JPH0277108A - Electrolyte separator - Google Patents

Electrolyte separator

Info

Publication number
JPH0277108A
JPH0277108A JP62335026A JP33502687A JPH0277108A JP H0277108 A JPH0277108 A JP H0277108A JP 62335026 A JP62335026 A JP 62335026A JP 33502687 A JP33502687 A JP 33502687A JP H0277108 A JPH0277108 A JP H0277108A
Authority
JP
Japan
Prior art keywords
layers
layer
separator
melting point
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62335026A
Other languages
Japanese (ja)
Other versions
JP2625798B2 (en
Inventor
Tatsuya Ito
達也 伊藤
Shigeru Tanaka
茂 田中
Kenji Yabe
矢部 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62335026A priority Critical patent/JP2625798B2/en
Publication of JPH0277108A publication Critical patent/JPH0277108A/en
Application granted granted Critical
Publication of JP2625798B2 publication Critical patent/JP2625798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To immediately close and seal a hole formed by short circuit even when the short circuit occurs by alternately piling up 1st polyolefinic porous layers having a specific melting point and 2nd polyolefinic porous layers having another specific melting point and specifying the overall mean porosity and mean diameter of the circular openings of all layers. CONSTITUTION:This electrolyte separator is constituted by alternately piling 1st polyolefinic porous layers having a melting point >=158 deg.C and 2nd polyolefinic porous layers having another melting point of 110-150 deg.C. It is preferable to unite layers A and B or two layers B and one layer A, with the layer A being between the layers B, to one body. When the mean porosity of the separator is <50%, the electrolyte holding quantity of the separator is small and the separator may dries up. When the porosity exceeds 85%, on the contrary, the mechanical strength of the separator drops. When the overall mean diameter of the layers is 0.01mum, the equivalent serial resistance becomes larger and, when the mean diameter exceeds 5mum, conductive substances can easily pass through the pores.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解コンデンサ、リチウム電池、バッテリ
ー等に用いられる電解液セパレータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolyte separator used in electrolytic capacitors, lithium batteries, batteries, etc.

[従来の技術] 電解コンデンサ、リチウム電池、バッテリー等に用いら
れる電解液セパレータとして、古くからクラフト紙、マ
ニラ紙等の電解紙が用いられているが、最近は例えば特
開昭51−18851号、特開昭61−13614号、
実開昭59−140429号及び特開昭62−2007
16号に記載されているように、多孔質ポリオレフィン
膜を用いることが提案されている。多孔質ポリオレフィ
ン膜は紙よりも強度が高く、ショート(極間短絡)発生
率も低い。
[Prior Art] Electrolytic papers such as kraft paper and manila paper have been used for a long time as electrolyte separators for electrolytic capacitors, lithium batteries, batteries, etc., but recently, for example, JP-A-51-18851, JP-A-61-13614,
Utility Model Publication No. 59-140429 and Japanese Patent Application Publication No. 62-2007
It has been proposed to use porous polyolefin membranes, as described in No. 16. Porous polyolefin membranes are stronger than paper and have a lower incidence of short circuits.

[発明が解決しようとする問題点] 従来から提案されている多孔質ポリオレフィン膜から成
る電解液セパレータはいずれも1層の多孔質ポリオレフ
ィン膜から成り、電解紙に比べるとショート発生率が低
いが、そのショート発生率は未だ満足できるものではな
い。
[Problems to be Solved by the Invention] The electrolyte separators made of porous polyolefin membranes that have been proposed so far are all made of a single layer of porous polyolefin membrane, and have a lower short circuit occurrence rate than electrolytic paper. The short circuit occurrence rate is still not satisfactory.

この発明の目的は、従来の電解液セパレータよりも有意
にショート発生率が低く、かつ電解液セパレータとして
優れた等価直列抵抗、耐熱性及び機械強度を有する電解
液セパレータを提供することである。
An object of the present invention is to provide an electrolyte separator that has a significantly lower short circuit occurrence rate than conventional electrolyte separators, and has excellent equivalent series resistance, heat resistance, and mechanical strength as an electrolyte separator.

[問題点を解決するための手段] 本願発明者らは、鋭意研究の結果、融点が158°C以
上の第1のポリオレフィン多孔質層と、融点が110℃
から150℃の第2のポリオレフィン多孔質層とを積層
して電解液セパレータとして用いると、電極上の微細導
電物質がセパレータを突き破って反対極に移動してショ
ートが発生しても、その際発生する熱によって比較的融
点の低い第2のポリオレフィン多孔質層が融解されてシ
ョートによって形成された孔が自動的に閉塞封止され、
セパレータが全破壊に至る確率を低減することができる
ことを見出しこの発明を完成した。
[Means for Solving the Problems] As a result of intensive research, the inventors of the present application found that the first porous polyolefin layer has a melting point of 158°C or higher and a melting point of 110°C.
When used as an electrolyte separator by laminating a second porous polyolefin layer at 150°C to The second polyolefin porous layer having a relatively low melting point is melted by the heat generated, and the pores formed by the short circuit are automatically closed and sealed.
The inventors discovered that the probability of complete failure of the separator could be reduced and completed this invention.

すなわち、この発明は、融点が158°C以上の第1の
ポリオレフィン系多孔質層と、該第1のポリオレフィン
系多孔質層に積層された融点が11O′Cから150’
Cの第2のポリオレフィン系多孔質層とを有し、全層の
平均空孔率が50%から85%、全層の平均空孔径がo
、oiμmから5μmである、多孔質ポリオレフィン系
積層体から成る電解液セパレータを提供する。
That is, the present invention includes a first polyolefin porous layer having a melting point of 158°C or higher, and a layer laminated on the first polyolefin porous layer having a melting point of 11O'C to 150'C.
C second polyolefin porous layer, the average porosity of all layers is 50% to 85%, and the average pore diameter of all layers is o.
, oiμm to 5μm, and an electrolyte separator made of a porous polyolefin-based laminate.

上述のように、この発明の電解液セパレータでは、融点
が158°C以上の第1のポリオレフィン系多孔質層(
以下A層という)と、融点が110℃から150℃の第
2のポリオレフィン系多孔質層(以下B層という)とが
積層されている。
As mentioned above, in the electrolyte separator of the present invention, the first polyolefin porous layer having a melting point of 158°C or higher (
A second porous polyolefin layer (hereinafter referred to as layer B) having a melting point of 110° C. to 150° C. is laminated.

A層の融点は158℃以上でおり、好ましくは160’
C以上である。A層の融点が158°C未満の場合には
高温下においてB層を支持する機能が低下し、セパレー
タの耐熱性が低下する。また、A層のガラス転移点は1
0’C以下が好ましく、0°C以下がさらに好ましい。
The melting point of layer A is 158°C or higher, preferably 160'
C or higher. If the melting point of layer A is less than 158°C, the ability to support layer B at high temperatures will be reduced, and the heat resistance of the separator will be reduced. In addition, the glass transition point of layer A is 1
The temperature is preferably 0'C or less, more preferably 0C or less.

ガラス転移点は10°Cを超えるともろくなり、耐寒性
が悪化する。A層を構成するポリオレフィンとしてはポ
リプロピレン、ポリ4−メチルペンテン1、ポリ3−メ
チルブテン−1及びこれらの共重合体もしくはブレンド
物等が好ましく、この中でも耐熱性、耐寒性がバランス
している点でポリプロピレンが特に好ましく、該ポリプ
ロピレンの溶融結晶化温度が106℃以上、好ましくは
108℃以上、ざらに好ましくは110’C以上である
と、ショート保証機能がさらに高まるので好ましい。
When the glass transition point exceeds 10°C, it becomes brittle and cold resistance deteriorates. As the polyolefin constituting layer A, polypropylene, poly4-methylpentene-1, poly3-methylbutene-1, and copolymers or blends thereof are preferable, and among these, polypropylene, poly4-methylpentene-1, poly3-methylbutene-1, and copolymers or blends thereof are preferable. Polypropylene is particularly preferred, and it is preferable that the melt crystallization temperature of the polypropylene is 106° C. or higher, preferably 108° C. or higher, and most preferably 110° C. or higher, since the short-circuit guarantee function is further enhanced.

B層の融点は110°Cから150℃であり、好ましく
は120’Cから140℃である。B層の融点が110
°C未満の場合には耐熱性が低下し、正常な作動中に融
解するおそれがあり、一方、150℃を超えるとショー
トが発生しても形成された孔が閉塞封止されにくくなる
。B層を構成するポリオレフィンとしてはポリエチレン
、ポリブテン及びエチレンプロピレン共重合体等が好ま
しく、特にポリエチレン、エチレンプロピレン共重合体
あるいは両者のブレンド物が好ましい。B層のガラス転
移点もA層と同様、10℃以下が好ましく、O′C以下
がさらに好ましい。ガラス転移点が10°Cを超えると
もろくなり、耐寒性が悪化する。
The melting point of layer B is 110°C to 150°C, preferably 120'C to 140°C. Melting point of layer B is 110
If the temperature is less than 150°C, the heat resistance will decrease and there is a risk of melting during normal operation, while if the temperature exceeds 150°C, the formed hole will be difficult to close and seal even if a short circuit occurs. The polyolefin constituting layer B is preferably polyethylene, polybutene, ethylene propylene copolymer, etc., and polyethylene, ethylene propylene copolymer, or a blend of the two is particularly preferred. Like the A layer, the glass transition point of the B layer is preferably 10° C. or lower, and more preferably O'C or lower. When the glass transition point exceeds 10°C, it becomes brittle and cold resistance deteriorates.

セパレータの層構成は、A層/B層又はA層を中央に挾
むB層/A層/B層が好ましい。A層とB層とは単に積
層されているだけでもよいが、−体止されて積層されて
いることが好ましい。AllとB層の積層一体止はこの
分野において広く知られた共押出し法又は点融着法等に
より行なうことができる。
The layer structure of the separator is preferably A layer/B layer or B layer/A layer/B layer with layer A sandwiched in the center. Although the A layer and the B layer may simply be laminated, it is preferable that they are laminated in a mutually interlocking manner. The All and B layers can be laminated together by a coextrusion method or a point fusion method widely known in this field.

セパレータ全層の平均空孔率は50%から85%、好ま
しくは55%から75%である。全層の平均空孔率が5
0%未満では電解液の保持量が少なくセパレータがドラ
イアップするおそれがあり、平均空孔率が85%を超え
るとセパレータの機械強度が悪化する。また、全層の平
均空孔径は0゜01μmから5μm、好ましくは0.1
μmから3μmである。全層の平均空孔径がo、oiμ
m未満であると等価直列抵抗が大きくなり、5μmを超
えると導電物質が通過しやすくなるのでショート発生率
が大きくなる。
The average porosity of all layers of the separator is 50% to 85%, preferably 55% to 75%. The average porosity of all layers is 5
When the average porosity is less than 0%, the amount of electrolyte retained is small and the separator may dry up, and when the average porosity exceeds 85%, the mechanical strength of the separator deteriorates. In addition, the average pore diameter of the entire layer is 0.01 μm to 5 μm, preferably 0.1 μm.
It is from μm to 3 μm. The average pore diameter of the whole layer is o, oiμ
If it is less than m, the equivalent series resistance will increase, and if it exceeds 5 μm, the conductive material will easily pass through, resulting in a high short-circuit occurrence rate.

セパレータ全層の厚みは、機械強度、ショー1〜発生率
及び素子のコンパクト性の観点から10μmから70μ
mが好ましく、特に25μmから50μmが好ましい。
The thickness of the entire separator layer is 10 μm to 70 μm from the viewpoint of mechanical strength, show 1 to occurrence rate, and compactness of the device.
m is preferable, and 25 μm to 50 μm is particularly preferable.

セパレータ全層の厚みに対するB層の厚みの割合は、シ
ョート防止効果及び耐熱性の観点から20%から60%
が好ましく、特に30%から50%が好ましい。
The ratio of the thickness of layer B to the total thickness of the separator is 20% to 60% from the viewpoint of short circuit prevention effect and heat resistance.
is preferable, particularly preferably 30% to 50%.

この発明の電解液セパレータを構成するA層及びB層は
、層を構成するポリオレフィン樹脂100重量部に、ジ
シクロへキシルフタレート(DCHP)又はトリフェニ
ルフォスフエイト(TPP)のような塩化ビニル等の可
塑剤として使用されているフタル酸又はリン酸エステル
等の有機固体80重量部から240重量部、好ましくは
100重通部から200重厘部を配合し、溶融押出した
後、トリクロルメタン、トリクロルエタン、アセトン、
メチルエチルケトン、酢酸エチル、メタノール、トルエ
ン、キシレン等の有機固体の良溶媒を用いて、上記有機
固体の添加量の95%以上、好ましくは98%以上を抽
出することにより製造することができる。ここで抽出温
度を有機固体の融点−25°C以上、好ましくは有機固
体の融点−15℃以上としておくとポリプロピレンの溶
融結晶化温度を高め、特性が良好となるので好ましい。
Layer A and layer B constituting the electrolyte separator of this invention are made by adding vinyl chloride such as dicyclohexyl phthalate (DCHP) or triphenyl phosphate (TPP) to 100 parts by weight of the polyolefin resin constituting the layers. 80 to 240 parts by weight, preferably 100 parts to 200 parts by weight, of an organic solid such as phthalic acid or phosphoric acid ester used as a plasticizer is blended and melt-extruded, followed by trichloromethane or trichloroethane. ,acetone,
It can be produced by extracting 95% or more, preferably 98% or more of the added amount of the organic solid using a good organic solid solvent such as methyl ethyl ketone, ethyl acetate, methanol, toluene, or xylene. Here, it is preferable to set the extraction temperature to above the melting point of the organic solid -25°C, preferably above the melting point of the organic solid -15°C, since this increases the melt crystallization temperature of the polypropylene and improves its properties.

AllとB層とを一体化して積層する場合には、A層及
びB層を」二記のようにしてそれぞれ製造した後に点融
着法によって積層一体止することもできるし、A層とB
層とを共押出しし、その後に七記仙出を(Iなうことに
よっても積層一体止を行なうことかできる。積層の前又
は後に、該ポリオレフィンのガラス転移点以上、融点−
10’C以下の温度で1゜5倍から6倍に延伸すると機
械特製及び電気特性共に良好になるので好ましい。さら
に、通常のポリオレフィンフィルムと同様、ポリオレフ
ィンの溶融結晶化温度以上、融点−5°C以下の温度範
囲で熱固定することが好ましい。
When laminating All and B layers in an integrated manner, it is also possible to manufacture A and B layers as described in section 2 and then laminate them together using a point fusion method.
The lamination can also be achieved by co-extruding the polyolefin and then carrying out the extrusion described in Section 7.
It is preferable to stretch the film by 5 to 6 times by 1° at a temperature of 10'C or below, since both mechanical properties and electrical properties will be good. Furthermore, as with ordinary polyolefin films, it is preferable to heat-set the film at a temperature that is higher than the melt crystallization temperature of the polyolefin and lower than the melting point of -5°C.

セパレータは、電解液との親和性を良くするために親水
化処理を施してあくことが好ましい。親水化処理は、非
イオン系界面活性剤、アニオン若しくはカチオン系界面
活性剤等のコーティング、コロナ若しくはプラズマ処理
、グラフト処理、紫外線処理又はこれらの組合せによっ
て行なうことができる。
The separator is preferably subjected to hydrophilic treatment in order to improve its affinity with the electrolytic solution. The hydrophilization treatment can be performed by coating with a nonionic surfactant, an anionic or cationic surfactant, corona or plasma treatment, grafting treatment, ultraviolet treatment, or a combination thereof.

この発明の電解液セパレータを構成するポリオレフィン
系多孔質層(A層及びB層)は、それぞれポリオレフィ
ンのみから成っていることが好ましいが、上記ジノた融
点、平均空孔率及び平均空孔径がこの発明の範囲内に入
るならば、微量の不純物を含んでいても差支えなく、ま
た、例えば熱安定剤、酸化防止剤、滑り剤、帯電防止剤
等の添加剤やオレフィン以外の七ツマ−を微量配合して
も差支えない。特許請求の範囲でいう「ポリオレフィン
系多孔質層」とはこのような不純物等を含んだポリオレ
フィン多孔質層をも包含する意味で用いている。
The polyolefin porous layers (layer A and layer B) constituting the electrolyte separator of the present invention are each preferably made of only polyolefin, but the melting point, average porosity, and average pore diameter of As long as it falls within the scope of the invention, there is no problem even if it contains a trace amount of impurity, and for example, it may contain a trace amount of additives such as heat stabilizers, antioxidants, slip agents, antistatic agents, and other substances other than olefins. There is no problem even if they are combined. In the claims, the term "polyolefin porous layer" is used to include polyolefin porous layers containing such impurities.

[発明の効果] この発明の電解液セパレータは、ショートが発生しても
その際形成された孔が直ちに閉塞封止されるので、従来
の1層のポリオレフィン多孔質層から成る電解液セパレ
ータに比較してショート発生率が有意に低い。また、こ
の発明の電解液セパレータは最適化された平均空孔率及
び平均空孔径を有するので、優れた等価直列抵抗及び機
械的強度を有する。また、A層をポリプロピレンで構成
し、BINをポリエチレン及び/又はエチレンプロピレ
ン共重合体で構成した場合には、ガラス転移点から融点
までの温度範囲が広く信頼性が高くなる。
[Effects of the Invention] In the electrolyte separator of the present invention, even if a short circuit occurs, the pores formed at that time are immediately closed and sealed. The short circuit occurrence rate is significantly lower. Further, since the electrolyte separator of the present invention has an optimized average porosity and average pore diameter, it has excellent equivalent series resistance and mechanical strength. Further, when the A layer is made of polypropylene and the BIN is made of polyethylene and/or ethylene propylene copolymer, the temperature range from the glass transition point to the melting point is wide and the reliability is high.

[特性の測定方法及び効果の評価方法1次にこの発明に
関する測定方法及び評価方法についてまとめて示す。
[Method for Measuring Characteristics and Evaluating Effects 1] Next, the measuring methods and evaluation methods related to the present invention will be summarized.

(1)ポリオレフィンの融点、溶融結晶化温度及びガラ
ス転移温度 走査型熱量計DSC−2型(パーキン・エルマー社製)
を用い、試料5mgを窒素気流下で、昇温速度20℃/
分にて室温より測定し、融解に伴う吸熱ピーク温度を融
点とする。さらに280’Cまで昇温し5分間保持した
後に降下速度20’C/分で冷却していった際にポリオ
レフィンの結晶化に伴う潜熱のピークを溶融結晶化温度
とする。
(1) Melting point, melt crystallization temperature and glass transition temperature of polyolefin Scanning calorimeter DSC-2 model (manufactured by Perkin-Elmer)
5 mg of sample was heated at a heating rate of 20°C/under nitrogen flow using
The melting point is determined by the endothermic peak temperature accompanying melting. The peak of latent heat associated with crystallization of the polyolefin when the temperature was further increased to 280'C, held for 5 minutes, and then cooled at a rate of decline of 20'C/min was defined as the melt crystallization temperature.

同様に、液体窒素温度より昇温し、ポリオレフィンのガ
ラス転移(2次転移)に伴う比熱変化を読取りこれをガ
ラス転移温度とする。
Similarly, the temperature is raised above the liquid nitrogen temperature, and the change in specific heat accompanying the glass transition (secondary transition) of the polyolefin is read and taken as the glass transition temperature.

(2)平均孔径 サンプル表面の走査型電子顕微鏡(SEM)観察により
孔径の長袖及び短軸を測定し、平均長軸及び平均短軸の
相乗平均を平均孔径とする。
(2) Average pore diameter The long axis and short axis of the pore diameter are measured by scanning electron microscopy (SEM) observation of the surface of the sample, and the geometric mean of the average long axis and the average short axis is defined as the average pore diameter.

(3)空孔率(Pr) 試料(10cmx 10cm>を流動パラフィンに24
時間浸漬し、表層の流動パラフィンを十分に拭き取った
俊の重5k (W2 )を測定し、該試料の浸漬前の重
量(Wl)及び流動パラフィンの密度(ρ)より空孔体
積(Vo )を次式により求める。
(3) Porosity (Pr) Sample (10cm x 10cm>) was placed in liquid paraffin for 24 hours.
After immersing the sample for an hour and thoroughly wiping off the liquid paraffin on the surface, measure the weight of the sample (W2), and calculate the pore volume (Vo) from the weight (Wl) of the sample before immersion and the density (ρ) of the liquid paraffin. It is calculated using the following formula.

Vo = (W2−Wl)/。Vo = (W2-Wl)/.

空孔率(Pr)は、見掛は体積(厚み、寸法より計算さ
れる値〉■と空孔体積Voより次の式により計算される
The porosity (Pr) is calculated by the following formula from the apparent volume (value calculated from thickness and dimensions) and the pore volume Vo.

Pr=Vo /Vx 100(%) (4〉  等価直列抵抗(E ’S R)特開昭61−
187221号に記載された方法に基づき、γブチロラ
クトンにトリエチルアミンと7タル酸を溶解し、3.1
ms/cmの電解液を用意した。この電解液中での微孔
性フィルムの1にIlzでの直流抵抗成分をFSR(Ω
)とした。
Pr=Vo/Vx 100(%) (4> Equivalent series resistance (E'SR) JP-A-1983-
Based on the method described in No. 187221, triethylamine and 7-talic acid were dissolved in γ-butyrolactone, and 3.1
An electrolytic solution of ms/cm was prepared. The DC resistance component at Ilz of the microporous film in this electrolytic solution is expressed as FSR (Ω
).

ここで、比較サンプルとして、電解コンデンサ紙(マニ
ラ紙MER50)の値(2,OΩ)2.5 を基準とし、1.7Ω以下を○、1.8〜2.20をΔ
、2.3Ω以上をXとした。
Here, as a comparison sample, the value of electrolytic capacitor paper (Manila paper MER50) (2, OΩ) 2.5 is used as the standard, 1.7Ω or less is ○, 1.8 to 2.20 is Δ
, 2.3Ω or more was defined as X.

なお、測定条件は次の通りであった。Note that the measurement conditions were as follows.

(a)電極:白金電極(25mm角〉 測定荷重 240g (b)インピーダンス測定機: AG−4311LCRMETER(安藤電気■製)測定
条件:1KH2,5Vレンジ (5)  電解コンデンサテスト(強制寿命テスト)使
用するセパレータに予め直径Q、2mmのステンレス針
で各セパレータ当り10個の貫通孔を形成しておき、2
20μF、35wvの電解コンデンサ素子を50個作製
し、寿命テストを行なった。
(a) Electrode: Platinum electrode (25 mm square) Measuring load: 240 g (b) Impedance measuring device: AG-4311LCRMETER (manufactured by Ando Electric) Measuring conditions: 1 KH 2,5 V range (5) Use electrolytic capacitor test (forced life test) Ten through holes were formed in each separator in advance using a stainless steel needle with a diameter Q and 2 mm.
Fifty electrolytic capacitor elements of 20 μF and 35 wv were manufactured and subjected to a life test.

製造直後の不良個数及び85°C1500時間経過後の
不良個数を評価した。
The number of defective pieces immediately after manufacture and the number of defective pieces after 1500 hours at 85°C were evaluated.

[実施例] 次にこの発明の実施例と比較例を示し、この発明の効果
をより具体的に説明する。
[Example] Next, Examples and Comparative Examples of this invention will be shown, and the effects of this invention will be explained more specifically.

実施例1 AIW樹脂としてポリプロピレンホモポリマー(PP、
融点161°C)100重量部とジシクロへキシルフタ
レート(DCHP) 150 ff11部とのブレンド
物及び、B層樹脂としてエチレンプロピレンコポリマー
(EPC1融点145℃)’100重量部とDCHPl
 50重量部とのブレンド物をそれぞれ別の押出機より
溶融押出しし、Tダイ°内で積層しA層/B層から成る
溶融シートを成形し、水槽内で冷却した。
Example 1 Polypropylene homopolymer (PP,
A blend of 100 parts by weight of melting point 161°C) and 11 parts of dicyclohexyl phthalate (DCHP) and 100 parts by weight of ethylene propylene copolymer (EPC1 melting point 145°C) as B layer resin and DCHPl.
The blends with 50 parts by weight were each melt-extruded from separate extruders, laminated in a T-die to form a molten sheet consisting of layers A and B, and cooled in a water bath.

引き続きこのシートを50℃の1−1−1−トリクロロ
エタン溶媒槽中で抽出を行ない、乾燥後、130′Cに
て3.5倍に延伸し、微孔性フィルムを得Iこ 。
Subsequently, this sheet was extracted in a 1-1-1-trichloroethane solvent bath at 50°C, dried, and stretched 3.5 times at 130'C to obtain a microporous film.

このようにして1qだフィルムの特性を下記衣にまとめ
て示す。表から強制寿命試験において破壊個数が少なく
安定した特性を発揮することがわかる。
The properties of the 1q film are summarized below. From the table, it can be seen that in the forced life test, the number of broken pieces was small and stable characteristics were exhibited.

比較例1 実施例1と同様にしてPPで厚さ23μmの微孔性フィ
ルムを製造し、このフィルム2層をセパレータとして用
いて電解コンデンサを作製した。
Comparative Example 1 A 23 μm thick microporous PP film was produced in the same manner as in Example 1, and two layers of this film were used as a separator to produce an electrolytic capacitor.

特性を表に示す。The characteristics are shown in the table.

表から、強制寿命試験において経時後30%〈15個〉
が破壊し、保安機能性がほとんどないことがわかる。
From the table, 30% after aging in forced life test (15 pieces)
It can be seen that there is almost no security functionality.

比較例2 高密度ポリエチレン(融点130℃)を用い、実施例1
と同様な方法で微孔性フィルムを製造した。特性及び強
制寿命テスト結果を表1に示すが経時後20%(10個
)が破壊した。
Comparative Example 2 Using high-density polyethylene (melting point 130°C), Example 1
A microporous film was produced in a similar manner. The characteristics and forced life test results are shown in Table 1, and 20% (10 pieces) were destroyed after time.

実施例2 高密度ポリエチレン(融点130’C)を用い、実施例
1と同様な方法で厚さ20μmの微孔性ポリエチレンフ
ィルムを製造し、これを比較例1で19た微孔性ポリプ
ロピレンフィルムと合せ巻きにして電解コンデンサを作
製し、試験を行なった。
Example 2 A microporous polyethylene film with a thickness of 20 μm was produced using high-density polyethylene (melting point 130'C) in the same manner as in Example 1, and this was mixed with the microporous polypropylene film prepared in Comparative Example 1. An electrolytic capacitor was fabricated by winding it together and tested.

結果を表1に示す。比較例1の結果と比較すると、へ層
とB層の二層構造とすることにより、破壊個数が著しく
減少し、信頼性が向上することがわかる。
The results are shown in Table 1. Comparison with the results of Comparative Example 1 shows that the two-layer structure of the F layer and the B layer significantly reduces the number of broken pieces and improves reliability.

Claims (3)

【特許請求の範囲】[Claims] (1)融点が158℃以上の第1のポリオレフィン系多
孔質層と、該第1のポリオレフィン系多孔質層に積層さ
れた融点が110℃から150℃の第2のポリオレフィ
ン系多孔質層とを有し、全層の平均空孔率が50%から
85%、全層の平均空孔径が0.01μmから5μmで
ある、多孔質ポリオレフィン系積層体から成る電解液セ
パレータ。
(1) A first porous polyolefin layer with a melting point of 158°C or higher, and a second porous polyolefin layer with a melting point of 110°C to 150°C laminated on the first porous polyolefin layer. An electrolyte separator made of a porous polyolefin laminate having an average porosity of 50% to 85% in all layers and an average pore diameter of 0.01 μm to 5 μm in all layers.
(2)上記第1のポリオレフィン系多孔質層がポリプロ
ピレンから成り、上記第2のポリオレフィン系多孔質層
がポリエチレン及び/又はエチレンとプロピレンとの共
重合体から成る特許請求の範囲第1項記載の電解液セパ
レータ。
(2) The first porous polyolefin layer is made of polypropylene, and the second porous polyolefin layer is made of polyethylene and/or a copolymer of ethylene and propylene. Electrolyte separator.
(3)ポリプロピレンの溶融結晶化温度が106℃以上
である特許請求の範囲第2項記載の電解液セパレータ。
(3) The electrolyte separator according to claim 2, wherein the polypropylene has a melt crystallization temperature of 106° C. or higher.
JP62335026A 1987-07-04 1987-12-28 Electrolyte separator Expired - Lifetime JP2625798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335026A JP2625798B2 (en) 1987-07-04 1987-12-28 Electrolyte separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16745387 1987-07-04
JP62-167453 1987-07-04
JP62335026A JP2625798B2 (en) 1987-07-04 1987-12-28 Electrolyte separator

Publications (2)

Publication Number Publication Date
JPH0277108A true JPH0277108A (en) 1990-03-16
JP2625798B2 JP2625798B2 (en) 1997-07-02

Family

ID=26491491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335026A Expired - Lifetime JP2625798B2 (en) 1987-07-04 1987-12-28 Electrolyte separator

Country Status (1)

Country Link
JP (1) JP2625798B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384554U (en) * 1989-12-18 1991-08-27
WO1993001623A1 (en) * 1991-07-05 1993-01-21 Asahi Kasei Kogyo Kabushiki Kaisha Separator of battery wherein organic electrolyte is used and production thereof
US5731074A (en) * 1995-03-15 1998-03-24 Nitto Denko Corporation Porous film and method of producing the same
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
JP2003059477A (en) * 2001-08-20 2003-02-28 Sony Corp Battery
JP2006187891A (en) * 2004-12-29 2006-07-20 Keiwa Inc Laminate, its manufacturing method and its application
WO2007046473A1 (en) * 2005-10-19 2007-04-26 Tonen Chemical Corporation Process for producing multilayered microporous polyolefin film
JP2008254288A (en) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp Composite microporous membrane, separator for battery, and method of manufacturing composite microporous membrane
US7807287B2 (en) 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
US7981536B2 (en) 2006-08-31 2011-07-19 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane, battery separator and battery
JP2012179910A (en) * 2005-10-24 2012-09-20 Toray Battery Separator Film Co Ltd Polyolefin multilayer microporous film and battery separator
US8980461B2 (en) 2011-02-03 2015-03-17 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833733B1 (en) 2003-04-04 2008-05-29 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane
JP2009032682A (en) * 2007-06-28 2009-02-12 Hitachi Maxell Ltd Lithium-ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627915A (en) * 1979-08-14 1981-03-18 Elna Co Ltd Electrolytic condenser
JPS59105035A (en) * 1982-12-08 1984-06-18 Tokuyama Soda Co Ltd Production of microporous sheet
JPS59140429U (en) * 1983-03-10 1984-09-19 旭化成株式会社 electrolyte capacitor
JPS6210857A (en) * 1985-05-16 1987-01-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Separator for battery
JPS6253824A (en) * 1985-09-03 1987-03-09 旭化成株式会社 Laminated porous film
JPS63308866A (en) * 1987-06-10 1988-12-16 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627915A (en) * 1979-08-14 1981-03-18 Elna Co Ltd Electrolytic condenser
JPS59105035A (en) * 1982-12-08 1984-06-18 Tokuyama Soda Co Ltd Production of microporous sheet
JPS59140429U (en) * 1983-03-10 1984-09-19 旭化成株式会社 electrolyte capacitor
JPS6210857A (en) * 1985-05-16 1987-01-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト Separator for battery
JPS6253824A (en) * 1985-09-03 1987-03-09 旭化成株式会社 Laminated porous film
JPS63308866A (en) * 1987-06-10 1988-12-16 Sanyo Electric Co Ltd Nonaqueous electrolytic solution battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384554U (en) * 1989-12-18 1991-08-27
WO1993001623A1 (en) * 1991-07-05 1993-01-21 Asahi Kasei Kogyo Kabushiki Kaisha Separator of battery wherein organic electrolyte is used and production thereof
CN1057873C (en) * 1991-07-05 2000-10-25 旭化成工业株式会社 Method for manufacturing of separator for battery utilising organic electrolyte
US5731074A (en) * 1995-03-15 1998-03-24 Nitto Denko Corporation Porous film and method of producing the same
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
JP2003059477A (en) * 2001-08-20 2003-02-28 Sony Corp Battery
JP2006187891A (en) * 2004-12-29 2006-07-20 Keiwa Inc Laminate, its manufacturing method and its application
JP4686182B2 (en) * 2004-12-29 2011-05-18 恵和株式会社 Battery separator, manufacturing method, and secondary battery
WO2007046473A1 (en) * 2005-10-19 2007-04-26 Tonen Chemical Corporation Process for producing multilayered microporous polyolefin film
US9492965B2 (en) 2005-10-19 2016-11-15 Toray Battery Separator Film Co., Ltd Method for producing multi-layer, microporous polyolefin membrane
JPWO2007046473A1 (en) * 2005-10-19 2009-04-23 東燃化学株式会社 Method for producing polyolefin multilayer microporous membrane
JP2012179910A (en) * 2005-10-24 2012-09-20 Toray Battery Separator Film Co Ltd Polyolefin multilayer microporous film and battery separator
US7981536B2 (en) 2006-08-31 2011-07-19 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane, battery separator and battery
US7807287B2 (en) 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
JP2008254288A (en) * 2007-04-04 2008-10-23 Asahi Kasei Chemicals Corp Composite microporous membrane, separator for battery, and method of manufacturing composite microporous membrane
US8980461B2 (en) 2011-02-03 2015-03-17 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device

Also Published As

Publication number Publication date
JP2625798B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
KR100767549B1 (en) Lithium-ion battery separator
JP3960437B2 (en) Closed three-layer battery separator
JP6373387B2 (en) Separation membrane for electrochemical devices
JP5694255B2 (en) Multilayer separation membrane with improved strength and stability
JP2883726B2 (en) Manufacturing method of battery separator
US20150044541A1 (en) Laminated porous film, separator for battery, and battery
JPH0277108A (en) Electrolyte separator
US20190088917A1 (en) Polyolefin microporous membrane, method of producing polyolefin microporous membrane, battery separator, and battery
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
US9419266B2 (en) Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
JPH08250097A (en) Interpole separator for electrochemical device
JP2016521915A (en) Separation membrane for electrochemical devices
KR20200123407A (en) Porous polyolefin film
JP6000590B2 (en) Laminated microporous film and battery separator
JP5812747B2 (en) Laminated microporous film, method for producing the same, and battery separator
JP3453005B2 (en) Laminated porous membrane and separator for non-aqueous solvent type battery comprising the same
JPH06223802A (en) Cylindrical electric part separator
JP2513768B2 (en) Microporous polypropylene film
US20230071387A1 (en) Coated separator, electrochemical cell comprising a coated separator, and method of making a coated separator
JPH1017692A (en) Porous membrane comprising poly(4-methylpentene-1) and separator for electric cell
JP2674625B2 (en) Polyolefin microporous film
JPH1017693A (en) Manufacture of poly olefin porous membrane
JP2569670B2 (en) Polypropylene microporous film and battery separator
JP2625798C (en)
WO2022059744A1 (en) Separator for power storage device, and power storage device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11