0.1 × (1 + 0.22 × S)} (2) Melt index (MI) Measured according to ASTM-D1238-62T.
単位はg/10分。 The unit is g / 10 minutes.
(3)アイソタクチックインデックス(II) 試料を130℃で2時間真空乾燥する。これから重量W
(mg)の試料をとり、ソックスレー抽出器に入れ、沸騰
n−ヘプタンで12時間抽出する。(3) Isotactic index (II) A sample is vacuum dried at 130 ° C. for 2 hours. Weight W from now on
Take (mg) sample, place in Soxhlet extractor and extract with boiling n-heptane for 12 hours.
次に、この試料を取出し、アセトンで十分洗浄した
後、130℃で6時間真空乾燥し、その後重量W′(mg)
を測定し、次式で求める。Next, this sample was taken out, thoroughly washed with acetone, and then vacuum dried at 130 ° C. for 6 hours, and then the weight W ′ (mg)
Is measured, and is obtained by the following equation.
II(%)=(W′/W)×100 (4)融点及び溶融結晶化温度 走査型熱量計DSC−2型(Perkin Elmer社製)を用
い、試料5mgを窒素気流下で、昇温速度20℃/分にて室
温より測定し、融解に伴う吸熱ピーク温度を融点とす
る。II (%) = (W '/ W) x 100 (4) Melting point and melting crystallization temperature Using a scanning calorimeter DSC-2 type (manufactured by Perkin Elmer), 5 mg of a sample was heated under a nitrogen stream in a heating rate. Measure from room temperature at 20 ° C / min and take the endothermic peak temperature associated with melting as the melting point.
引続き、280℃まで昇温し、5分間保持した後に20℃
/分の降下速度にて温度を下げる過程で、ポリオレフイ
ンの結晶化に伴う潜熱のピーク温度を溶融結晶化温度と
する。Continue to raise the temperature to 280 ℃ and hold for 5 minutes, then at 20 ℃
The peak temperature of latent heat associated with the crystallization of polyolefin is taken as the melt crystallization temperature in the process of lowering the temperature at the rate of decrease of / min.
(5)平均孔径 水銀ポロシメータ(MICROMERITICS社製PORE SIZER 93
00)により、微細孔直径の分布を測定し、数平均を平均
孔径とした。(5) Average pore size Mercury porosimeter (PORE SIZER 93 manufactured by MICROMERITICS)
00), the distribution of micropore diameters was measured, and the number average was taken as the average pore diameter.
(6)破断伸度 サンプル長手方向(MD)の破断伸度をJISK6782に従い
測定し、%で表す。(6) Breaking elongation The breaking elongation in the longitudinal direction (MD) of the sample is measured according to JIS K6782 and expressed in%.
(7)空孔率(Pr) 試料(10×10cm)を流動パラフインに24時間浸漬し、
表層の流動パラフインを十分に拭きとった後の重量
(W2)を測定し、該試料の浸漬前の重量(W1)流動パラ
フインの密度(ρ)より空孔体積(V0)を次式で求め
る。(7) Porosity (Pr) A sample (10 x 10 cm) was immersed in flowing paraffin for 24 hours,
The weight (W 2 ) of the surface layer after the fluid paraffin was sufficiently wiped off was measured, and the pore volume (V0) was calculated from the weight (W 1 ) of the sample before immersion and the density (ρ) of the fluid paraffin by the following formula. Ask.
V0=(W2/W1)/ρ 空孔率(Pr)は、見掛け体積(厚み、寸法より計算さ
れる値)Vと空孔体積V0より計算される。V 0 = (W 2 / W 1 ) / ρ Porosity (Pr) is calculated from apparent volume (value calculated from thickness and dimensions) V and pore volume V 0 .
Pr=V0/V×100(%) (8)配向度ΔNp 試料に流動パラフインを含浸し、その空孔のほとんど
を置換する。該処理サンプルをベレックコンペンセータ
ーによりレターデーション(R)[nm]を測定し複屈折
(ΔNb)を次式で求める。Pr = V 0 / V × 100 (%) (8) Degree of orientation ΔNp A sample is impregnated with fluidized paraffin to replace most of its pores. The retardation (R) [nm] of the treated sample is measured with a Berek compensator, and the birefringence (ΔNb) is calculated by the following formula.
ΔNb=R/d ここでdはフイルム厚み(nm)を示し、レターデーシ
ョン測定後の厚みをPEACOCK製ダイアルゲージ型厚み計
[平頭(測定子径5mm)]で測定した。次に、Smuelsの
計算式によるポリプロピレンの極限複屈折の値(ΔNa)
33×10-3より、該微孔性フイルムの配向度(ΔNp)を次
の式により求める。ΔNb = R / d Here, d represents the film thickness (nm), and the thickness after the retardation measurement was measured with a dial gauge type thickness meter made by PEACOCK [flat head (stylus diameter 5 mm)]. Next, the value of the ultimate birefringence of polypropylene (ΔNa) according to the Smuels formula
From 33 × 10 −3 , the orientation degree (ΔNp) of the microporous film is calculated by the following formula.
ΔNp=ΔNb/ΔNa (9)ESR(等価直列抵抗) 特開昭61−187221号に記載された方法に基づき、γブ
チロラクトン+トリエチルアミン+フタル酸を溶解し、
3.1mS/cm(25℃)の電解液を用意した。サンプルを30〜
35mm角に切り取り、該電解液を含浸し空孔のほぼ100%
を電解液で置換後、5枚重ねとして白金黒処理白金電極
にはさみ測定し、各シート当たりのESRを求めた。ΔNp = ΔNb / ΔNa (9) ESR (equivalent series resistance) Based on the method described in JP-A No. 61-187221, γ-butyrolactone + triethylamine + phthalic acid is dissolved,
An electrolyte solution of 3.1 mS / cm (25 ° C) was prepared. 30 ~ sample
Cut into 35mm square, impregnated with the electrolyte and almost 100% of the pores
After substituting the electrolyte solution with the electrolytic solution, five sheets were stacked and sandwiched between platinum-black-treated platinum electrodes, and measurement was performed to obtain the ESR for each sheet.
ここで、比較サンプルとして電解コンデンサ紙(マニ
ラ紙MER2.5−50)のESR値を比較値として、該マニラ紙
未満のESRを有する微孔性膜を○、該マニラ紙以上のESR
を有する微孔性膜を×と評価した。Here, as a comparative sample, the ESR value of electrolytic capacitor paper (Manila paper MER2.5-50) was used as a comparison value, and a microporous film having an ESR of less than the Manila paper was marked with ○, and an ESR of the Manila paper or higher was evaluated.
A microporous membrane having a was evaluated as x.
なお、測定条件は以下の通りであった。 The measurement conditions were as follows.
(a)電極:白金黒処理白金電極(25mm角) 測定荷重240g (b)インピーダンス測定機 AG−4311 LCR METER(安藤電気(株)製) 測定条件:1kHz,25℃ (10)電解コンデンサテスト A.取り扱い性(ハンドリング性) フイルムを8mm幅にスリットし陽極化成Al箔と陰極Al
箔とを巻合わせ220μF,6.3Vの電解コンデンサを作成す
るテストを行なった。(A) Electrode: Platinum black treated platinum electrode (25mm square) Measuring load 240g (b) Impedance measuring machine AG-4311 LCR METER (manufactured by Ando Electric Co., Ltd.) Measuring condition: 1kHz, 25 ℃ (10) Electrolytic capacitor test A .Handling (handling) The film is slit into a width of 8 mm and anodized Al foil and cathode Al are used.
A test was carried out by winding a foil and making an electrolytic capacitor of 220 μF, 6.3V.
この際、フイルムの取り扱い性を以下のようにランク
分けした。At this time, the handling of the film was ranked as follows.
・安定して素子巻までできたもの:○ ・スリットはできたものの素子巻時に乱れを生じたも
の:△ ・スリットできなかったもの:× B.信頼性テスト 上記で得られた電解コンデンサ素子30個の85℃500時
間経時後の不良個数を評価した。・ Stable element winding: ○ ・ Slitting, but disturbance when winding element: △ ・ Slitting not possible: × B. Reliability test Electrolytic capacitor element 30 obtained above The number of defective samples after aging at 85 ° C. for 500 hours was evaluated.
[実施例] 以下、本発明に関し実施例に基づき詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail based on Examples.
実施例1 ポリプロピレン樹脂として、三井ノーブレンEBタイプ
(三井東圧化学(株)製、[η]=2.8dl/g,II=97%)
100重量部に対し、酸化防止剤(イルガノックス1010、
チバガイギー社製)0.05重量部、熱安定剤(ヨシノック
ス、吉富製薬(株)製)0.35重量部、常温有機固体ジシ
クロヘキシルフタレート(DCHP)(大阪有機化学工業
製)155重量部とを2軸押出機を用いて溶融ブレンド
し、ペレット化した。次にこれを40mmφ押出機を用いて
Tダイより押出温度220℃で溶融押出し、ドラフト比7
にて90℃のキャスティングドラム上で静電印加(6KV)
しつつドラムに密着させて冷却固化した。こうして得ら
れたフイルムは85μmであった。次に該キャストフイル
ムをトリクロレエチレン抽出槽に導いて抽出を行ない、
添加したDCHPの98%以上を取り除いた。次に、ロール熱
処理装置にて、115℃2秒間の熱処理を行ない、引き続
き、ロール延伸装置を用いて105℃にて長手方向に3.5倍
に延伸した後、ステンターにて140℃で幅方向に1.5倍延
伸し、145℃にて熱固定し巻取った。Example 1 As a polypropylene resin, Mitsui Noblene EB type (manufactured by Mitsui Toatsu Chemicals, Inc., [η] = 2.8 dl / g, II = 97%)
Antioxidant (Irganox 1010,
Ciba-Geigy) 0.05 parts by weight, heat stabilizer (Yoshinox, Yoshitomi Pharmaceutical Co., Ltd.) 0.35 parts by weight, room temperature organic solid dicyclohexyl phthalate (DCHP) (Osaka Organic Chemical Industry) 155 parts by weight and a twin-screw extruder. It was melt blended and pelletized. Next, this was melt extruded from a T-die at an extrusion temperature of 220 ° C. using a 40 mmφ extruder, and a draft ratio of 7
Electrostatic application (6KV) on the casting drum at 90 ℃
While being adhered to the drum, it was cooled and solidified. The film thus obtained had a thickness of 85 μm. Next, the cast film is introduced into a trichlorethylene extraction tank for extraction,
Over 98% of the added DCHP was removed. Next, the roll heat treatment device performs heat treatment at 115 ° C. for 2 seconds, and subsequently, using a roll stretching device, the film is stretched 3.5 times in the longitudinal direction at 105 ° C., and then is stretched at 140 ° C. in the width direction at 1.5 ° C. with a stenter. The film was double-stretched, heat-set at 145 ° C. and wound.
このようにして得られたフイルムは厚みが25μm、配
向度(ΔNp)0.09、MD破断伸度119%であった。主要特
性を表1に示すが、空孔率が高く、取り扱い性に優れ、
電解コンデンサとした時の特性を優れることが判る。The film thus obtained had a thickness of 25 μm, an orientation degree (ΔNp) of 0.09, and an MD breaking elongation of 119%. The main characteristics are shown in Table 1, which has a high porosity and is easy to handle.
It can be seen that the characteristics of the electrolytic capacitor are excellent.
実施例2 ポリプロピレン樹脂として、三井ノーブレンEPタイプ
(三井東圧化学(株)製、[η]=3.2dl/g,II=97%)
100重量に対し、イルガノックス1010を0.05重量部、ヨ
シノックス0.35重量部、DCHP170重量部とを2軸押出機
を用いて溶融ブレンドし、ペレット化した。次にこれを
40mmφ押出機を用いてTダイより押出温度230℃で溶融
押出し、ドラフト比6にて82℃の水槽中に導き冷却固化
した。こうして得られたフイルムは65μmであった。次
に該キャストフイルムを1−1−1トリクロルエタン抽
出槽に導いて抽出を行ない、添加したDCHPの99%以上を
取り除いた。Example 2 As a polypropylene resin, Mitsui Noblen EP type (manufactured by Mitsui Toatsu Chemicals, Inc., [η] = 3.2 dl / g, II = 97%)
0.05 parts by weight of Irganox 1010, 0.35 parts by weight of Yoshinox, and 170 parts by weight of DCHP were melt-blended with 100 parts by weight using a twin-screw extruder and pelletized. Then this
It was melt-extruded from a T-die at an extrusion temperature of 230 ° C. using a 40 mmφ extruder and introduced into a water tank at 82 ° C. with a draft ratio of 6 to be cooled and solidified. The film thus obtained had a thickness of 65 μm. Next, the cast film was introduced into a 1-1-1 trichloroethane extraction tank for extraction, and 99% or more of the added DCHP was removed.
引き続き、該抽出フイルムを125℃に加熱したオーブ
ン中でフイルムを3秒間熱処理し、引続き入口のニップ
ロールと出口のニップロールとの周速差により長手方向
に延伸速度5000%/分で3.5倍に延伸し、140℃にて熱固
定して巻取った。Subsequently, the extracted film was heat-treated for 3 seconds in an oven heated to 125 ° C., and subsequently stretched 3.5 times at a stretching speed of 5000% / min in the longitudinal direction due to the peripheral speed difference between the inlet nip roll and the outlet nip roll. It was heat set at 140 ° C and wound up.
このようにして得られたフイルム厚みは、23μm、配
向度(ΔNp)0.18、MD破断伸度143%であった。主要特
性を表1に示すが、実施例1同様セパレータとして優れ
た電気特性及び信頼性を有していることが判る。The film thickness thus obtained was 23 μm, the degree of orientation (ΔNp) was 0.18, and the MD breaking elongation was 143%. The main characteristics are shown in Table 1, and it can be seen that the separator has excellent electric characteristics and reliability as in Example 1.
比較例1 極限粘度[η]1.85、II=97.5%のポリプロピレンを
40mmφ押出機よりTダイを用い、押出温度220℃でシー
ト状に溶融押出し、65℃に保たれた水槽中にてドラフト
比40で27μmのフイルムを巻取った。続いて該フイルム
を熱風オーブン内で張力下に110℃60秒間の1次熱処理
を行ない、引き続き65℃の長手方向に2.0倍延伸した。
このようにして得られたフイルムを145℃に保たれた熱
風オーブンで張力下に10秒間熱固定し、25μmの微孔性
フイルムを得た。このフイルムの特性を表1に示すが平
均孔径が0.04μmと小さく、空孔率も42%と低い。ま
た、配向度(ΔNp)が0.48と高いために、スリット時に
裂け易く電解コンデンサとした時の特性も劣ることが判
る。Comparative Example 1 Intrinsic viscosity [η] 1.85, II = 97.5% polypropylene
A T-die was used from a 40 mmφ extruder to melt-extrude a sheet at an extrusion temperature of 220 ° C., and a 27 μm film with a draft ratio of 40 was wound in a water tank kept at 65 ° C. Subsequently, the film was subjected to a primary heat treatment in a hot air oven under tension at 110 ° C. for 60 seconds, and subsequently stretched 2.0 times in the longitudinal direction at 65 ° C.
The film thus obtained was heat-set under tension for 10 seconds in a hot air oven kept at 145 ° C. to obtain a 25 μm microporous film. The characteristics of this film are shown in Table 1. The average pore diameter is as small as 0.04 μm and the porosity is as low as 42%. Further, it can be seen that since the orientation degree (ΔNp) is as high as 0.48, it is easy to tear during slitting and the characteristics when used as an electrolytic capacitor are inferior.
比較例2 ポリプロピレン樹脂として三井ノーブレンJSタイプ
([η]=2.3dl/g,II=97%)100重量部に対し、有機
液体としてジオクチルフタレート(DOP)120重量部と平
均粒径12mμの無機微粒子(アエロジル200、日本アエロ
ジル(株)製)50重量部を添加し、二軸押出機により22
0℃で溶融ブレンドしペレット化した。次にこれを40mm
φ押出機を用いてTダイより220℃で溶融押出し、ドラ
フト比3にて65℃のキャスティングドラム上でニップし
つつ冷却固化した。こうして得られたフイルムは300μ
mであった。次に該フイルムを1−1−1トリクロルエ
タン抽出槽に導き添加したDOPの99%以上を取り除い
た。Comparative Example 2 100 parts by weight of Mitsui Noblene JS type ([η] = 2.3 dl / g, II = 97%) as a polypropylene resin, 120 parts by weight of dioctyl phthalate (DOP) as an organic liquid, and inorganic fine particles having an average particle size of 12 mμ (Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.)
Melt blended and pelletized at 0 ° C. Next this is 40mm
It was melt extruded from a T-die at 220 ° C. using a φ extruder, and cooled and solidified while nipping on a casting drum at 65 ° C. with a draft ratio of 3. The film thus obtained is 300μ
It was m. Next, the film was introduced into a 1-1-1 trichloroethane extraction tank to remove 99% or more of the added DOP.
引き続きロール延伸装置を用いて140℃にて長手方向
に4.0倍延伸した後、ステンターにて145℃で幅方向に4
倍延伸し、さらに150℃で熱固定して巻とった。Then, using a roll stretching device, stretch the film 4.0 times in the longitudinal direction at 140 ° C, and then stretch it in the width direction at 145 ° C with a stenter.
The film was double-stretched, heat-set at 150 ° C. and wound.
このようにして得られたフイルムは厚み57μmであっ
た。特性を表1に示すが、平均孔径が0.3μm、空孔率8
5%、配向度(ΔNp)0.01以下、MD破断伸度52%であ
り、非常に脆くスリットができなかった。The film thus obtained had a thickness of 57 μm. The characteristics are shown in Table 1, with an average pore size of 0.3 μm and a porosity of 8
5%, orientation (ΔNp) 0.01 or less, MD breaking elongation 52%, very brittle and could not be slit.
以上、実施例、比較例との対照から明らかなように本
発明の微孔性ポリプロピレンフイルムは、特に電気素子
のセパレータ用として優れた特性を示すことが判る。As is clear from the comparison with Examples and Comparative Examples, the microporous polypropylene film of the present invention exhibits excellent properties, especially for use as a separator for electric elements.
[発明の効果] 本発明の微孔性ポリプロピレンフイルムは、電気素子
のセパレータとしてばかりでなく、ミクロフイルター、
分離膜として用いられる際に次のような効果を有する。 [Advantages of the Invention] The microporous polypropylene film of the present invention can be used not only as a separator for electric elements but also as a microfilter,
When used as a separation membrane, it has the following effects.
(1)平均孔径が0.06〜3ηmであり、しかも空孔率が
50〜85%と高いために電解液の保持性に優れ、また瀘過
特性にも優れる。(1) The average pore diameter is 0.06 to 3 ηm, and the porosity is
Since it is as high as 50 to 85%, it retains electrolyte well and has excellent filtration characteristics.
(2)配向度ΔNpを0.05〜0.30の範囲としたことによ
り、耐溶剤性が良好となるばかりか、取り扱い性も良好
となり、セパレータとして安定した特性が得られる。(2) By setting the orientation degree ΔNp in the range of 0.05 to 0.30, not only the solvent resistance becomes good, but also the handleability becomes good, and stable characteristics can be obtained as a separator.
(3)最適化された破断伸度を有するために特に電解コ
ンデンサ用セパレータとして用いた時に素子巻性が良好
になる。(3) Since it has an optimized breaking elongation, the element winding property is improved especially when it is used as a separator for electrolytic capacitors.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 2/16 C08L 23:12 C08L 23:12 9375−5E H01G 9/00 301C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01M 2/16 C08L 23:12 C08L 23:12 9375-5E H01G 9/00 301C
Claims (1)
を有するフイルムであって、該空孔はフイルムの厚み方
向に貫通孔を形成し、空孔率が50〜85%であり、かつ下
式で示されるフイルムの配向度ΔNpが0.05〜0.30で、更
に長手方向の破断伸度が70〜200%であることを特徴と
する微孔性ポリプロピレンフイルム。 ΔNp=ΔNb/ΔNa (ΔNbは微孔性ポリプロピレンフイルムの複屈折、ΔNa
はSmuelsの計算式によりポリプロピレンの極限複屈折の
値で33×10-3)1. A film having a large number of pores having an average pore diameter of 0.06 to 3 μm, wherein the pores form through holes in the thickness direction of the film, and the porosity is 50 to 85%. A microporous polypropylene film characterized in that the orientation degree ΔNp of the film represented by the following formula is 0.05 to 0.30 and the breaking elongation in the longitudinal direction is 70 to 200%. ΔNp = ΔNb / ΔNa (ΔNb is the birefringence of microporous polypropylene film, ΔNa
Is the value of the extreme birefringence of polypropylene calculated by Smuels' formula, 33 × 10 -3 ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63048149A JP2513768B2 (en) | 1988-02-29 | 1988-02-29 | Microporous polypropylene film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63048149A JP2513768B2 (en) | 1988-02-29 | 1988-02-29 | Microporous polypropylene film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01221440A JPH01221440A (en) | 1989-09-04 |
JP2513768B2 true JP2513768B2 (en) | 1996-07-03 |
Family
ID=12795306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63048149A Expired - Lifetime JP2513768B2 (en) | 1988-02-29 | 1988-02-29 | Microporous polypropylene film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2513768B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3342755B2 (en) * | 1992-10-28 | 2002-11-11 | 旭化成株式会社 | Separator for cylindrical electric parts |
JP3348513B2 (en) * | 1994-03-31 | 2002-11-20 | ソニー株式会社 | Polymer solid electrolyte battery |
JPH07285173A (en) * | 1994-04-20 | 1995-10-31 | Toray Ind Inc | Electric insulating biaxially oriented polyethylene naphthalate film |
US6349027B1 (en) | 1997-10-29 | 2002-02-19 | Asahi Glass Company, Ltd. | Electric double layer capacitor |
EP0938109A3 (en) * | 1998-02-20 | 2003-06-04 | Asahi Glass Company Ltd. | Electric double layer capacitor |
JP5732853B2 (en) * | 2009-11-09 | 2015-06-10 | 東レ株式会社 | Porous film and power storage device |
-
1988
- 1988-02-29 JP JP63048149A patent/JP2513768B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01221440A (en) | 1989-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4753446B2 (en) | Polyolefin microporous membrane | |
JP5440171B2 (en) | Storage device separator | |
JP5052135B2 (en) | Polyolefin microporous membrane and battery separator | |
JP5672007B2 (en) | Porous polypropylene film roll | |
WO2016104792A1 (en) | Polyolefin microporous membrane, production method therefor, and battery separator | |
JP5807388B2 (en) | Porous polypropylene film | |
US20110319511A1 (en) | Porous polypropylene film and production method thereof | |
JP7207300B2 (en) | porous polyolefin film | |
WO2018179810A1 (en) | Polyolefin microporous membrane and production method thereof | |
JP4964565B2 (en) | Polyethylene microporous membrane | |
JP5251193B2 (en) | Porous polyolefin film | |
JPH0277108A (en) | Electrolyte separator | |
JP5235487B2 (en) | Method for producing inorganic particle-containing microporous membrane | |
JP2513768B2 (en) | Microporous polypropylene film | |
WO2019045077A1 (en) | Polyolefin microporous membrane | |
JP2513786B2 (en) | Polyolefin microporous film | |
JP3486785B2 (en) | Battery separator and method of manufacturing the same | |
JPH01304933A (en) | Polyolefin porous film and electrolysis separator | |
JP2541262B2 (en) | Polyolefin Microporous Membrane and Electrolyte Separator | |
JP2017080977A (en) | Multilayer microporous membrane and separator for electricity storage device | |
JP2569670B2 (en) | Polypropylene microporous film and battery separator | |
JP2503007B2 (en) | Microporous polypropylene film | |
JP2674625B2 (en) | Polyolefin microporous film | |
JP2022082461A (en) | Polyolefin microporous membrane, battery separator, and secondary battery | |
JPH0817145B2 (en) | Separator for electrolytic capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |