JP2625798B2 - Electrolyte separator - Google Patents

Electrolyte separator

Info

Publication number
JP2625798B2
JP2625798B2 JP62335026A JP33502687A JP2625798B2 JP 2625798 B2 JP2625798 B2 JP 2625798B2 JP 62335026 A JP62335026 A JP 62335026A JP 33502687 A JP33502687 A JP 33502687A JP 2625798 B2 JP2625798 B2 JP 2625798B2
Authority
JP
Japan
Prior art keywords
layer
polyolefin
melting point
separator
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62335026A
Other languages
Japanese (ja)
Other versions
JPH0277108A (en
Inventor
達也 伊藤
茂 田中
健次 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62335026A priority Critical patent/JP2625798B2/en
Publication of JPH0277108A publication Critical patent/JPH0277108A/en
Application granted granted Critical
Publication of JP2625798B2 publication Critical patent/JP2625798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解コンデンサ、リチウム電池、バッテ
リー等に用いられる電解液セパレータに関する。
Description: TECHNICAL FIELD The present invention relates to an electrolytic solution separator used for electrolytic capacitors, lithium batteries, batteries and the like.

[従来の技術] 電解コンデンサ、リチウム電池、バッテリー等に用い
られる電解液セパレータとして、古くからクラフト紙、
マニラ紙等の電解紙が用いられているが、最近は例えば
特開昭51−18851号、特開昭61−13614号、実開昭59−14
0429号及び特開昭62−200716号に記載されているよう
に、多孔質ポリオレフィン膜を用いることが提案されて
いる。多孔質ポリオレフィン膜は紙よりも強度が高く、
ショート(極間短絡)発生率も低い。
[Prior art] Kraft paper, an electrolyte separator used for electrolytic capacitors, lithium batteries, batteries, etc., has long been used.
Electrolytic papers such as manila paper have been used, but recently, for example, JP-A-51-18851, JP-A-61-13614, and JP-A-59-14
As described in No. 0429 and JP-A-62-200716, use of a porous polyolefin membrane has been proposed. Porous polyolefin membrane has higher strength than paper,
The occurrence rate of short circuit (short between poles) is also low.

[発明が解決しようとする問題点] 従来から提案されている多孔質ポリオレフィン膜から
成る電解液セパレータはいずれも1層の多孔質ポリオレ
フィン膜から成り、電解紙に比べるとショート発生率が
低いが、そのショート発生率は未だ満足できるものでは
ない。
[Problems to be Solved by the Invention] Each of the conventionally proposed electrolyte separators composed of a porous polyolefin membrane is composed of a single layer of a porous polyolefin membrane, and the occurrence rate of short circuits is lower than that of electrolytic paper. The short circuit rate is not yet satisfactory.

この発明の目的は、従来の電解液セパレータよりも有
意にショート発生率が低く、かつ電解液セパレータとし
て優れた等価直列抵抗、耐熱性及び機械強度を有する電
解液セパレータを提供することである。
An object of the present invention is to provide an electrolyte separator having a significantly lower short-circuit occurrence rate than a conventional electrolyte separator and having excellent equivalent series resistance, heat resistance, and mechanical strength as an electrolyte separator.

[問題点を解決するための手段] 本願発明者らは、鋭意研究の結果、融点が158℃以上
の第1のポリオレフィン多孔質層と、融点が110℃から1
50℃の第2のポリオレフィン多孔質層とを積層して電解
液セパレータとして用いると、電極上の微細導電物質が
セパレータを突き破って反対極に移動してショートが発
生しても、その際発生する熱によって比較的融点の低い
第2のポリオレフィン多孔質層が融解されてショートに
よって形成された孔が自動的に閉塞封止され、セパレー
タが全破壊に至る確率を低減することができることを見
出しこの発明を完成した。
[Means for Solving the Problems] As a result of intensive studies, the present inventors have found that a first polyolefin porous layer having a melting point of 158 ° C. or more and a melting point of 110 ° C. to 1 ° C.
When a second polyolefin porous layer at 50 ° C. is laminated and used as an electrolyte separator, even if a fine conductive material on the electrode breaks through the separator and moves to the opposite pole to cause a short circuit, the short circuit occurs. The present invention has been found that the second polyolefin porous layer having a relatively low melting point is melted by heat, and the holes formed by short-circuiting are automatically closed and sealed, thereby reducing the probability of the separator being completely destroyed. Was completed.

すなわち、この発明は、融点が158℃以上の第1のポ
リオレフィン系多孔質層と、該第1のポリオレフィン系
多孔質層に積層された融点が110℃から150℃の第2のポ
リオレフィン系多孔質層とを有し、全層の平均空孔率が
50%から85%、全層の平均空孔径が0.01μmから5μm
である、多孔質ポリオレフィン系積層体から成る電解液
セパレータを提供する。
That is, the present invention relates to a first polyolefin-based porous layer having a melting point of 158 ° C. or higher, and a second polyolefin-based porous layer having a melting point of 110 ° C. to 150 ° C. laminated on the first polyolefin-based porous layer. And the average porosity of all the layers is
50% to 85%, average pore size of all layers is 0.01μm to 5μm
An electrolytic solution separator comprising a porous polyolefin-based laminate is provided.

上述のように、この発明の電解液セパレータでは、融
点が158℃以上の第1のポリオレフィン系多孔質層(以
下A層という)と、融点が110℃から150℃の第2のポリ
オレフィン系多孔質層(以下B層という)とが積層され
ている。
As described above, in the electrolytic solution separator of the present invention, the first polyolefin-based porous layer having a melting point of 158 ° C. or higher (hereinafter referred to as “A layer”) and the second polyolefin-based porous layer having a melting point of 110 ° C. to 150 ° C. (Hereinafter referred to as layer B).

A層の融点は158℃以上であり、好ましくは160℃以上
である。A層の融点が158℃未満の場合には高温下にお
いてB層を支持する機能が低下し、セパレータの耐熱性
が低下する。また、A層のガラス転移点は10℃以下が好
ましく、0℃以下がさらに好ましい。ガラス転移点は10
℃を超えるともろくなり、耐寒性が悪化する。A層を構
成するポリオレフィンとしてはポリプロピレン、ポリ4
−メチルペンテン1、ポリ3−メチルブテン−1及びこ
れらの共重合体もしくはブレンド物等が好ましく、この
中でも耐熱性、耐寒性がバランスしている点でポリプロ
ピレンが特に好ましく、該ポリプロピレンの溶融結晶化
温度が106℃以上、好ましくは108℃以上、さらに好まし
くは110℃以上であると、ショート保証機能がさらに高
まるので好ましい。
The melting point of the layer A is 158 ° C. or higher, preferably 160 ° C. or higher. When the melting point of the layer A is less than 158 ° C., the function of supporting the layer B at high temperature is reduced, and the heat resistance of the separator is reduced. The glass transition point of the layer A is preferably 10 ° C. or lower, more preferably 0 ° C. or lower. Glass transition point is 10
It becomes brittle above ℃, deteriorating cold resistance. The polyolefin constituting the layer A is polypropylene, poly 4
-Methylpentene 1, poly-3-methylbutene-1, and copolymers or blends thereof are preferable, and among them, polypropylene is particularly preferable because heat resistance and cold resistance are balanced, and the melt crystallization temperature of the polypropylene is preferable. When the temperature is 106 ° C. or higher, preferably 108 ° C. or higher, more preferably 110 ° C. or higher, the short-circuit guarantee function is further enhanced.

B層の融点は110℃から150℃であり、好ましくは120
℃から140℃である。B層の融点が110℃未満の場合には
耐熱性が低下し、正常な作動中に融解するおそれがあ
り、一方、150℃を超えるとショートが発生しても形成
された孔が閉塞封止されにくくなる。B層を構成するポ
リオレフィンとしてはポリエチレン、ポリブテン及びエ
チレンプロピレン共重合体等が好ましく、特にポリエチ
レン、エチレンプロピレン共重合体あるいは両者のブレ
ンド物が好ましい。B層のガラス転移点もA層と同様、
10℃以下が好ましく、0℃以下がさらに好ましい。ガラ
ス転移点が10℃を超えるともろくなり、耐寒性が悪化す
る。
The melting point of the B layer is 110 ° C. to 150 ° C., preferably 120 ° C.
C to 140C. If the melting point of the B layer is lower than 110 ° C, the heat resistance is reduced and there is a risk of melting during normal operation. On the other hand, if the temperature exceeds 150 ° C, the formed hole is closed and sealed even if a short circuit occurs. It is hard to be done. As the polyolefin constituting the layer B, polyethylene, polybutene, ethylene propylene copolymer and the like are preferable, and polyethylene, ethylene propylene copolymer and a blend of both are particularly preferable. The glass transition point of the B layer is the same as that of the A layer,
The temperature is preferably 10 ° C or lower, more preferably 0 ° C or lower. The glass transition point becomes brittle above 10 ° C, and the cold resistance deteriorates.

セパレータの層構成は、A層/B層又はA層を中央に挟
むB層/A層/B層が好ましい。A層とB層とは単に積層さ
れているだけでもよいが、一体化されて積層されている
ことが好ましい。A層とB層の積層一体化はこの分野に
おいて広く知られた共押出し法又は点融着法等により行
なうことができる。
The layer configuration of the separator is preferably A layer / B layer or B layer / A layer / B layer sandwiching the A layer at the center. The A layer and the B layer may be simply laminated, but are preferably integrated and laminated. The lamination and integration of the layer A and the layer B can be performed by a coextrusion method or a point fusion method widely known in this field.

セパレータ全層の平均空孔率は50%から85%、好まし
くは55%から75%である。全層の平均空孔率が50%未満
では電解液の保持量が少なくセパレータがドライアップ
するおそれがあり、平均空孔率が85%を超えるとセパレ
ータの機械強度が悪化する。また、全層の平均空孔径は
0.01μmから5μm、好ましくは0.1μmから3μmで
ある。全層の平均空孔径が0.01μm未満であると等価直
列抵抗が大きくなり、5μmを超えると導電物質が通過
しやすくなるのでショート発生率が大きくなる。
The average porosity of all layers of the separator is 50% to 85%, preferably 55% to 75%. If the average porosity of all layers is less than 50%, the amount of the retained electrolyte is small, and the separator may dry up. If the average porosity exceeds 85%, the mechanical strength of the separator deteriorates. The average pore diameter of all layers is
It is 0.01 μm to 5 μm, preferably 0.1 μm to 3 μm. If the average pore diameter of all layers is less than 0.01 μm, the equivalent series resistance increases, and if it exceeds 5 μm, the conductive material easily passes through, and the short-circuit occurrence rate increases.

セパレータ全層の厚みは、機械強度、ショート発生率
及び素子のコンパクト性の観点から10μmから70μmが
好ましく、特に25μmから50μmが好ましい。
The thickness of all layers of the separator is preferably from 10 μm to 70 μm, particularly preferably from 25 μm to 50 μm, from the viewpoint of mechanical strength, occurrence rate of short circuit and compactness of the element.

セパレータ全層の厚みに対するB層の厚みの割合は、
ショート防止効果及び耐熱性の観点から20%から60%が
好ましく、特に30%から50%が好ましい。
The ratio of the thickness of the B layer to the thickness of all the separator layers,
From the viewpoint of short-circuit prevention effect and heat resistance, it is preferably from 20% to 60%, particularly preferably from 30% to 50%.

この発明の電解液セパレータを構成するA層及びB層
は、層を構成するポリオレフィン樹脂100重量部に、ジ
シクロヘキシルフタレート(DCHP)又はトリフェニルフ
ォスフェイト(TPP)のような塩化ビニル等の可塑剤と
して使用されているフタル酸又はリン酸エステル等の有
機固体80重量部から240重量部、好ましくは100重量部か
ら200重量部を配合し、溶融押出した後、トリクロルメ
タン、トリクロルエタン、アセトン、メチルエチルケト
ン、酢酸エチル、メタノール、トルエン、キシレン等の
有機固体の良溶媒を用いて、上記有機固体の添加量の95
%以上、好ましくは98%以上を抽出することにより製造
することができる。ここで抽出温度を有機固体の融点−
25℃以上、好ましくは有機固体の融点−15℃以上として
おくとポリプロピレンの溶融結晶化温度を高め、特性が
良好となるので好ましい。A層とB層とを一体化して積
層する場合には、A層及びB層を上記のようにしてそれ
ぞれ製造した後に点融着法によって積層一体化すること
もできるし、A層とB層とを共押出しし、その後に上記
抽出を行なうことによっても積層一体化を行なうことが
できる。積層の前又は後に、該ポリオレフィンのガラス
転移点以上、融点−10℃以下の温度で1.5倍から6倍に
延伸すると機械特性及び電気特性共に良好になるので好
ましい。さらに、通常のポリオレフィンフィルムと同
様、ポリオレフィンの溶融結晶化温度以上、融点−5℃
以下の温度範囲で熱固定することが好ましい。
The A layer and the B layer constituting the electrolyte separator of the present invention are formed by adding a plasticizer such as vinyl chloride such as dicyclohexyl phthalate (DCHP) or triphenyl phosphate (TPP) to 100 parts by weight of the polyolefin resin constituting the layer. 80 parts by weight to 240 parts by weight of an organic solid such as phthalic acid or a phosphoric acid ester used are mixed, preferably from 100 parts by weight to 200 parts by weight, and after melt extrusion, trichloromethane, trichloroethane, acetone, methyl ethyl ketone, Using a good solvent of an organic solid such as ethyl acetate, methanol, toluene, xylene, etc.,
%, Preferably 98% or more. Here, the extraction temperature is determined as the melting point of the organic solid−
It is preferable to keep the melting point of the organic solid at -15 ° C. or higher because the melting crystallization temperature of the polypropylene is increased and the properties are improved. When the A layer and the B layer are integrated and laminated, the A layer and the B layer can be laminated and integrated by the point fusion method after manufacturing the respective layers as described above, or the A layer and the B layer can be integrated. Can be also co-extruded, and then the above extraction is performed to perform lamination and integration. Before or after lamination, it is preferable to stretch 1.5 to 6 times at a temperature not lower than the glass transition point of the polyolefin and not higher than the melting point of −10 ° C., since both the mechanical properties and the electrical properties are improved. Furthermore, similarly to a normal polyolefin film, the melting point of the polyolefin is higher than the melting crystallization temperature, and the melting point is -5 ° C
It is preferable to heat set in the following temperature range.

セパレータは、電解液との親和性を良くするために親
水化処理を施しておくことが好ましい。親水化処理は、
非イオン系界面活性剤、アニオン若しくはカチオン系界
面活性剤等のコーティング、コロナ若しくはプラズマ処
理、グラフト処理、紫外線処理又はこれらの組合せによ
って行なうことができる。
The separator is preferably subjected to a hydrophilic treatment in order to improve the affinity with the electrolytic solution. The hydrophilic treatment is
It can be performed by coating with a nonionic surfactant, anionic or cationic surfactant, corona or plasma treatment, grafting treatment, ultraviolet treatment or a combination thereof.

この発明の電解液セパレータを構成するポリオレフィ
ン系多孔質層(A層及びB層)は、それぞれポリオレフ
ィンのみから成っていることが好ましいが、上記した融
点、平均空孔率及び平均空孔径がこの発明の範囲内に入
るならば、微量の不純物を含んでいても差支えなく、ま
た、例えば熱安定剤、酸化防止剤、滑り剤、帯電防止剤
等の添加剤やオレフィン以外のモノマーを微量配合して
も差支えない。特許請求の範囲でいう「ポリオレフィン
系多孔質層」とはこのような不純物等を含んだポリオレ
フィン多孔質層をも包含する意味で用いている。
The polyolefin-based porous layers (layer A and layer B) constituting the electrolytic solution separator of the present invention are preferably each composed of only polyolefin, but the melting point, average porosity, and average pore diameter described above are different from those of the present invention. If it falls within the range, it may be possible to contain a trace amount of impurities, and for example, a small amount of additives such as heat stabilizers, antioxidants, slip agents, antistatic agents and monomers other than olefins No problem. The term "polyolefin-based porous layer" as used in the claims includes a polyolefin-based porous layer containing such impurities and the like.

[発明の効果] この発明の電解液セパレータは、ショートが発生して
もその際形成された孔が直ちに閉塞封止されるので、従
来の1層のポリオレフィン多孔質層から成る電解液セパ
レータに比較してショート発生率が有意に低い。また、
この発明の電解液セパレータは最適化された平均空孔率
及び平均空孔径を有するので、優れた等価直列抵抗及び
機械的強度を有する。また、A層をポリプロピレンで構
成し、B層をポリエチレン及び/又はエチレンプロピレ
ン共重合体で構成した場合には、ガラス転移点から融点
までの温度範囲が広く信頼性が高くなる。
[Effect of the Invention] In the electrolyte separator of the present invention, even if a short circuit occurs, the pores formed at that time are immediately closed and sealed, so that the electrolyte separator is compared with a conventional electrolyte separator composed of a single polyolefin porous layer. And the incidence of short circuits is significantly lower. Also,
Since the electrolyte separator of the present invention has an optimized average porosity and average pore size, it has excellent equivalent series resistance and mechanical strength. When the layer A is made of polypropylene and the layer B is made of polyethylene and / or an ethylene-propylene copolymer, the temperature range from the glass transition point to the melting point is wide and the reliability is high.

[特性の測定方法及び効果の評価方法] 次にこの発明に関する測定方法及び評価方法について
まとめて示す。
[Method for Measuring Characteristics and Method for Evaluating Effect] Next, the measuring method and the evaluation method according to the present invention will be summarized.

(1)ポリオレフィンの融点、溶融結晶化温度及びガラ
ス転移温度 走査型熱量計DSC−2型(パーキン・エルマー社製)
を用い、試料5mgを窒素気流下で、昇温速度20℃/分に
て室温より測定し、融解に伴う吸熱ピーク温度を融点と
する。さらに280℃まで昇温し5分間保持した後に降下
速度20℃/分で冷却していった際にポリオレフィンの結
晶化に伴う潜熱のピークを溶融結晶化温度とする。
(1) Melting point, melt crystallization temperature and glass transition temperature of polyolefin Scanning calorimeter DSC-2 (Perkin-Elmer)
5 mg of a sample is measured from room temperature at a heating rate of 20 ° C./min under a nitrogen stream, and an endothermic peak temperature accompanying melting is defined as a melting point. Further, when the temperature is raised to 280 ° C. and held for 5 minutes and then cooled at a rate of 20 ° C./min, the peak of the latent heat accompanying the crystallization of the polyolefin is defined as the melt crystallization temperature.

同様に、液体窒素温度より昇温し、ポリオレフィンの
ガラス転移(2次転移)に伴う比熱変化を読取りこれを
ガラス転移温度とする。
Similarly, the temperature is raised from the temperature of liquid nitrogen, and the specific heat change accompanying the glass transition (secondary transition) of the polyolefin is read, and this is defined as the glass transition temperature.

(2)平均孔径 サンプル表面の走査型電子顕微鏡(SEM)観察により
孔径の長軸及び短軸を測定し、平均長軸及び平均短軸の
相乗平均を平均孔径とする。
(2) Average pore diameter The major axis and the minor axis of the pore diameter are measured by scanning electron microscope (SEM) observation of the sample surface, and the geometric mean of the average major axis and the average minor axis is defined as the average pore diameter.

(3)空孔率(Pr) 試料(10cm×10cm)を流動パラフィンに24時間浸漬
し、表層の流動パラフィンを十分に拭き取った後の重量
(W2)を測定し、該試料の浸漬前の重量(W1)及び流動
パラフィンの密度(ρ)より空孔体積(V0)を次式によ
り求める。
(3) Porosity (Pr) A sample (10 cm × 10 cm) was immersed in liquid paraffin for 24 hours, and the weight (W 2 ) after sufficiently wiping the surface liquid paraffin was measured. From the weight (W 1 ) and the density of liquid paraffin (ρ), the pore volume (V 0 ) is determined by the following equation.

V0=(W2−W1)/ρ 空孔率(Pr)は、見掛け体積(厚み、寸法より計算さ
れる値)Vと空孔体積V0より次の式により計算される。
V 0 = (W 2 −W 1 ) / ρ The porosity (Pr) is calculated from the apparent volume (value calculated from the thickness and dimensions) V and the pore volume V 0 according to the following equation.

Pr=V0/V×100(%) (4)等価直列抵抗(ESR) 特開昭61−187221号に記載された方法に基づき、γブ
チロラクトンにトリエチルアミンとフタル酸を溶解し、
3.1mS/cmの電解液を用意した。この電解液中での微孔性
フィルムの1KHzでの直流抵抗成分をESR(Ω)とした。
Pr = V 0 / V × 100 (%) (4) Equivalent series resistance (ESR) Based on the method described in JP-A-61-187221, triethylamine and phthalic acid are dissolved in γ-butyrolactone,
An electrolyte of 3.1 mS / cm was prepared. The DC resistance component of the microporous film at 1 KHz in this electrolytic solution was defined as ESR (Ω).

ここで、比較サンプルとして、電解コンデンサ紙(マ
ニラ紙MER2.550)の値(2.0Ω)を基準とし、1.7Ω以下
を○、1.8〜2.2Ωを△、2.3Ω以上を×とした。
Here, as a comparative sample, a reference value (2.0Omu) of the electrolytic capacitor paper (manila MER 2.5 50), the following 1.7 ohm ○, △ and 1.8~2.2Omu, was × or more 2.3Omu.

なお、測定条件は次の通りであった。 The measurement conditions were as follows.

(a)電極:白金電極(25mm角) 測定荷重 240g (b)インピーダンス測定機: AG−4311 LCR METER (安藤電気(株)製) 測定条件:1KHz、5Vレンジ (5)電解コンデンサテスト(強制寿命テスト) 使用するセパレータに予め直径0.2mmのステンレス針
で各セパレータ当り10個の貫通孔を形成しておき、220
μF、35WVの電解コンデンサ素子を50個作製し、寿命テ
ストを行なった。製造直後の不良個数及び85℃、500時
間経過後の不良個数を評価した。
(A) Electrode: Platinum electrode (25 mm square) Measurement load 240 g (b) Impedance measurement machine: AG-4131 LCR METER (manufactured by Ando Electric Co., Ltd.) Measurement conditions: 1 KHz, 5 V range (5) Electrolytic capacitor test (forced life) Test) 10 through-holes were formed in each separator in advance using a stainless needle with a diameter of 0.2 mm for each separator.
Fifty-five μF, 35 WV electrolytic capacitor elements were manufactured and subjected to a life test. The number of defects immediately after the production and the number of defects after a lapse of 500 hours at 85 ° C. were evaluated.

[実施例] 次にこの発明の実施例と比較例を示し、この発明の効
果をより具体的に説明する。
[Examples] Next, examples of the present invention and comparative examples will be shown, and effects of the present invention will be described more specifically.

実施例1 A層樹脂としてポリプロピレンホモポリマー(PP、融
点161℃)100重量部とジシクロヘキシルフタレート(DC
HP)150重量部とのブレンド物及び、B層樹脂としてエ
チレンプロピレンコポリマー(EPC、融点145℃)100重
量部とDCHP150重量部とのブレンド物をそれぞれ別の押
出機より溶融押出しし、Tダイ内で積層しA層/B層から
成る溶融シートを成形し、水槽内で冷却した。
Example 1 100 parts by weight of a polypropylene homopolymer (PP, melting point 161 ° C.) and dicyclohexyl phthalate (DC
HP) A blend of 150 parts by weight and a blend of 100 parts by weight of ethylene propylene copolymer (EPC, melting point 145 ° C.) and 150 parts by weight of DCHP as a layer B resin are melt-extruded from different extruders, and are then extruded in a T-die. To form a molten sheet composed of layer A / layer B, and cooled in a water bath.

引き続きこのシートを50℃の1−1−1−トリクロロ
エタン溶媒槽中で抽出を行ない、乾燥後、130℃にて3.5
倍に延伸し、微孔性フィルムを得た。
Subsequently, the sheet was extracted in a 1-1-1 trichloroethane solvent bath at 50 ° C, dried, and then dried at 130 ° C for 3.5 hours.
The film was stretched twice to obtain a microporous film.

このようにして得たフィルムの特性を下記表にまとめ
て示す。表から強制寿命試験において破壊個数が少なく
安定した特性を発揮することがわかる。
The properties of the film thus obtained are summarized in the following table. It can be seen from the table that in the forced life test, the number of broken pieces is small and stable characteristics are exhibited.

比較例1 実施例1と同様にしてPPで厚さ23μmの微孔性フィル
ムを製造し、このフィルム2層をセパレータとして用い
て電解コンデンサを作製した。特性を表に示す。
Comparative Example 1 A microporous film having a thickness of 23 μm was produced from PP in the same manner as in Example 1, and an electrolytic capacitor was produced using the two layers of the film as a separator. The characteristics are shown in the table.

表から、強制寿命試験において経時後30%(15個)が
破壊し、保安機能性がほとんどないことがわかる。
From the table, it can be seen that 30% (15 pieces) were destroyed after a lapse of time in the forced life test, and there was almost no security functionality.

比較例2 高密度ポリエチレン(融点130℃)を用い、実施例1
と同様な方法で微孔性フィルムを製造した。特性及び強
制寿命テスト結果を表1に示すが経時後20%(10個)が
破壊した。
Comparative Example 2 Example 1 using high-density polyethylene (melting point 130 ° C.)
A microporous film was produced in the same manner as described above. Table 1 shows the characteristics and the results of the forced life test.

実施例2 高密度ポリエチレン(融点130℃)を用い、実施例1
と同様な方法で厚さ20μmの微孔性ポリエチレンフィル
ムを製造し、これを比較例1で得た微孔性ポリプロピレ
ンフィルムと合せ巻きにして電解コンデンサを作製し、
試験を行なった。
Example 2 Example 1 using high-density polyethylene (melting point 130 ° C.)
A microporous polyethylene film having a thickness of 20 μm was produced in the same manner as described above, and this was wound together with the microporous polypropylene film obtained in Comparative Example 1 to produce an electrolytic capacitor.
The test was performed.

結果を表1に示す。比較例1の結果と比較するとA層
とB層の二層構造とすることにより、破壊個数が著しく
減少し、信頼性が向上することがわかる。
Table 1 shows the results. Comparing with the result of Comparative Example 1, it can be seen that the two-layer structure of the A layer and the B layer significantly reduces the number of breaks and improves the reliability.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】融点が158℃以上の第1のポリオレフィン
系多孔質層と、該第1のポリオレフィン系多孔質層に積
層された融点が110℃から150℃の第2のポリオレフィン
系多孔質層とを有し、全層の平均空孔率が50%から85
%、全層の平均空孔径が0.01μmから5μmである、多
孔質ポリオレフィン径積層体から成る電解液セパレー
タ。
1. A first polyolefin-based porous layer having a melting point of 158 ° C. or higher, and a second polyolefin-based porous layer having a melting point of 110 ° C. to 150 ° C. laminated on the first polyolefin-based porous layer. And the average porosity of all layers is from 50% to 85%.
%, Wherein the average pore diameter of all layers is 0.01 μm to 5 μm.
【請求項2】上記第1のポリオレフィン系多孔質層がポ
リプロピレンから成り、上記第2のポリオレフィン系多
孔質層がポリエチレン及び/又はエチレンとプロピレン
との共重合体から成る特許請求の範囲第1項記載の電解
液セパレータ。
2. The method according to claim 1, wherein said first polyolefin porous layer is made of polypropylene, and said second polyolefin porous layer is made of polyethylene and / or a copolymer of ethylene and propylene. The electrolyte separator according to any one of the preceding claims.
【請求項3】ポリプロピレンの溶融結晶化温度が106℃
以上である特許請求の範囲第2項記載の電解液セパレー
タ。
3. The melt crystallization temperature of the polypropylene is 106 ° C.
The electrolyte separator according to claim 2, which is as described above.
JP62335026A 1987-07-04 1987-12-28 Electrolyte separator Expired - Lifetime JP2625798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335026A JP2625798B2 (en) 1987-07-04 1987-12-28 Electrolyte separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16745387 1987-07-04
JP62-167453 1987-07-04
JP62335026A JP2625798B2 (en) 1987-07-04 1987-12-28 Electrolyte separator

Publications (2)

Publication Number Publication Date
JPH0277108A JPH0277108A (en) 1990-03-16
JP2625798B2 true JP2625798B2 (en) 1997-07-02

Family

ID=26491491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335026A Expired - Lifetime JP2625798B2 (en) 1987-07-04 1987-12-28 Electrolyte separator

Country Status (1)

Country Link
JP (1) JP2625798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
US7618743B2 (en) 2003-04-04 2009-11-17 Asahi Kasei Chemicals Corporation Microporous polyolefin film
KR101305264B1 (en) 2005-10-19 2013-09-06 도레이 배터리 세퍼레이터 필름 주식회사 Process for producing multilayered microporous polyolefin film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384554U (en) * 1989-12-18 1991-08-27
CA2078324C (en) * 1991-07-05 1997-09-23 Hiroshi Sogo Separator for a battery using an organic electrolytic solution and method for producing the same
JPH08244152A (en) * 1995-03-15 1996-09-24 Nitto Denko Corp Porous film and manufacture thereof
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
JP2003059477A (en) * 2001-08-20 2003-02-28 Sony Corp Battery
JP4686182B2 (en) * 2004-12-29 2011-05-18 恵和株式会社 Battery separator, manufacturing method, and secondary battery
WO2007049568A1 (en) * 2005-10-24 2007-05-03 Tonen Chemical Corporation Polyolefin multilayer microporous film, method for producing same and battery separator
US7807287B2 (en) 2006-08-31 2010-10-05 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
US7981536B2 (en) 2006-08-31 2011-07-19 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane, battery separator and battery
JP4936960B2 (en) * 2007-04-04 2012-05-23 旭化成イーマテリアルズ株式会社 Composite microporous membrane, battery separator, and method of manufacturing composite microporous membrane
US8980461B2 (en) 2011-02-03 2015-03-17 Samsung Sdi Co., Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
JP2015053134A (en) * 2013-09-05 2015-03-19 株式会社豊田自動織機 Power storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627915A (en) * 1979-08-14 1981-03-18 Elna Co Ltd Electrolytic condenser
JPS59105035A (en) * 1982-12-08 1984-06-18 Tokuyama Soda Co Ltd Production of microporous sheet
JPS59140429U (en) * 1983-03-10 1984-09-19 旭化成株式会社 electrolyte capacitor
US4650730A (en) * 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
JPS6253824A (en) * 1985-09-03 1987-03-09 旭化成株式会社 Laminated porous film
JPH0750601B2 (en) * 1987-06-10 1995-05-31 三洋電機株式会社 Non-aqueous electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618743B2 (en) 2003-04-04 2009-11-17 Asahi Kasei Chemicals Corporation Microporous polyolefin film
KR101305264B1 (en) 2005-10-19 2013-09-06 도레이 배터리 세퍼레이터 필름 주식회사 Process for producing multilayered microporous polyolefin film
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery

Also Published As

Publication number Publication date
JPH0277108A (en) 1990-03-16

Similar Documents

Publication Publication Date Title
JP6826085B2 (en) High melting point microporous battery separator
JP2625798B2 (en) Electrolyte separator
JP3352801B2 (en) Porous film, its production method and its use
KR100767549B1 (en) Lithium-ion battery separator
JP6373387B2 (en) Separation membrane for electrochemical devices
JP2883726B2 (en) Manufacturing method of battery separator
JP6458015B2 (en) Separation membrane for electrochemical devices
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP2002170540A (en) Separator
KR20200123407A (en) Porous polyolefin film
JP4209986B2 (en) Polyolefin microporous membrane secondary battery separator
JP3342755B2 (en) Separator for cylindrical electric parts
JP3453005B2 (en) Laminated porous membrane and separator for non-aqueous solvent type battery comprising the same
JP2569680B2 (en) Hydrophilized polyolefin microporous membrane and battery separator
JP2541262B2 (en) Polyolefin Microporous Membrane and Electrolyte Separator
JP2513768B2 (en) Microporous polypropylene film
JP2569670B2 (en) Polypropylene microporous film and battery separator
JPH10316793A (en) Porous film prepared from vinylidene fluoride resin
KR20230006833A (en) Asymmetric Porous Membrane
JPH1017693A (en) Manufacture of poly olefin porous membrane
JPH1017692A (en) Porous membrane comprising poly(4-methylpentene-1) and separator for electric cell
JP2625798C (en)
JP2674625B2 (en) Polyolefin microporous film
JPH0817145B2 (en) Separator for electrolytic capacitors

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11