JPH04250880A - Method for circulating cooling water - Google Patents

Method for circulating cooling water

Info

Publication number
JPH04250880A
JPH04250880A JP41694190A JP41694190A JPH04250880A JP H04250880 A JPH04250880 A JP H04250880A JP 41694190 A JP41694190 A JP 41694190A JP 41694190 A JP41694190 A JP 41694190A JP H04250880 A JPH04250880 A JP H04250880A
Authority
JP
Japan
Prior art keywords
water
cooling water
cooling
heat exchanger
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41694190A
Other languages
Japanese (ja)
Other versions
JP2511732B2 (en
Inventor
Yasuhiko Nakano
康彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Techno Ryowa Ltd
Original Assignee
Nitto Denko Corp
Techno Ryowa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Techno Ryowa Ltd filed Critical Nitto Denko Corp
Priority to JP2416941A priority Critical patent/JP2511732B2/en
Publication of JPH04250880A publication Critical patent/JPH04250880A/en
Application granted granted Critical
Publication of JP2511732B2 publication Critical patent/JP2511732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the concn. of the inorg. ions in circulating water at a stable low concn. with a reverse osmosis membrane module while maintaining the permeation flow rate of the membrane modul at the initial high low rate with the circulating system of cooling water and to prevent the generation of scale by providing the membrane module in a circulating circuit and releasing the concd. water of the inorg. ions on the non-permeation side of this module. CONSTITUTION:A heat exchanger 1, a cooling column 2 and a circulating pump 4 are provided and while fresh water is kept replenished from a fresh water replenishing pipe 5, the cooling water is circulated. The cooling water heated by a heat exchange in the heat exchanger 1 is cooled in the cooling column 2 and this cooled water is supplied to the heat exchanger 1. The reverse osmosis membrane module 6 is provided in the circulating circuit at this time and the inorg. ion water and particularly the non-permeated liquid in which silica is concentrated on the non-permeation side of the module 6 are released from a concd. liquid outflow port 63. Consequently, the concn. of the inorg. ions of the circulating water with the membrane module is maintained at the stable low concn. while the initial high flow rate is maintained, by which the generation of the scale is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は熱交換器と冷却塔とを有
する冷却水循環系における冷却水の循環方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for circulating cooling water in a cooling water circulation system having a heat exchanger and a cooling tower.

【0002】0002

【従来の技術】製造プロセスや空気調和等において、流
体例えば空気を熱交換器により冷却する場合、図2に示
すように、循環ポンプ4’の駆動により熱交換器の冷却
水管13’に冷却水を流通させ、熱交換器1’内の冷却
水管13’を経て熱交換器内の流体の熱をその流通冷却
水に伝達させ、この熱伝達により加温された冷却水を冷
却塔2’で冷却し、この冷却塔2’で冷却した冷却水を
再び熱交換器に送り、以後、この繰返しにより冷却水を
循環させている。
2. Description of the Related Art When a fluid such as air is cooled by a heat exchanger in a manufacturing process, air conditioning, etc., as shown in FIG. The heat of the fluid in the heat exchanger is transferred to the circulating cooling water through the cooling water pipe 13' in the heat exchanger 1', and the cooling water heated by this heat transfer is sent to the cooling tower 2'. The cooling water cooled by the cooling tower 2' is sent to the heat exchanger again, and thereafter, the cooling water is circulated by repeating this process.

【0003】この場合、冷却塔2’においては、上記熱
交換器1’を通過した加温水を散水器23’によって散
水し、この散水を空気との直接接触により冷却している
。而して、この冷却の主体は蒸発であり、この蒸発水量
を補うために、水道水又は地下水を補給している。而る
に、この補給水には、無機イオンが含有されており、溶
媒である水の蒸発に伴いこの無機イオンが次第に濃縮さ
れていくから、熱交換器や配管内にスケールが付着して
冷却効率の低下や配管詰りが問題となる。
In this case, in the cooling tower 2', the heated water that has passed through the heat exchanger 1' is sprinkled by a sprinkler 23', and the sprinkled water is cooled by direct contact with air. The main body of this cooling is evaporation, and to supplement the amount of evaporated water, tap water or groundwater is supplied. However, this make-up water contains inorganic ions, and as the solvent water evaporates, these inorganic ions gradually become concentrated, causing scale to adhere to heat exchangers and piping, causing cooling problems. Problems include reduced efficiency and clogging of pipes.

