JP2511732B2 - Cooling water circulation method - Google Patents

Cooling water circulation method

Info

Publication number
JP2511732B2
JP2511732B2 JP2416941A JP41694190A JP2511732B2 JP 2511732 B2 JP2511732 B2 JP 2511732B2 JP 2416941 A JP2416941 A JP 2416941A JP 41694190 A JP41694190 A JP 41694190A JP 2511732 B2 JP2511732 B2 JP 2511732B2
Authority
JP
Japan
Prior art keywords
water
cooling water
heat exchanger
cooling
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2416941A
Other languages
Japanese (ja)
Other versions
JPH04250880A (en
Inventor
康彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEKUNO RYOWA KK
Nitto Denko Corp
Original Assignee
TEKUNO RYOWA KK
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEKUNO RYOWA KK, Nitto Denko Corp filed Critical TEKUNO RYOWA KK
Priority to JP2416941A priority Critical patent/JP2511732B2/en
Publication of JPH04250880A publication Critical patent/JPH04250880A/en
Application granted granted Critical
Publication of JP2511732B2 publication Critical patent/JP2511732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱交換器と冷却塔とを有
する冷却水循環系における冷却水の循環方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water circulating method in a cooling water circulating system having a heat exchanger and a cooling tower.

【0002】[0002]

【従来の技術】製造プロセスや空気調和等において、流
体例えば空気を熱交換器により冷却する場合、図2に示
すように、循環ポンプ4’の駆動により熱交換器の冷却
水管13’に冷却水を流通させ、熱交換器1’内の冷却
水管13’を経て熱交換器内の流体の熱をその流通冷却
水に伝達させ、この熱伝達により加温された冷却水を冷
却塔2’で冷却し、この冷却塔2’で冷却した冷却水を
再び熱交換器に送り、以後、この繰返しにより冷却水を
循環させている。
2. Description of the Related Art When a fluid such as air is cooled by a heat exchanger in a manufacturing process, air conditioning, etc., as shown in FIG. 2, a circulation pump 4'is driven to cool water in a cooling water pipe 13 'of the heat exchanger. Through the cooling water pipe 13 ′ in the heat exchanger 1 ′ to transfer the heat of the fluid in the heat exchanger to the circulating cooling water, and the cooling water heated by this heat transfer is passed through the cooling tower 2 ′. The cooling water that has been cooled and cooled in the cooling tower 2'is sent again to the heat exchanger, and thereafter, the cooling water is circulated by repeating this.

【0003】この場合、冷却塔2’においては、上記熱
交換器1’を通過した加温水を散水器23’によって散
水し、この散水を空気との直接接触により冷却してい
る。而して、この冷却の主体は蒸発であり、この蒸発水
量を補うために、水道水又は地下水を補給している。而
るに、この補給水には、無機イオンが含有されており、
溶媒である水の蒸発に伴いこの無機イオンが次第に濃縮
されていくから、熱交換器や配管内にスケールが付着し
て冷却効率の低下や配管詰りが問題となる。
In this case, in the cooling tower 2 ', the warm water passing through the heat exchanger 1'is sprinkled by a sprinkler 23', and the sprinkled water is cooled by direct contact with air. Thus, the main body of this cooling is evaporation, and tap water or ground water is replenished to supplement this amount of evaporated water. Therefore, this makeup water contains inorganic ions,
Since the inorganic ions are gradually concentrated as the solvent water evaporates, scale is attached to the heat exchanger and the pipes, which causes problems such as cooling efficiency deterioration and pipe clogging.

【0004】かかるスケール対策として、(1)循環系
を定期的に酸で薬品洗浄すること、(2)図2におい
て、冷却塔から多量の冷却水量aを系外に放流し、この
放流量を補うように新鮮水(水道水又は地下水)bを補
給すること等が公知である。
As measures against such a scale, (1) the circulation system is regularly cleaned with an acid, and (2) in FIG. 2, a large amount of cooling water a is discharged from the cooling tower to the outside of the system, It is known to supply fresh water (tap water or ground water) b so as to make up for it.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者の
方法においては、多大な労力を必要とする。しかも、熱
交換器の運転を停止しする必要があり、洗浄時期を自由
に選定できないといった不利もある。
However, the former method requires a great deal of labor. Moreover, it is necessary to stop the operation of the heat exchanger, which has a disadvantage that the cleaning time cannot be freely selected.

【0006】他方、後者の方法においては、水道水又は
地下水の放流に対する補給量を循環冷却水量の1〜3%
にしても、循環水中の無機イオン濃度が新鮮水(水道
水、地下水)に較べてまだかなり高く、抜本的な解決が
困難であるし、補給水量を多くすると、水道代が過大と
なってコスト的に不利となる。
On the other hand, in the latter method, the supply amount for tap water or ground water discharge is 1 to 3% of the circulating cooling water amount.
Even so, the concentration of inorganic ions in the circulating water is still much higher than that of fresh water (tap water, groundwater), and it is difficult to make a drastic solution. Will be disadvantageous.

【0007】上記したスケールの発生は、水道水、地下
水に含有されているシリカが主原因であり、新鮮水をシ
リカを除去したうえで冷却水循環系に補給すれば、スケ
ールの発生を防止でき、その除去手段として、膜モジュ
ールを使用すれば、運転エネルギーコストが安価であっ
て、有利である。
The above-mentioned generation of scale is mainly caused by silica contained in tap water and ground water. If fresh water is removed and silica is replenished to the cooling water circulation system, generation of scale can be prevented. If a membrane module is used as the removing means, the operating energy cost is low, which is advantageous.

【0008】しかしながら、水道水等の温度が低いた
め、シリカの溶解限度が低く(25℃においては、11
0ppm)、シリカの大部分が非溶解の固形状態で存在す
るために、膜面に大量のシリカが析出し、膜モジュール
の透過流量が早期に低下してしまい、シリカの低濃度状
態を安定に維持し難い。
However, since the temperature of tap water is low, the solubility limit of silica is low (at 25 ° C.,
(0 ppm), most of the silica exists in a non-dissolved solid state, so a large amount of silica is deposited on the membrane surface, the permeation flow rate of the membrane module is reduced early, and the low concentration state of silica is stabilized. It's hard to maintain.

【0009】本発明の目的は、冷却水循環系において膜
モジュールの透過流量を初期の高流量に保持しつつ、膜
モジュールで循環水の無機イオン濃度を安定な低濃度に
維持して、スケールの発生を防止することにある。
The object of the present invention is to maintain the permeation flow rate of the membrane module in the cooling water circulation system at an initial high flow rate while maintaining the inorganic ion concentration of the circulation water in the membrane module at a stable low concentration to generate scale. To prevent.

【0010】[0010]

【課題を解決するための手段】本発明の冷却水の循環方
法は熱交換器と冷却塔と循環ポンプとを有し、新鮮水を
補給しつつ冷却水を循環させ、熱交換器での熱交換によ
って加温された冷却水を冷却塔において冷却し、この冷
却した水を熱交換器に供給する冷却水循環系において、
熱交換器と冷却塔との間に膜モジュール(通常、逆浸透
膜モジュール)を設け、熱交換器での熱交換によって加
温された冷却水を膜モジュールに送入し、該モジュール
の非透過側の無機イオン濃縮水を放流することを特徴と
する構成である。
A method of circulating cooling water according to the present invention has a heat exchanger, a cooling tower and a circulation pump, and circulates the cooling water while replenishing fresh water to generate heat in the heat exchanger. In the cooling water circulation system, the cooling water heated by the exchange is cooled in the cooling tower, and the cooled water is supplied to the heat exchanger.
A membrane module (usually reverse osmosis) between the heat exchanger and the cooling tower.
Membrane module) is installed and added by heat exchange in a heat exchanger.
The configuration is characterized in that the heated cooling water is fed into the membrane module, and the inorganic ion concentrated water on the non-permeation side of the module is discharged.

【0011】[0011]

【作用】循環冷却水中、熱交換器と冷却塔との間の冷却
水は、熱交換器での熱交換による加温のためにそれだけ
温度が高く、それに伴いシリカ溶解限度高い。而るに、
本発明においては、膜モジュールを熱交換器と冷却塔と
の間に挿入しているから、膜面へのシリカの析出を少な
くして膜特性を初期の高特性のままに保持できる。従っ
て、循環冷却水のシリカ低濃度状態を安定に維持でき
る。
[Function] Cooling between the heat exchanger and the cooling tower in circulating cooling water
The water is that much for heating by heat exchange in the heat exchanger
The temperature is high and the silica solubility limit is high accordingly. However,
In the present invention, the membrane module is provided with a heat exchanger and a cooling tower.
Since it is inserted between the two, it is possible to reduce the deposition of silica on the film surface and maintain the film properties at the initial high properties. Therefore, the low silica state of the circulating cooling water can be stably maintained.

【0012】[0012]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は本発明において使用する冷却水循環設備を示
している。図1において、1は熱交換器であり、ユ−ス
ポイント側循環水の流入口11並びに吐出口12を有す
るケース10内に冷却水管13を収容してある。2は冷
却塔であり、上端に空気出口21を、下端側部に空気入
口22,22をそれぞれ有するケース20内の上部に散
水器23を設け、空気出口21内にファン24を設け、
下端にパン25を設け、ケース20内に充填物26を収
容してある。この冷却塔2の散水器23には、熱交換器
1の冷却水管13の出口131を配管31により連通し、
冷却塔2のパン25を熱交換器1の冷却水管13の入口
132に配管32により連通してある。4は冷却水循環ポ
ンプである。5は新鮮水の補給管である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cooling water circulation facility used in the present invention. In FIG. 1, reference numeral 1 is a heat exchanger, and a cooling water pipe 13 is housed in a case 10 having an inlet 11 and outlet 12 of circulation water on the side of the use point. Reference numeral 2 denotes a cooling tower, an air outlet 21 is provided at an upper end, a water sprinkler 23 is provided at an upper portion of a case 20 having air inlets 22, 22 at a lower end side thereof, and a fan 24 is provided at the air outlet 21.
A pan 25 is provided at the lower end, and a filler 26 is housed in the case 20. The outlet 131 of the cooling water pipe 13 of the heat exchanger 1 is connected to the sprinkler 23 of the cooling tower 2 through a pipe 31,
The pan 25 of the cooling tower 2 is connected to the inlet of the cooling water pipe 13 of the heat exchanger 1.
A pipe 32 communicates with 132. 4 is a cooling water circulation pump. 5 is a supply pipe for fresh water.

【0013】6は逆浸透膜モジュールであり、熱交換器
1の冷却水出口131側に分岐配管33を接続し、この分
岐配管33を逆浸透膜モジュール6の入口61に連通
し、同モジュール6の透過液出口62を冷却塔2のパン
25に配管34によって連通してある。63は逆浸透膜
モジュール6の濃縮水出口、7は濃縮水出口63に設け
たモジュール運転圧力設定弁、8は加圧ポンプである。
Reference numeral 6 is a reverse osmosis membrane module. A branch pipe 33 is connected to the cooling water outlet 131 side of the heat exchanger 1, and this branch pipe 33 is communicated with an inlet 61 of the reverse osmosis membrane module 6 to form the module 6 The permeated liquid outlet 62 is connected to the pan 25 of the cooling tower 2 by a pipe 34. Reference numeral 63 is a concentrated water outlet of the reverse osmosis membrane module 6, 7 is a module operating pressure setting valve provided at the concentrated water outlet 63, and 8 is a pressurizing pump.

【0014】上記循環ポンプ4の駆動によって熱交換器
1内の冷却水管13に冷却水が流通され、熱交換器1の
ケース10内に流入するユ−スポイント側循環水の熱が
冷却水管13のフィンを経てその流通冷却水に伝達さ
れ、この熱伝達によって加熱された冷却水が冷却塔2の
散水器23に送られ、散水がファン24による流動空気
により冷却され、この冷却水がパン25を経て循環ポン
プ4により再度、熱交換器1に供給され、以後、上記の
経路で冷却水が循環されていく。上記冷却塔2での流動
空気による散水の冷却は、主に、蒸発によって行われ
る。
The cooling water is circulated through the cooling water pipe 13 in the heat exchanger 1 by driving the circulation pump 4, and the heat of the point-side circulating water flowing into the case 10 of the heat exchanger 1 is cooled by the cooling water pipe 13. The cooling water that has been transferred to the circulating cooling water through the fins of the above, and is heated by this heat transfer is sent to the sprinkler 23 of the cooling tower 2, the sprinkling water is cooled by the flowing air by the fan 24, and this cooling water is stored in the pan 25. After that, the water is again supplied to the heat exchanger 1 by the circulation pump 4, and thereafter, the cooling water is circulated through the above path. Cooling of the water spray with the flowing air in the cooling tower 2 is mainly performed by evaporation.

【0015】本発明によって冷却水を循環させるには、
上記循環ポンプ4による冷却水の循環に加え、熱交換器
1を通過した冷却水の一部を加圧ポンプ8の駆動により
逆浸透膜モジュール6に浸透圧以上の圧力で圧送し、圧
送冷却水の溶媒(水)を膜に通過させて分離し、この分
離により無機イオン、特に、シリカが濃縮された非透過
液(濃縮水)を上記濃縮液出口63から放流し、この高
濃度シリカ水の放流により循環冷却水のシリカ濃度を低
濃度にする。
To circulate cooling water according to the present invention,
In addition to the circulation of the cooling water by the circulation pump 4, a part of the cooling water that has passed through the heat exchanger 1 is pumped to the reverse osmosis membrane module 6 at a pressure higher than the osmotic pressure by driving the pressurizing pump 8 to pump the cooling water. The solvent (water) of the above is separated by passing through the membrane, and the non-permeated liquid (concentrated water) in which the inorganic ions, in particular, silica are concentrated by this separation is discharged from the concentrated liquid outlet 63, and the high concentration silica water is discharged. By discharging, the concentration of silica in the circulating cooling water is reduced.

【0016】他方、逆浸透膜モジュール6の透過水は冷
却塔2のパン25に還流し、また、非透過の高濃度シリ
カ水の放流量に対応して補給管5より新鮮水(水道水、
地下水)を補給する。この補給水量は逆浸透膜モジュー
ル6の濃縮液出口63での放流量と冷却塔2での蒸発水
量との総和に等しくするか、若しくはやや多量とする。
On the other hand, the permeated water of the reverse osmosis membrane module 6 is returned to the pan 25 of the cooling tower 2, and the fresh water (tap water, tap water,
Replenish groundwater). The amount of this makeup water is made equal to the sum of the discharge amount at the concentrated liquid outlet 63 of the reverse osmosis membrane module 6 and the amount of evaporated water in the cooling tower 2, or is made to be slightly large.

【0017】上記において、循環冷却水中、熱交換器と
冷却塔との間の冷却水の温度が、熱交換器での熱交換に
よる加温のために最も高く、それに伴いシリカ溶解限度
も最も高いから、逆浸透膜モジュール6の非透過側(原
液室側)でのシリカの非溶解分を少なくでき、非溶解シ
リカの膜面への析出をそれだけ少なくし得、逆浸透膜モ
ジュールの透過流量を初期透過流量によく保持できる。
従って、逆浸透膜モジュール6の濃縮水出口63での濃
縮水放流量、透過水量をよく一定に保持でき、循環冷却
水中のシリカ濃度をほぼ一定の低濃度に維持できる。
In the above, in the circulating cooling water, a heat exchanger
The temperature of the cooling water between the cooling tower is used for heat exchange in the heat exchanger.
Highest due to heating due to
Is also the highest, so the non-permeation side (original
The amount of non-dissolved silica in the liquid chamber side) can be reduced, the amount of non-dissolved silica deposited on the membrane surface can be reduced accordingly, and the permeation flow rate of the reverse osmosis membrane module can be kept well at the initial permeation flow rate.
Therefore, the concentrated water discharge flow rate and the amount of permeated water at the concentrated water outlet 63 of the reverse osmosis membrane module 6 can be kept constant well, and the silica concentration in the circulating cooling water can be maintained at a substantially constant low concentration.

【0018】上記において、逆浸透膜モジュール6の非
透過側においては、冷却液が膜に接して流動する間に溶
媒(水)の分離が進行し、この分離の進行と共にシリカ
濃度が増大していくから、シリカ濃度は濃縮水出口63
で最大となる。この最大シリカ濃度を濃縮水温度でのシ
リカの溶解限度に等しくするように、逆浸透膜モジュー
ルの回収率を選定し、新鮮水補給量,放水量を設定すれ
ば、シリカの膜面への析出を排除してシリカを効率よく
放出できる。
In the above, on the non-permeate side of the reverse osmosis membrane module 6, the separation of the solvent (water) proceeds while the cooling liquid flows in contact with the membrane, and the silica concentration increases with the progress of this separation. The silica concentration is 63
Is the maximum. If the recovery rate of the reverse osmosis membrane module is selected and the amount of fresh water replenishment and the amount of water discharge are set so that this maximum silica concentration is equal to the solubility limit of silica at the temperature of the concentrated water, the silica will precipitate on the membrane surface. Can be eliminated and silica can be efficiently released.

【0019】[0019]

【0020】上記の選定如何によっては、逆浸透膜モジ
ュール6の濃縮水出口63での濃縮水放流量を、補給管
5からの補給水量にほぼ等しくして、オバーフロー放流
量を実質的に零とすることもできる。また、図1に示し
た実施例に対し、逆浸透膜モジュール6の透過水を冷却
塔2の散水器23に導入することも可能である。
Depending on the above selection, the discharge amount of concentrated water at the concentrated water outlet 63 of the reverse osmosis membrane module 6 is made substantially equal to the amount of supplied water from the supply pipe 5, and the overflow amount of overflow is made substantially zero. You can also do it. Further, as compared with the embodiment shown in FIG. 1, the permeated water of the reverse osmosis membrane module 6 can be introduced into the sprinkler 23 of the cooling tower 2.

【0021】次ぎに、本発明の効果を比較例との対比の
もとで説明する。まず、図1に示す冷却水循環設備にお
いて、加圧ポンプ8を駆動せず、逆浸透膜モジュール6
を停止したままにし、しかも冷却水の補給を行わずに、
熱交換器容量600,000Kcal/hr,冷却水循
環水量120m3/hr,熱交換器の冷却水入口温度3
2℃,熱交換器の冷却水出口温度37℃の条件で地下水
(初期の電気伝導度160μs/cm,SiO2含有量
48mg/l)を循環させたところ、図3のイで示すよ
うに、2ヵ月経過後、電気伝導度が1300μs/cm
に達した。
Next, the effect of the present invention will be described in comparison with a comparative example. First, in the cooling water circulating equipment shown in FIG. 1, the reverse osmosis membrane module 6 is operated without driving the pressure pump 8.
, But without supplying cooling water,
Heat exchanger capacity 600,000 Kcal / hr, cooling water circulating water amount 120 m 3 / hr, cooling water inlet temperature 3 of the heat exchanger
When ground water (initial electric conductivity 160 μs / cm, SiO 2 content 48 mg / l) was circulated under the conditions of 2 ° C. and the cooling water outlet temperature of the heat exchanger of 37 ° C., as shown in FIG. After 2 months, electrical conductivity is 1300μs / cm
Reached

【0022】この時点で1m3/hrのオバーフロー放
流を行うと共に水道水を1m3/hrで補給したが、図
3のロで示すように循環水の電気伝導度が620μs/
cmで飽和し、SiO2濃度が210mg/lとなって
シリカスケールの発生が観察された。
At this point, an overflow of 1 m 3 / hr was discharged and tap water was replenished at 1 m 3 / hr, but the electric conductivity of the circulating water was 620 μs / hr as shown in FIG.
It was saturated at cm, the SiO 2 concentration became 210 mg / l, and generation of silica scale was observed.

【0023】そこで、図1において、逆浸透膜モジュー
ルに塩除去率99.5%(日東電工製、NTR−759
HR)のものを使用し、運転圧力20Kg/m2,供給水
量400L/hr,逆浸透透過水流量300L/hr,逆
浸透濃縮水流量100L/hr,補給水流量100L/h
rの条件で逆浸透膜モジュールを運転して、本発明を実
施したところ、図3のハで示すように、循環水の電気伝
導度を83μs/cmに減少でき、循環水のSiO2
度も12mg/lに減少できてスケールの発生を防止で
きた。また、逆浸透濃縮水のSiO2濃度をほぼシリカ
の溶解限度である160ppm(37℃)以下にできた。
Therefore, in FIG. 1, the reverse osmosis membrane module has a salt removal rate of 99.5% (NTR-759 manufactured by Nitto Denko Corporation).
HR), operating pressure 20 Kg / m 2 , supply water amount 400 L / hr, reverse osmosis permeate water flow rate 300 L / hr, reverse osmosis concentrated water flow rate 100 L / hr, makeup water flow rate 100 L / h
When the present invention was carried out by operating the reverse osmosis membrane module under the condition of r, the electrical conductivity of the circulating water could be reduced to 83 μs / cm, and the SiO 2 concentration of the circulating water was also increased, as shown in FIG. It could be reduced to 12 mg / l and the generation of scale could be prevented. Further, the SiO 2 concentration of the reverse osmosis concentrated water could be set to 160 ppm (37 ° C.) or less, which is almost the solubility limit of silica.

【0024】従って、本発明によれば従来例ロに較べ、
補給水量を10分の1にでき、循環水中のシリカ濃度を
約6%に低減できる。また、逆浸透濃縮水のシリカ濃度
をシリカの溶解限度にほぼ等しくしているから、膜面で
のシリカの析出を排除してシリカを多量に放出でき、膜
性能を初期のままの高性能に保持して循環冷却水の低シ
リカ濃度を安定に維持できる。なお、上記本発明の実施
例に対し、逆浸透膜モジュールを熱交換器1の冷却水管
13の入口132側に挿入した以外、同実施例と同様に
して循環水を処理したところ、電気伝導度及びSiO
濃度とも、上記の83μs/cm、12mg/lにはと
うていおよばなかった。
Therefore, according to the present invention, as compared with the conventional example B,
The amount of makeup water can be reduced to 1/10 and the silica concentration in the circulating water can be reduced to about 6%. In addition, since the silica concentration of reverse osmosis concentrated water is made almost equal to the solubility limit of silica, a large amount of silica can be released by eliminating the precipitation of silica on the membrane surface, and the membrane performance can be maintained at the initial high performance. The low silica concentration of the circulating cooling water can be stably maintained by maintaining it. Note that the implementation of the present invention
For example, the reverse osmosis membrane module is used as the cooling water pipe of the heat exchanger 1.
13 except that it is inserted on the side of the inlet 132 of 13.
And it was treated circulation water, the electrical conductivity and SiO 2
With the concentration, the above 83 μs / cm and 12 mg / l
It wasn't good enough.

【0025】[0025]

【発明の効果】本発明の冷却水の循環方法によれば、上
述した通り熱交換器と冷却塔等から成る冷却水循環系に
おいて、循環水中のシリカを逆浸透膜モジュールによ
り、膜面でのシリカの析出をよく排除して除去できるか
ら、膜性能を初期の高性能のままに保持して循環水中の
シリカ濃度を一定の低濃度に維持し得、冷却水循環系で
のスケールの発生を良好に防止できる。また、補給水量
を充分に少なくでき、コスト的にも有利である。
According to the method of circulating cooling water of the present invention, as described above, in the cooling water circulation system including the heat exchanger and the cooling tower, the silica in the circulating water is converted into silica on the membrane surface by the reverse osmosis membrane module. Since it is possible to eliminate and remove the precipitates of silica well, it is possible to maintain the membrane performance at the initial high performance and maintain the silica concentration in the circulating water at a certain low concentration, and to improve the generation of scale in the cooling water circulation system. It can be prevented. Further, the amount of makeup water can be sufficiently reduced, which is advantageous in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する冷却水循環設備の一例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a cooling water circulation facility used in the present invention.

【図2】従来例を示す説明図である。FIG. 2 is an explanatory diagram showing a conventional example.

【図3】本発明による循環冷却水の水質を示す説明図で
ある。
FIG. 3 is an explanatory view showing the water quality of the circulating cooling water according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 冷却塔 4 循環ポンプ 5 新鮮水補給管 6 逆浸透膜モジュール 63 濃縮水出口 1 heat exchanger 2 cooling tower 4 circulation pump 5 fresh water supply pipe 6 reverse osmosis membrane module 63 concentrated water outlet

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱交換器と冷却塔と循環ポンプとを有し、
新鮮水を補給しつつ冷却水を循環させ、熱交換器での熱
交換によって加温された冷却水を冷却塔において冷却
し、この冷却した水を熱交換器に供給する冷却水循環系
において、熱交換器と冷却塔との間に膜モジュールを設
け、熱交換器での熱交換によって加温された冷却水を膜
モジュールに送入し、該モジュールの非透過側の無機イ
オン濃縮水を放流することを特徴とする冷却水の循環方
法。
1. A heat exchanger, a cooling tower, and a circulation pump,
Cooling water circulating while replenishing fresh water, cooling water that has been warmed by heat exchange in the heat exchanger is cooled in the cooling tower, the cooling water circulation system for supplying the cooling water to the heat exchanger, heat Install the membrane module between the exchanger and the cooling tower.
The cooling water heated by the heat exchange in the heat exchanger.
A method for circulating cooling water, which comprises feeding into a module and discharging inorganic ion concentrated water on the non-permeate side of the module.
【請求項2】膜モジュールが逆浸透膜モジュールである
請求項1記載の冷却水の循環方法。
2. The method for circulating cooling water according to claim 1 , wherein the membrane module is a reverse osmosis membrane module .
JP2416941A 1990-12-29 1990-12-29 Cooling water circulation method Expired - Fee Related JP2511732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416941A JP2511732B2 (en) 1990-12-29 1990-12-29 Cooling water circulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416941A JP2511732B2 (en) 1990-12-29 1990-12-29 Cooling water circulation method

Publications (2)

Publication Number Publication Date
JPH04250880A JPH04250880A (en) 1992-09-07
JP2511732B2 true JP2511732B2 (en) 1996-07-03

Family

ID=18525112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416941A Expired - Fee Related JP2511732B2 (en) 1990-12-29 1990-12-29 Cooling water circulation method

Country Status (1)

Country Link
JP (1) JP2511732B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2291365A (en) * 1994-07-21 1996-01-24 Wrc Plc Treatment of water for use in a cooling tower by passage through a membrane to remove multivalent ions
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method
US7014627B2 (en) * 2002-08-15 2006-03-21 Venetec International, Inc. Catheter securement device
KR100816489B1 (en) * 2006-10-18 2008-03-24 베네텍 인터내셔널 인코포레이티드 Catheter Securement Device
RU2482410C2 (en) * 2011-01-11 2013-05-20 Сергей Георгиевич Валюхов Water reuse system of fuel object
GB2509309A (en) * 2012-12-20 2014-07-02 Linde Ag Cooling process
JP2016180517A (en) * 2015-03-23 2016-10-13 ダイセン・メンブレン・システムズ株式会社 Operation method of cooling system
JP2016205703A (en) * 2015-04-22 2016-12-08 ダイセン・メンブレン・システムズ株式会社 Cooling method of cooling tower

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218476A (en) * 1975-08-04 1977-02-12 Sumitomo Metal Ind Ltd Simple desalting process
JPH0252093A (en) * 1988-08-12 1990-02-21 Shimizu Corp Method and apparatus for preparing health drinking water by reverse osmosis and calcium dissolution
JPH02187191A (en) * 1989-01-13 1990-07-23 Fujitsu Ltd Method for making pure water

Also Published As

Publication number Publication date
JPH04250880A (en) 1992-09-07

Similar Documents

Publication Publication Date Title
US4434057A (en) Water purification utilizing plural semipermeable membrane stages
US6699369B1 (en) Apparatus and method for thermal desalination based on pressurized formation and evaporation of droplets
US6391205B1 (en) Osmotic desalinization process
JP6333573B2 (en) Fresh water generator and fresh water generation method
JP2511732B2 (en) Cooling water circulation method
KR20130090916A (en) Desalination apparatus and method of desalination
US6855257B2 (en) Method and system for heat transfer
CN107585936A (en) The Zero-discharge treating process and device of a kind of high-salt wastewater
WO1983001011A1 (en) Liquid purification system
CN112093834A (en) Salt separation treatment system and treatment method for salt-containing wastewater
US3707442A (en) Multistaged flash evaporator and a method of operating the same with sponge ball descaling treatment
JP2002310595A (en) Cooler
KR20170102997A (en) A method for operating an osmotic power plant, and an osmotic power plant
US4318772A (en) Saturated liquor cooling tower
CN106115740A (en) A kind of salt extraction process and salt making system
JPH05337477A (en) Wet process oxidation of ammonium salt-containing liquid
KR102464461B1 (en) Vaporization system for treating high salinity and high concentration wastewater
US3317405A (en) Distillation apparatus with ultrasonic frequency agitation
WO2001072638A1 (en) Desalination device
JP2009072734A (en) Seawater desalting apparatus using air stream circulation
JPS5836604B2 (en) High temperature electrodialysis method and equipment
JPWO2002073099A1 (en) Solar thermal system with solar pond and method of maintaining solar pond
KR101903771B1 (en) Energy-efficient method of desalination and desalination apparatus
US4019951A (en) Magma cooling tower
WO2018173329A1 (en) Drawing agent for forward osmosis or pressure retarded osmosis and corresponding system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees