JP2513711B2 - ネオン冷凍サイクル - Google Patents

ネオン冷凍サイクル

Info

Publication number
JP2513711B2
JP2513711B2 JP20304387A JP20304387A JP2513711B2 JP 2513711 B2 JP2513711 B2 JP 2513711B2 JP 20304387 A JP20304387 A JP 20304387A JP 20304387 A JP20304387 A JP 20304387A JP 2513711 B2 JP2513711 B2 JP 2513711B2
Authority
JP
Japan
Prior art keywords
working fluid
pressure
closed cycle
fluid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20304387A
Other languages
English (en)
Other versions
JPS6446542A (en
Inventor
喜次 吉川
亨 近藤
浩 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP20304387A priority Critical patent/JP2513711B2/ja
Publication of JPS6446542A publication Critical patent/JPS6446542A/ja
Application granted granted Critical
Publication of JP2513711B2 publication Critical patent/JP2513711B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はネオンを作動媒体として用いた冷凍方法に関
する。
〔従来の技術〕
最近、常温に近い温度で超伝導を示す各種材料が開発
されつつあり、大きな感心を集めている。これら超伝導
体は、磁気浮上列車、電力貯蔵、電磁推進船、核融合、
超伝導発電機、ジョセフソン素子、SQUID(超伝導量子
干渉素子)等を実現する場合にはかかせない材料であ
る。しかしながら、これらの材料が安定して供給される
ようになったとしても、小さな素子等を別とすれば、超
伝導現象の利用は、多くの場合には依然としてかなりの
低温で実施されることが必要になると考えられている。
従来、超伝導体の冷却には、液体ヘリウムの冷凍サイ
クルが使用されていた。これは、従来の超伝導体が、Nb
Ti、Nb3Sn、Nb3Ge等の金属系のものがほとんどで、これ
らが超伝導状態になる温度が極めて低く、液体ヘリウム
しかその冷却媒体として存在しないためであった。常温
以下の冷却温度が液体ヘリウム温度(4.2゜K)領域、液
体水素温度(20゜K)領域、液体窒素(77゜K)温度領域
として知られていることから明らかなように、このよう
な温度領域への冷却に対しては、窒素、水素、ヘリウム
を冷却媒体とするのが一般的であった。しかし、液体窒
素より低い温度領域については、水素が安全性の点で問
題があるため、専らヘリウムが使用されてきた。しかし
ながら、ヘリウムを用いた大規模な冷凍システムについ
ては、次のような問題点が指摘されている。
(a)ヘリウムは空気中に含まれるものの、その濃度は
3ppmと非常に低いため、高濃度でヘリウムを含有する特
定産地の天然ガスから濃縮してとり出している。また、
ヘリウムは、その特殊な性質により米国では戦略物質し
とて位置づけられている。したがって、我国には将来に
わたって必ずしも安定して供給される保証はない。
(b)液化温度レベルが4℃と低く、カルノー効率から
考えても多大な圧縮動力が必要となる。
(c)分子量が小さいために、冷凍プラントを大型化し
ても遠心式の圧縮機が採用できず、設備を安価にするの
が困難である。
(d)蒸発潜熱が小さいため、冷凍力に比して循環量が
大きくなる。
〔発明が解決しようとする問題点〕
本発明者らは、上記従来提案されている極低温冷凍サ
イクルの問題点に鑑み、実用価値の高い大型の極低温冷
凍サイクルを提供することを目的として、鋭意検討し
た。その結果、ヘリウムと同様に希ガスに属するネオン
に着目して本発明を完成するに至った。
現在のネオンの単価はヘリウムより高いものの、例え
ば特開昭62−41572号等に開示されたプロセスにより、
将来的に供給不安のない空気から回収でき、その使用量
が増加すれば安価になることが期待される。
ネオンを用いる冷凍サイクルは、例えば特開昭59−12
2868でヘリウムを液化するために予冷の冷凍サイクルに
用いること等が提案されているが、いずれも小型のもの
であったり、公知のヘリウム等の冷凍サイクルを単に適
用するものである。
しかしながら、代表的な冷凍サイクルである第7図に
示されるようなクロードサイクルにネオンを作動流体と
して用いた場合には、冷凍効率が十分とはいえず、さら
に冷凍負荷、冷凍温度レベル等の変動を考慮すると圧縮
機を複数台配設する必要があり、設備コストが嵩み、大
型な工業的実施には問題がある。
本発明は、ネオンがヘリウムの約2倍の蒸発潜熱を有
し、かつその分子量が20とヘリウム、水素に比し極めて
大きいというネオンの有する特性を有効に利用し、ネオ
ンを作動流体として用い、液体窒素温度より低い極低温
の冷却を大規模に工業的に実施するのに適した新規な冷
凍サイクルを提供する。
〔問題点を解決するための手段〕
すなわち、本発明の冷凍方法は、作動流体を遠心式圧
縮機で圧縮して高圧の作動流体を形成する過程、該高圧
作動流体を他流体熱交換器にて等圧冷却する過程、冷却
された高圧作動流体を減圧膨張させ少なくともその一部
を液化する過程、液化した低圧の作動流体の蒸発潜熱を
外部への冷却源として使用して低圧作動流体を気化させ
る過程、および該低圧作動流体を他流体熱交換器にて等
圧加熱した後、圧縮過程に戻す過程を有する第1の閉鎖
サイクルと、前記等圧冷却過程の中途にある高圧作動流
体の一部を等エントロピー的に膨張させる過程、および
該膨張作動を多流体熱交換器にて前記等圧冷却過程の高
圧作動流体の冷媒として用いた後に前記圧縮過程に戻す
過程を有する第2の閉鎖サイクルとを有してなり、かつ
作動流体としてネオンを用いるとともに、前記等圧冷却
過程の中途または完了した高圧作動流体の一部を減圧膨
張させる過程、および該膨張作動流体を多流体熱交換器
にて等圧冷却過程の高圧作動流体の冷媒として用いた後
に前記圧縮過程に戻す過程を有する第3の閉鎖サイクル
を形成した際の該第3の閉鎖サイクルの作動流体(a)
及び第2の閉鎖サイクルの作動流体(b)の少なくとも
一方の作動流体を、その圧力を前記低圧作動流体の圧力
よりも高い圧力とし、前記圧縮機の中間段に戻して冷凍
サイクルを形成したことを特徴とする冷凍方法。
〔作用〕
本発明の冷凍方法は、ネオンを作動流体として用いた
クロードサイクルを改良した冷凍サイクルを用いる冷凍
方法である。
本発明の冷凍方法では、少なくとも二つの作動液体の
閉鎖サイクルが形成される。
第1の閉鎖サイクルは、圧縮過程、等圧冷却過程、減
圧液化過程、液化作動媒体の気化過程および等圧加熱過
程のサイクルから構成される。ここで、圧縮過程におけ
る作動流体の圧力は、通常ネオンの臨界圧力(35atm)
の近傍の25〜40atmに設定される。等圧冷却過程および
等圧加熱過程は多流体熱交換器を用いて作動流体相互に
よる熱交換を実施するのが適当である。減圧液化過程
は、J−T弁等を用いて等エンタルピー的に膨張させて
もよいし、エキスパンダー等を用いて等エントロピー的
に膨張させてもよい。等エントロピー的に膨張させてネ
オンを液化する方が熱効率的には優れた液化が行える
が、回転機械であるエキスパンダーを用いるため、シス
テムの信頼性の低下、及び設備コストを考慮するとJ−
T弁等によりエンタルピー的に膨張させることが有利な
場合もある。減圧液化時の低圧作動流体の圧力は、ネオ
ンの沸点に影響を与え、冷凍温度レベルを24〜43゜Kの
どこに設定するかによって0.4〜22atmの範囲で選択され
る。
一方、第2の閉鎖サイクルは、圧縮過程、等圧冷却過
程、等エントロピー的膨張過程および等圧加熱過程のサ
イクルから構成される。ここで、圧縮過程、等圧冷却過
程および等圧加熱過程の一部については第1の閉鎖サイ
クルと合流させて実施する。
これら閉鎖サイクルにおける圧縮過程においては、作
動流体の温度が上昇するため、通常圧縮機に設置された
中間冷却器で、あるいは圧縮機を出た後の冷却器で外部
冷却源を利用して常温まで冷却される。
上記の二つの作動流体の閉鎖サイクルが第7図のよう
に結合されて構成された冷凍サイクルは、クロードサイ
クルとして公知である。一方、本発明の冷凍方法は、上
記の二つの閉鎖サイクルが形成されるとともに、第2の
閉鎖サイクルの等圧加熱過程を、第1の閉鎖サイクルと
合流させることなく、第1及び第2の閉鎖サイクルの等
圧冷却過程の作動流体と熱交換した後、第1の閉鎖サイ
クルの圧縮機の中間段に戻すか又は、さらに圧縮過程、
等圧冷却過程、膨張過程および等圧加熱過程のサイクル
から構成される第3の閉鎖サイクルを形成する。ここで
の膨張過程は、J−T弁等を用いて等エンタルピー的に
実施してもよいし、エキスパンダー等を用いて等エント
ロピー的に実施してもよい。この第3の閉鎖サイクルに
ついても、圧縮過程、および等圧冷却過程の一部につい
ては第1の閉鎖サイクルあるいは第2の閉鎖サイクルと
合流させて実施してもよい。さらに前記の通り閉鎖サイ
クルを結合したシステムにおいて、第2の閉鎖サイクル
の作動流体および第3の閉鎖サイクルの作動流体の少な
くとも一方の作動流体の膨張過程後の圧力を、第1の閉
鎖サイクルの低圧作動流体の圧力よりも高い圧力とし、
前記第1の閉鎖サイクルの圧縮過程における圧縮機の中
間段に戻すことを特徴とする。この場合、第2の閉鎖サ
イクルおよび第3の閉鎖サイクルにおける圧縮過程の双
方を第1の閉鎖サイクルの圧縮機の中間段から実施する
場合には、圧力差を設け別々の段に戻す様にするのがよ
い。
本発明で用いる圧縮機は遠心式圧縮機であり、ヘリウ
ム、水素の冷凍システムでは、分子量が小さく使用でき
なかったものであり、設備コスト的に有利である。さら
に一台の遠心式圧縮機で扱える流体の体積変化は、10〜
15倍程度であり、これを超える場合には、回転数の異な
る型の別個の圧縮機が必要となり、直列に設置すること
になるが、本発明では、圧縮機に供給される低圧作動流
体の一部を、第2の閉鎖サイクルおよび/又は第3の閉
鎖サイクルの作動流体に用い、中圧の作動流体として、
遠心式圧縮機の中間設に供給することによって、低圧作
動流体の流量を大幅に減らし、遠心式圧縮機で扱う流体
の体積変化を少なくすることができ、単に一台の遠心式
圧縮機で冷凍サイクルが実施可能である。
又、本発明の各閉鎖サイクルは、多流体熱交換器にお
いて、等圧加熱過程及び等圧冷却過程の各作動流動を相
互に熱交換することにより、結合し一体の冷凍サイクル
システムを形成するものであるが、従来公知のクロード
サイクルと異なり、第2の閉鎖サイクル及び/又は第3
の閉鎖サイクルの膨張過程後の圧力を中圧として、等圧
加熱過程に供給することにより、多流体熱交換器におけ
る作動流体の等圧加熱曲線と等圧冷却曲線との温度差を
小さくすることができ、多流体熱交換器におけるエント
ロピー損失を減少せしめることができるため、冷凍サイ
クルの熱効率を大巾に向上させることを可能とするもの
である。
〔実施例〕
以下、本発明の冷凍方法を第1図に示す実施例にした
がってより詳細に説明する。
圧縮機1で30atmまで加圧された高圧作動流体(ネオ
ン)は、温度420゜K、流量31.6t/hrにて圧縮機1から送
り出され、アフタークーラー2で313゜Kまで冷却され
る。次いで多流体熱交換器3−aに導かれ、中圧作動流
体(10atm)および低圧作動流体(1atm)と熱交換して9
0゜Kまで冷却される。ここでその一部(9.5t/hr)は、
ターボエキスパンダー4に導かれ、等エントロピー的に
膨張して38゜Kまで温度が低下する。一方、残りの高圧
作動流体は、多流体熱交換器3−b、3−c、3−dに
順次導かれ、中圧作動流体および低圧作動流体(1atm)
と熱交換して、45゜Kまで冷却される。ここでその一部
(15.8t/hr)はJ−T弁5−aに導かれ、中圧(10at
m)まで等エンタルピー的に膨張して38゜Kまで温度が低
下し、気液混相となり、気液分離器6−aに導かれて気
液分離される。残りの高圧作動流体(6.3t/hr)は、多
流体熱交換器3−eで低圧作動流体と熱交換した後、J
−T弁5−bに導入される。ここで等エンタルピー的に
1atmまで膨張して27゜Kまで温度が低下し、気液混相と
なり、気液分離器7−bに導かれて気液分離され、気相
はそのまま多流体熱交換器3−eに導かれるが、液相
(4.1t/hr)は外部に対する冷却源として、27゜K、10KW
の冷熱を与えて気化した後、多流体熱交換器3−eに導
かれる。この低圧作動流体は、多流体熱交換器3−eで
高圧作動流体により38゜Kまで加熱され、ターボエキス
パンダー4からの低圧作動流体と合流した後、多流体熱
交換器3−b、3−aに順次導かれ、高圧作動流体によ
って加熱され多流体熱交換器3−aの出口では310゜Kま
で加熱されており、再度圧縮機1へ導かれる。
一方、J−T弁5−aから気液分離器6−aに導かれ
て気液分離された中圧作動流体の液相部(6.3t/hr)は
多流体熱交換器3−d、3−cを経て多流体熱交換器3
−bに導かれ、また気相部(9.5t/hr)は直接多流体熱
交換器3−dに導かれ、ここで合流する。この中圧作動
流体は、多流体熱交換器3−b、3−aで高圧作動流体
により加熱されその出口では310゜Kまで温度が上昇して
いる。中圧作動流体は、次いで圧縮機1の中間段に導入
され、他の作動流体と合流する。
低圧作動流体および中圧作動流体はともに一台の圧縮
機1で圧縮されるが、圧縮機1での所要動力を減らすた
めに、作動流体は圧縮機1の各段差間に配設された中間
冷却器7で冷却されるのが望ましい。
なお、本実施例における圧縮機1の動力消費量は、38
00KWであった。
以下、本発明の冷凍方法の他の実施態様について簡略
に説明する。
第2図の態様は、ターボエキスパンダー4に導き、等
エントロピー的に膨張させた第2の閉鎖サイクルの作動
流体の減圧を中圧までとし、これを第3の閉鎖サイクル
の作動流体とは別々に多流体熱交換器を通過させた後、
圧縮機1の中間段に導入する態様であり、他は第1図の
場合と同じである。この場合、第2の閉鎖サイクルの膨
張後の圧力(中圧)は3atmであった。
第3図の態様は、第3の閉鎖サイクルを形成せずに、
第2の閉鎖サイクルの作動流体のみを中圧の作動流体と
し、これを多流体熱交換器で高圧作動流体の冷却源とし
て使用した後に圧縮機1の中間段に導入する態様であ
る。この場合の第2の閉鎖サイクルの膨張後の圧力(中
圧)は3atmであった。
第4図の態様は、第1の閉鎖サイクルにおいて作動流
体を液化するJ−T弁5−bの代わりに、ターボエキス
パンダーを用いて等エントロピー的に膨張させ液化させ
る点と、第3の閉鎖サイクルを等圧冷却過程の中途では
なく完了した作動流体の一部を取り出してJ−T弁に導
いて構成する点とにおいて第1図の場合とは異なる態様
である。
第5図の態様は、第4図の態様において第2図の場合
と同様に、等エントロピー的に膨張させた第2の閉鎖サ
イクルの作動流体の減圧を中圧までとし、これを多流体
熱交換器を通過させた後、圧縮機1の中間段に導入する
態様である。
第6図は、第3の閉鎖サイクルを形成しなかったこと
を除けば、第5図の態様と全く同じ態様である。
各図に対応する実施態様のサイクルの所要動力を第1
表に示した。又、比較例として、第7図に示すクロード
サイクルの所要動力も第1表に示した。これにより、本
発明が従来法に比し大幅な動力減少となり、工業的実用
性が高いことが明白である。
〔発明の効果〕 本発明の冷凍方法により、作動流体としてネオンを用
いて、液体窒素より低い極低温度領域の大規模な冷却
を、低圧の作動流体循環量が少なくて、安全に、かつ遠
心圧縮機を用いて実施することが可能となった。
また、本発明の方法は冷凍効率が高く、かつ一台の遠
心式圧縮機で冷凍システム全体の圧縮力を賄うことがで
きるので設備投資コストの低減が可能であり、工業的実
施に有効である。
【図面の簡単な説明】 第1図〜第6図は、本発明の冷凍方法を実施するのに用
いられる冷凍システムのフローチャートである。第7図
は、クロードサイクルとして知られている冷凍サイクル
のフローチャートである。 1:圧縮機、2:アフタークーラー 3:多流体熱交換器 4:ターボエキスパンダー 5:J−T弁、6:気液分離器 7:中間冷却器

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】作動流体を遠心式圧縮機で圧縮して高圧の
    作動流体を形成する過程、該高圧作動流体を多流体熱交
    換器にて等圧冷却する過程、冷却された高圧作動流体を
    源圧膨張させ少なくともその一部を液化する過程、液化
    した低圧の作動流体の蒸発潜熱を外部への冷却源として
    使用して低圧作動流体を気化させる過程、および該低圧
    作動流体を多流体熱交換器にて等圧加熱した後、圧縮過
    程に戻す過程を有する第1の閉鎖サイクルと、前記等圧
    冷却過程の中途にある高圧作動流体の一部を等エントロ
    ピー的に膨張させる過程、および該膨張作動流体を多流
    体熱交換器にて前記等圧冷却過程の高圧作動流体の冷媒
    として用いた後に前記圧縮過程に戻す過程を有する第2
    の閉鎖サイクルとを有してなり、かつ作動流体としてネ
    オンを用いるとともに、前記等圧冷却過程の中途または
    完了した高圧作動流体の一部を減圧膨張させる過程、お
    よび該膨張作動流体を多流体熱交換器にて等圧冷却過程
    の高圧作動流体の冷媒として用いた後に前記圧縮過程に
    戻す過程を有する第3の閉鎖サイクルを形成した際の該
    第3の閉鎖サイクルの作動流体(a)及び第2の閉鎖サ
    イクルの作動流体(b)の少なくとも一方の作動流体
    を、その圧力を前記低圧作動流体の圧力よりも高い圧力
    とし、前記圧縮機の中間段に戻して冷凍サイクルを形成
    することを特徴とする冷凍方法。
  2. 【請求項2】第3の閉鎖サイクルを形成せずに、第2の
    閉鎖サイクルの作動流体のみを前記圧縮機の中間段に戻
    す特許請求の範囲第1項記載の冷凍方法。
  3. 【請求項3】第2の閉鎖サイクルの作動流体を、第1の
    閉鎖サイクルの等圧加熱過程の中途にある低圧作動流体
    に合流させ、第3の閉鎖サイクルの作動流体のみを前記
    圧縮機の中間段に戻す特許請求の範囲第1項記載の冷凍
    方法。
  4. 【請求項4】第2の閉鎖サイクルの作動流体と第3の閉
    鎖サイクルの作動流体との双方を各々多流体熱交換器に
    て高圧作動流体の冷媒として用いた後に前記圧縮機の中
    段に戻す特許請求の範囲第1項記載の冷凍方法。
JP20304387A 1987-08-17 1987-08-17 ネオン冷凍サイクル Expired - Lifetime JP2513711B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20304387A JP2513711B2 (ja) 1987-08-17 1987-08-17 ネオン冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20304387A JP2513711B2 (ja) 1987-08-17 1987-08-17 ネオン冷凍サイクル

Publications (2)

Publication Number Publication Date
JPS6446542A JPS6446542A (en) 1989-02-21
JP2513711B2 true JP2513711B2 (ja) 1996-07-03

Family

ID=16467399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20304387A Expired - Lifetime JP2513711B2 (ja) 1987-08-17 1987-08-17 ネオン冷凍サイクル

Country Status (1)

Country Link
JP (1) JP2513711B2 (ja)

Also Published As

Publication number Publication date
JPS6446542A (en) 1989-02-21

Similar Documents

Publication Publication Date Title
US4169361A (en) Method of and apparatus for the generation of cold
US20190137171A1 (en) Production of liquid natural gas and other cryogens using a multi-stage active magnetic regenerative liquefier
US4048814A (en) Refrigerating plant using helium as a refrigerant
Lee et al. Design of high efficiency mixed refrigerant Joule–Thomson refrigerator for cooling HTS cable
Matsumoto et al. Magnetic refrigerator for hydrogen liquefaction
JPS59122868A (ja) ネオンガスを利用したカスケ−ドタ−ボヘリウム冷凍液化装置
Jin et al. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling
JP2513711B2 (ja) ネオン冷凍サイクル
Quack et al. Selection of components for the IDEALHY preferred cycle for the large scale liquefaction of hydrogen
JPH10246524A (ja) 冷凍装置
CN117168087A (zh) 模块化氢液化系统
JPH04186802A (ja) 4kから20kの温度範囲で高い熱容量を持つ磁性材料とこれを用いた蓄冷器及び磁気冷凍装置
CN114963688A (zh) 采用低温透平压缩循环的氢液化系统
Hoa et al. EU DEMO cryogenic system and cryo-distribution: pre-conceptual design for an optimal cooling of the superconducting magnets and the thermal shields
JPH02176386A (ja) ヘリウムの液化装置
JPH02171579A (ja) 水素液化方法
Baldus Helium-II refrigerator for 300 W at 1.8 K
Wagner Refrigeration
Wanner et al. Concept and operation of a 4.4 ton/d liquid hydrogen facility
Peschka et al. Hydrogen liquefaction
Terbot A New Helium Refrigerator for Superconducting Cable Systems
Thirumaleshwar et al. Cryogenic refrigeration methods for low and ultra-low temperatures—a review
KR20230137193A (ko) 다중 줄톰슨팽창사이클을 이용한 수소액화플랜트용 고효율 극저온냉동기
WO2023232837A1 (en) An installation comprising lng and renewable electricity facilities with at least one thermal energy storage system
Wu et al. Analysis of cooldown performance for ISABELLE helium refrigerator