【0004】かかるスケール対策として、(1)循環系
を定期的に酸で薬品洗浄すること、(2)図2において
、冷却塔から多量の冷却水量aを系外に放流し、この放
流量を補うように新鮮水(水道水又は地下水)bを補給
すること等が公知である。
[0004] As measures against such scale, (1) the circulation system is periodically cleaned with chemicals using acid, and (2) in Fig. 2, a large amount of cooling water a is discharged from the cooling tower to the outside of the system, and this discharge amount is It is known to supplement the water with fresh water (tap water or underground water).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者の
方法においては、多大な労力を必要とする。しかも、熱
交換器の運転を停止しする必要があり、洗浄時期を自由
に選定できないといった不利もある。
[Problems to be Solved by the Invention] However, the former method requires a great deal of effort. Furthermore, there is a disadvantage that the operation of the heat exchanger must be stopped and the timing of cleaning cannot be freely selected.

【0006】他方、後者の方法においては、水道水又は
地下水の放流に対する補給量を循環冷却水量の1〜3%
にしても、循環水中の無機イオン濃度が新鮮水(水道水
、地下水)に較べてまだかなり高く、抜本的な解決が困
難であるし、補給水量を多くすると、水道代が過大とな
ってコスト的に不利となる。
On the other hand, in the latter method, the amount of replenishment for tap water or groundwater discharged is 1 to 3% of the amount of circulating cooling water.
However, the concentration of inorganic ions in circulating water is still quite high compared to fresh water (tap water, groundwater), making it difficult to fundamentally solve the problem, and increasing the amount of supplementary water will result in excessive water bills and high costs. be disadvantageous.

【0007】上記したスケールの発生は、水道水、地下
水に含有されているシリカが主原因であり、新鮮水をシ
リカを除去したうえで冷却水循環系に補給すれば、スケ
ールの発生を防止でき、その除去手段として、膜モジュ
ールを使用すれば、運転エネルギーコストが安価であっ
て、有利である。
[0007] The above-mentioned scale formation is mainly caused by silica contained in tap water and underground water, and by removing silica from fresh water and replenishing it to the cooling water circulation system, scale formation can be prevented. If a membrane module is used as the removal means, the operating energy cost is low and it is advantageous.

【0008】しかしながら、水道水等の温度が低いため
、シリカの溶解限度が低く(25℃においては、110
ppm)、シリカの大部分が非溶解の固形状態で存在す
るために、膜面に大量のシリカが析出し、膜モジュール
の透過流量が早期に低下してしまい、シリカの低濃度状
態を安定に維持し難い。
However, because the temperature of tap water is low, the solubility limit of silica is low (at 25°C, 110
ppm), most of the silica exists in an undissolved solid state, so a large amount of silica precipitates on the membrane surface, and the permeation flow rate of the membrane module decreases early, making it difficult to stabilize the low concentration of silica. Difficult to maintain.

【0009】本発明の目的は、冷却水循環系において膜
モジュールの透過流量を初期の高流量に保持しつつ、膜
モジュールで循環水の無機イオン濃度を安定な低濃度に
維持して、スケールの発生を防止することにある。
The purpose of the present invention is to maintain the permeation flow rate of the membrane module at an initial high flow rate in the cooling water circulation system, and maintain the inorganic ion concentration of the circulating water at a stable low concentration in the membrane module, thereby preventing the formation of scale. The goal is to prevent

【0010】0010

【課題を解決するための手段】本発明の冷却水の循環方
法は熱交換器と冷却塔と循環ポンプとを有し、新鮮水を
補給しつつ冷却水を循環させ、熱交換器での熱交換によ
って加温された冷却水を冷却塔において冷却し、この冷
却した水を熱交換器に供給する冷却水循環系において、
循環回路中に逆浸透膜モジュールを設け、該モジュール
の非透過側の無機イオン濃縮水を放流することを特徴と
する構成であり、熱交換器での熱交換によって加温され
た冷却水を逆浸透膜モジュールに送入することができる
[Means for Solving the Problems] The cooling water circulation method of the present invention includes a heat exchanger, a cooling tower, and a circulation pump, and circulates the cooling water while replenishing fresh water. In a cooling water circulation system, cooling water heated by exchange is cooled in a cooling tower and this cooled water is supplied to a heat exchanger.
This configuration is characterized by installing a reverse osmosis membrane module in the circulation circuit and discharging inorganic ion concentrated water from the non-permeate side of the module. It can be fed into the osmotic membrane module.

【0011】[0011]

【作用】循環冷却水の温度は補給水の温度に較べて高い
から、循環冷却水でのシリカ溶解限度を補給水でのシリ
カ溶解限度よりも高くできるので、循環回路側に逆浸透
膜モジュールを挿入したために、膜面へのシリカの析出
を少なくして膜特性を初期の高特性のままに保持できる
。従って、循環冷却水のシリカ低濃度状態を安定に維持
できる。
[Function] Since the temperature of the circulating cooling water is higher than the temperature of the make-up water, the silica solubility limit in the circulating cooling water can be made higher than the silica solubility limit in the make-up water, so a reverse osmosis membrane module is installed on the circulation circuit side. Because of the insertion, the precipitation of silica on the membrane surface can be reduced and the membrane properties can be maintained at their initial high properties. Therefore, it is possible to stably maintain a low silica concentration state in the circulating cooling water.

【0012】0012

【実施例】以下、図面により本発明の実施例を説明する
。図1は本発明において使用する冷却水循環設備を示し
ている。図1において、1は熱交換器であり、ユ−スポ
イント側循環水の流入口11並びに吐出口12を有する
ケース10内に冷却水管13を収容してある。2は冷却
塔であり、上端に空気出口21を、下端側部に空気入口
22,22をそれぞれ有するケース20内の上部に散水
器23を設け、空気出口21内にファン24を設け、下
端にパン25を設け、ケース20内に充填物26を収容
してある。この冷却塔2の散水器23には、熱交換器1
の冷却水管13の出口131を配管31により連通し、
冷却塔2のパン25を熱交換器1の冷却水管13の入口
132に配管32により連通してある。4は冷却水循環
ポンプである。5は新鮮水の補給管である。
Embodiments Hereinafter, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 shows the cooling water circulation equipment used in the present invention. In FIG. 1, reference numeral 1 denotes a heat exchanger, and a cooling water pipe 13 is housed in a case 10 having an inlet 11 and an outlet 12 for circulating water on the use point side. 2 is a cooling tower, which has an air outlet 21 at the upper end and air inlets 22, 22 at the side of the lower end.A water sprinkler 23 is provided in the upper part of the case 20, a fan 24 is provided in the air outlet 21, and a fan 24 is provided in the lower end. A pan 25 is provided, and a filling 26 is housed in the case 20. The water sprinkler 23 of this cooling tower 2 has a heat exchanger 1
The outlet 131 of the cooling water pipe 13 is communicated with the pipe 31,
The pan 25 of the cooling tower 2 is connected to the inlet 132 of the cooling water pipe 13 of the heat exchanger 1 through a pipe 32. 4 is a cooling water circulation pump. 5 is a fresh water supply pipe.

【0013】6は逆浸透膜モジュールであり、熱交換器
1の冷却水出口131側に分岐配管33を接続し、この
分岐配管33を逆浸透膜モジュール6の入口61に連通
し、同モジュール6の透過液出口62を冷却塔2のパン
25に配管34によって連通してある。63は逆浸透膜
モジュール6の濃縮水出口、7は濃縮水出口63に設け
たモジュール運転圧力設定弁、8は加圧ポンプである。
Reference numeral 6 denotes a reverse osmosis membrane module, in which a branch pipe 33 is connected to the cooling water outlet 131 side of the heat exchanger 1, and this branch pipe 33 is communicated with the inlet 61 of the reverse osmosis membrane module 6. The permeate outlet 62 of the cooling tower 2 is connected to the pan 25 of the cooling tower 2 by a pipe 34. 63 is a concentrated water outlet of the reverse osmosis membrane module 6, 7 is a module operating pressure setting valve provided at the concentrated water outlet 63, and 8 is a pressure pump.

【0014】上記循環ポンプ4の駆動によって熱交換器
1内の冷却水管13に冷却水が流通され、熱交換器1の
ケース10内に流入するユ−スポイント側循環水の熱が
冷却水管13のフィンを経てその流通冷却水に伝達され
、この熱伝達によって加熱された冷却水が冷却塔2の散
水器23に送られ、散水がファン24による流動空気に
より冷却され、この冷却水がパン25を経て循環ポンプ
4により再度、熱交換器1に供給され、以後、上記の経
路で冷却水が循環されていく。上記冷却塔2での流動空
気による散水の冷却は、主に、蒸発によって行われる。
By driving the circulation pump 4, cooling water flows through the cooling water pipes 13 in the heat exchanger 1, and the heat of the use point side circulating water flowing into the case 10 of the heat exchanger 1 is transferred to the cooling water pipes 13. The cooling water heated by this heat transfer is sent to the sprinkler 23 of the cooling tower 2, where the sprinkled water is cooled by the flowing air from the fan 24, and this cooling water is transferred to the pan 25. After that, the cooling water is supplied to the heat exchanger 1 again by the circulation pump 4, and thereafter, the cooling water is circulated through the above-mentioned route. Cooling of the water sprayed with flowing air in the cooling tower 2 is mainly performed by evaporation.

【0015】本発明によって冷却水を循環させるには、
上記循環ポンプ4による冷却水の循環に加え、熱交換器
1を通過した冷却水の一部を加圧ポンプ8の駆動により
逆浸透膜モジュール6に浸透圧以上の圧力で圧送し、圧
送冷却水の溶媒(水)を膜に通過させて分離し、この分
離により無機イオン、特に、シリカが濃縮された非透過
液(濃縮水)を上記濃縮液出口63から放流し、この高
濃度シリカ水の放流により循環冷却水のシリカ濃度を低
濃度にする。
[0015] To circulate cooling water according to the present invention,
In addition to the circulation of the cooling water by the circulation pump 4, a part of the cooling water that has passed through the heat exchanger 1 is driven by the pressurizing pump 8 and is forcedly sent to the reverse osmosis membrane module 6 at a pressure higher than the osmotic pressure. The solvent (water) is passed through the membrane and separated, and the non-permeate liquid (concentrated water) in which inorganic ions, especially silica, are concentrated is discharged from the concentrated liquid outlet 63, and this highly concentrated silica water is discharged from the concentrated liquid outlet 63. The silica concentration in the circulating cooling water is reduced by discharge.

【0016】他方、逆浸透膜モジュール6の透過水は冷
却塔2のパン25に還流し、また、非透過の高濃度シリ
カ水の放流量に対応して補給管5より新鮮水(水道水、
地下水)を補給する。この補給水量は逆浸透膜モジュー
ル6の濃縮液出口63での放流量と冷却塔2での蒸発水
量との総和に等しくするか、若しくはやや多量とする。
On the other hand, the permeated water from the reverse osmosis membrane module 6 is returned to the pan 25 of the cooling tower 2, and fresh water (tap water, tap water,
groundwater). The amount of make-up water is made equal to or slightly larger than the sum of the discharge amount at the concentrate outlet 63 of the reverse osmosis membrane module 6 and the amount of evaporated water in the cooling tower 2.

【0017】上記において、循環水の温度が補給管5側
の新鮮水の温度よりも高く、従って、循環水中でのシリ
カ溶解限度が新鮮水中でのシリカ溶解限度よりも高いか
ら、逆浸透膜モジュール6の非透過側でのシリカの非溶
解分を少なくでき、非溶解シリカの膜面への析出をそれ
だけ少なくし得、逆浸透膜モジュールの透過流量を初期
透過流量によく保持できる。従って、逆浸透膜モジュー
ル6の濃縮水出口63での濃縮水放流量、透過水量をよ
く一定に保持でき、循環冷却水中のシリカ濃度をほぼ一
定の低濃度に維持できる。
In the above, since the temperature of the circulating water is higher than the temperature of the fresh water on the supply pipe 5 side, and therefore the solubility limit of silica in the circulating water is higher than the solubility limit of silica in fresh water, the reverse osmosis membrane module The amount of undissolved silica on the non-permeate side of 6 can be reduced, the precipitation of undissolved silica on the membrane surface can be reduced accordingly, and the permeation flow rate of the reverse osmosis membrane module can be well maintained at the initial permeation flow rate. Therefore, the amount of concentrated water discharged and the amount of permeated water at the concentrated water outlet 63 of the reverse osmosis membrane module 6 can be maintained constant, and the silica concentration in the circulating cooling water can be maintained at a substantially constant low concentration.

【0018】上記において、逆浸透膜モジュール6の非
透過側においては、冷却液が膜に接して流動する間に溶
媒(水)の分離が進行し、この分離の進行と共にシリカ
濃度が増大していくから、シリカ濃度は濃縮水出口63
で最大となる。この最大シリカ濃度を濃縮水温度でのシ
リカの溶解限度に等しくするように、逆浸透膜モジュー
ルの回収率を選定し、新鮮水補給量,放水量を設定すれ
ば、シリカの膜面への析出を排除してシリカを効率よく
放出できる。
In the above, on the non-permeate side of the reverse osmosis membrane module 6, separation of the solvent (water) progresses while the coolant flows in contact with the membrane, and as this separation progresses, the silica concentration increases. Therefore, the silica concentration is at the concentrated water outlet 63.
Maximum at . By selecting the recovery rate of the reverse osmosis membrane module and setting the amount of fresh water supply and water discharge so that this maximum silica concentration is equal to the solubility limit of silica at the concentrated water temperature, silica can be deposited on the membrane surface. can be eliminated and silica can be released efficiently.

【0019】特に、熱交換器の冷却水出口側での冷却水
温度が循環中での最高温度となるから、図1に示すよう
に、熱交換器1の冷却水管13の出口131側において
、冷却水を逆浸透膜モジュール6に分流させ、逆浸透膜
モジュール6の濃縮水出口63でのシリカ濃度を、その
温度でのシリカの溶解限度とするように逆浸透膜モジュ
ールの回収率を選定し、新鮮水補給量,放水量を設定す
ることがより好ましい。
In particular, since the temperature of the cooling water on the cooling water outlet side of the heat exchanger is the highest temperature during circulation, as shown in FIG. The cooling water is diverted to the reverse osmosis membrane module 6, and the recovery rate of the reverse osmosis membrane module is selected so that the silica concentration at the concentrated water outlet 63 of the reverse osmosis membrane module 6 is the solubility limit of silica at that temperature. It is more preferable to set the amount of fresh water supplied, and the amount of water discharged.

【0020】上記の選定如何によっては、逆浸透膜モジ
ュール6の濃縮水出口63での濃縮水放流量を、補給管
5からの補給水量にほぼ等しくして、オバーフロー放流
量を実質的に零とすることもできる。また、図1に示し
た実施例に対し、逆浸透膜モジュール6の透過水を冷却
塔2の散水器23に導入することも可能である。
Depending on the above selection, the amount of concentrated water discharged at the concentrated water outlet 63 of the reverse osmosis membrane module 6 can be made approximately equal to the amount of make-up water from the make-up pipe 5, and the amount of overflow discharged can be made substantially zero. You can also. Furthermore, in contrast to the embodiment shown in FIG. 1, it is also possible to introduce the permeated water from the reverse osmosis membrane module 6 into the water sprinkler 23 of the cooling tower 2.

【0021】次ぎに、本発明の効果を比較例との対比の
もとで説明する。まず、図1に示す冷却水循環設備にお
いて、加圧ポンプ8を駆動せず、逆浸透膜モジュール6
を停止したままにし、しかも冷却水の補給を行わずに、
熱交換器容量600,000Kcal/hr,冷却水循
環水量120m3/hr,熱交換器の冷却水入口温度3
2℃,熱交換器の冷却水出口温度37℃の条件で地下水
(初期の電気伝導度160μs/cm,SiO2含有量
48mg/l)を循環させたところ、図3のイで示すよ
うに、2ヵ月経過後、電気伝導度が1300μs/cm
に達した。
Next, the effects of the present invention will be explained in comparison with comparative examples. First, in the cooling water circulation equipment shown in FIG. 1, the pressure pump 8 is not driven and the reverse osmosis membrane module 6 is
without replenishing the cooling water.
Heat exchanger capacity 600,000Kcal/hr, cooling water circulation amount 120m3/hr, heat exchanger cooling water inlet temperature 3
When groundwater (initial electrical conductivity 160 μs/cm, SiO2 content 48 mg/l) was circulated under the conditions of 2°C and the cooling water outlet temperature of the heat exchanger 37°C, as shown by A in Figure 3, 2. After months, electrical conductivity is 1300 μs/cm
reached.

【0022】この時点で1m3/hrのオバーフロー放
流を行うと共に水道水を1m3/hrで補給したが、図
3のロで示すように循環水の電気伝導度が620μs/
cmで飽和し、SiO2濃度が210mg/lとなって
シリカスケールの発生が観察された。
At this point, overflow was discharged at a rate of 1 m3/hr and tap water was replenished at a rate of 1 m3/hr, but the electrical conductivity of the circulating water was 620 μs/hr as shown by B in Figure 3.
cm, the SiO2 concentration reached 210 mg/l, and the occurrence of silica scale was observed.

【0023】そこで、図1において、逆浸透膜モジュー
ルに塩除去率99.5%(日東電工製、NTR−759
HR)のものを使用し、運転圧力20Kg/m2,供給
水量400L/hr,逆浸透透過水流量300L/hr
,逆浸透濃縮水流量100L/hr,補給水流量100
L/hrの条件で逆浸透膜モジュールを運転して、本発
明を実施したところ、図3のハで示すように、循環水の
電気伝導度を83μs/cmに減少でき、循環水のSi
O2濃度も12mg/lに減少できてスケールの発生を
防止できた。また、逆浸透濃縮水のSiO2濃度をほぼ
シリカの溶解限度である160ppm(37℃)以下に
できた。
Therefore, in FIG. 1, the reverse osmosis membrane module has a salt removal rate of 99.5% (manufactured by Nitto Denko, NTR-759).
HR), operating pressure 20 Kg/m2, supply water amount 400 L/hr, reverse osmosis permeate flow rate 300 L/hr.
, reverse osmosis concentrated water flow rate 100L/hr, makeup water flow rate 100
When the present invention was carried out by operating the reverse osmosis membrane module under the condition of 1.5 L/hr, the electrical conductivity of the circulating water was reduced to 83 μs/cm, as shown by c in FIG. 3, and the Si
The O2 concentration was also reduced to 12 mg/l, making it possible to prevent scale formation. In addition, the SiO2 concentration of the reverse osmosis concentrated water could be reduced to approximately 160 ppm (37°C), which is the solubility limit of silica.

【0024】従って、本発明によれば従来例ロに較べ、
補給水量を10分の1にでき、循環水中のシリカ濃度を
約6%に低減できる。また、逆浸透濃縮水のシリカ濃度
をシリカの溶解限度にほぼ等しくしているから、膜面で
のシリカの析出を排除してシリカを多量に放出でき、膜
性能を初期のままの高性能に保持して循環冷却水の低シ
リカ濃度を安定に維持できる。
Therefore, according to the present invention, compared to conventional example B,
The amount of make-up water can be reduced to one-tenth, and the silica concentration in circulating water can be reduced to about 6%. In addition, since the silica concentration in reverse osmosis concentrated water is almost equal to the silica solubility limit, silica precipitation on the membrane surface can be eliminated and a large amount of silica can be released, allowing the membrane to maintain its original high performance. It is possible to maintain a stable low silica concentration in the circulating cooling water.

【0025】[0025]

【発明の効果】本発明の冷却水の循環方法によれば、上
述した通り熱交換器と冷却塔等から成る冷却水循環系に
おいて、循環水中のシリカを逆浸透膜モジュールにより
、膜面でのシリカの析出をよく排除して除去できるから
、膜性能を初期の高性能のままに保持して循環水中のシ
リカ濃度を一定の低濃度に維持し得、冷却水循環系での
スケールの発生を良好に防止できる。また、補給水量を
充分に少なくでき、コスト的にも有利である。
Effects of the Invention According to the cooling water circulation method of the present invention, in the cooling water circulation system consisting of a heat exchanger, a cooling tower, etc., as described above, silica in the circulating water is removed by a reverse osmosis membrane module. Since the precipitation of silica can be well removed and removed, the membrane performance can be maintained at its initial high performance and the silica concentration in the circulating water can be maintained at a constant low concentration, making it possible to improve the occurrence of scale in the cooling water circulation system. It can be prevented. Moreover, the amount of replenishing water can be sufficiently reduced, which is advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明において使用する冷却水循環設備の一例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of cooling water circulation equipment used in the present invention.

【図2】従来例を示す説明図である。FIG. 2 is an explanatory diagram showing a conventional example.

【図3】本発明による循環冷却水の水質を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing the quality of circulating cooling water according to the present invention.

【符号の説明】[Explanation of symbols]

1    熱交換器 2    冷却塔 4    循環ポンプ 5    新鮮水補給管 6    逆浸透膜モジュール 63  濃縮水出口 1 Heat exchanger 2 Cooling tower 4 Circulation pump 5 Fresh water supply pipe 6 Reverse osmosis membrane module 63 Concentrated water outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱交換器と冷却塔と循環ポンプとを有し、
新鮮水を補給しつつ冷却水を循環させ、熱交換器での熱
交換によって加温された冷却水を冷却塔において冷却し
、この冷却した水を熱交換器に供給する冷却水循環系に
おいて、循環回路中に逆浸透膜モジュールを設け、該モ
ジュールの非透過側の無機イオン濃縮水を放流すること
を特徴とする冷却水の循環方法。
Claim 1: Comprising a heat exchanger, a cooling tower, and a circulation pump,
In the cooling water circulation system, the cooling water is circulated while replenishing fresh water, the cooling water heated by heat exchange in the heat exchanger is cooled in the cooling tower, and this cooled water is supplied to the heat exchanger. A cooling water circulation method characterized by providing a reverse osmosis membrane module in a circuit and discharging inorganic ion concentrated water from the non-permeable side of the module.
【請求項2】熱交換器での熱交換によって加温された冷
却水を逆浸透膜モジュールに送入する請求項1記載の冷
却水の循環方法。
2. The cooling water circulation method according to claim 1, wherein the cooling water heated by heat exchange in a heat exchanger is sent to the reverse osmosis membrane module.
JP2416941A 1990-12-29 1990-12-29 Cooling water circulation method Expired - Fee Related JP2511732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416941A JP2511732B2 (en) 1990-12-29 1990-12-29 Cooling water circulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416941A JP2511732B2 (en) 1990-12-29 1990-12-29 Cooling water circulation method

Publications (2)

Publication Number Publication Date
JPH04250880A true JPH04250880A (en) 1992-09-07
JP2511732B2 JP2511732B2 (en) 1996-07-03

Family

ID=18525112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416941A Expired - Fee Related JP2511732B2 (en) 1990-12-29 1990-12-29 Cooling water circulation method

Country Status (1)

Country Link
JP (1) JP2511732B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2291365A (en) * 1994-07-21 1996-01-24 Wrc Plc Treatment of water for use in a cooling tower by passage through a membrane to remove multivalent ions
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
KR100816486B1 (en) * 2002-08-15 2008-03-24 베네텍 인터내셔널 인코포레이티드 Catheter Securement Device
KR100816489B1 (en) * 2006-10-18 2008-03-24 베네텍 인터내셔널 인코포레이티드 Catheter Securement Device
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method
RU2482410C2 (en) * 2011-01-11 2013-05-20 Сергей Георгиевич Валюхов Water reuse system of fuel object
WO2014096845A1 (en) * 2012-12-20 2014-06-26 Linde Aktiengesellschaft Cooling process
JP2016180517A (en) * 2015-03-23 2016-10-13 ダイセン・メンブレン・システムズ株式会社 Operation method of cooling system
JP2016205703A (en) * 2015-04-22 2016-12-08 ダイセン・メンブレン・システムズ株式会社 Cooling method of cooling tower

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218476A (en) * 1975-08-04 1977-02-12 Sumitomo Metal Ind Ltd Simple desalting process
JPH0252093A (en) * 1988-08-12 1990-02-21 Shimizu Corp Method and apparatus for preparing health drinking water by reverse osmosis and calcium dissolution
JPH02187191A (en) * 1989-01-13 1990-07-23 Fujitsu Ltd Method for making pure water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218476A (en) * 1975-08-04 1977-02-12 Sumitomo Metal Ind Ltd Simple desalting process
JPH0252093A (en) * 1988-08-12 1990-02-21 Shimizu Corp Method and apparatus for preparing health drinking water by reverse osmosis and calcium dissolution
JPH02187191A (en) * 1989-01-13 1990-07-23 Fujitsu Ltd Method for making pure water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2291365A (en) * 1994-07-21 1996-01-24 Wrc Plc Treatment of water for use in a cooling tower by passage through a membrane to remove multivalent ions
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method
KR100816486B1 (en) * 2002-08-15 2008-03-24 베네텍 인터내셔널 인코포레이티드 Catheter Securement Device
KR100816489B1 (en) * 2006-10-18 2008-03-24 베네텍 인터내셔널 인코포레이티드 Catheter Securement Device
RU2482410C2 (en) * 2011-01-11 2013-05-20 Сергей Георгиевич Валюхов Water reuse system of fuel object
WO2014096845A1 (en) * 2012-12-20 2014-06-26 Linde Aktiengesellschaft Cooling process
GB2509309A (en) * 2012-12-20 2014-07-02 Linde Ag Cooling process
US10527370B2 (en) 2012-12-20 2020-01-07 Linde Aktiengesellschaft Cooling process
JP2016180517A (en) * 2015-03-23 2016-10-13 ダイセン・メンブレン・システムズ株式会社 Operation method of cooling system
JP2016205703A (en) * 2015-04-22 2016-12-08 ダイセン・メンブレン・システムズ株式会社 Cooling method of cooling tower

Also Published As

Publication number Publication date
JP2511732B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4434057A (en) Water purification utilizing plural semipermeable membrane stages
US6391205B1 (en) Osmotic desalinization process
CN107108294A (en) Selective fouling and correlation technique in desalted water processing system
CN102329036B (en) High-efficiency method for recovery treatment of saliferous wastewater under zero emission through residual heat utilization
US20140238917A1 (en) Osmotic desalination process
US4406748A (en) Liquid purification system
JP6333573B2 (en) Fresh water generator and fresh water generation method
CN105439246A (en) Osmotic separation systems and methods
CN202131179U (en) Water recycling system
US9266037B2 (en) Thermal distillation system and process
JPH04250880A (en) Method for circulating cooling water
CN106115740B (en) A kind of salt extraction process and salt making system
JP2002310595A (en) Cooler
US4213830A (en) Method for the transfer of heat
US3707442A (en) Multistaged flash evaporator and a method of operating the same with sponge ball descaling treatment
US20170341027A1 (en) Osmotic Power Plant
JPH05337477A (en) Wet process oxidation of ammonium salt-containing liquid
CN102036725A (en) Fluid fractionation process and apparatus
US4318772A (en) Saturated liquor cooling tower
JP2007000789A (en) Method for concentrating waste water and its apparatus
KR102464461B1 (en) Vaporization system for treating high salinity and high concentration wastewater
KR101298724B1 (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
WO2001072638A1 (en) Desalination device
HU198241B (en) Device for replacing the feedwater of power plant
CN202208671U (en) Brine waste zero emission recovering system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees