JP2016180517A - Operation method of cooling system - Google Patents

Operation method of cooling system Download PDF

Info

Publication number
JP2016180517A
JP2016180517A JP2015059821A JP2015059821A JP2016180517A JP 2016180517 A JP2016180517 A JP 2016180517A JP 2015059821 A JP2015059821 A JP 2015059821A JP 2015059821 A JP2015059821 A JP 2015059821A JP 2016180517 A JP2016180517 A JP 2016180517A
Authority
JP
Japan
Prior art keywords
water
cooling
line
cooling water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015059821A
Other languages
Japanese (ja)
Inventor
堀田 博之
Hiroyuki Hotta
博之 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Original Assignee
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd filed Critical Daicen Membrane Systems Ltd
Priority to JP2015059821A priority Critical patent/JP2016180517A/en
Publication of JP2016180517A publication Critical patent/JP2016180517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method of a cooling system capable of reducing an operation cost.SOLUTION: In an operation method of a cooling system provided with an open type cooling tower 1 and a refrigerating machine 2, the cooling system has a circulation line of cooling water which passes through a water feeding line 11 of cooling water, the refrigerating machine and a return line 12 of cooling water from the open type cooling tower and returns to the cooling tower and, further, the open type cooling tower has a makeup water line 16 of cooling water and a draining line 13 of cooling water. When the operation method of the cooling system continues a circulation operation of cooling water, scale accumulated in the circulation line of the cooling water is drained together with a part of the cooling water from the draining line of the cooling water and the cooling water reduced by drainage is replenished from the makeup water line of the cooling water. Therein, as makeup water to be replenished from the makeup water line, water having electric conductivity of 100 μS/cm or less is used.SELECTED DRAWING: Figure 1

Description

本発明は、冷却塔と冷凍機を備えた冷却システムの運転方法に関する。   The present invention relates to a method for operating a cooling system including a cooling tower and a refrigerator.

冷却塔(クーリングタワー)は、建物内の空調設備などとして使用されている冷凍機の冷却水を冷却するために使用されている。
冷却塔と冷凍機は、冷凍機にて室内空気を冷却することで加温された冷却水を冷却塔に戻して冷却塔で冷却した後、冷凍機に送る循環ラインを利用した循環運転を実施している
A cooling tower (cooling tower) is used to cool the cooling water of a refrigerator used as an air conditioning facility in a building.
The cooling tower and the refrigerator are circulated using a circulation line that sends the cooling water heated by cooling the room air with the refrigerator to the cooling tower and then cooled by the cooling tower, and then sent to the refrigerator. doing

冷却塔には開放式と密閉式がある。
開放式の冷却塔は、ファンを使用して円筒形の充填材の外側から内側に空気を通しながら、並行して充填材の上方に設置された上部水槽から冷却水を散水して、冷却水と外気を直接接触させることで冷却水を冷却するものである。冷却後の冷却水は、充填材の下方に設置された下部水槽に集めて循環使用される。
この冷却過程において、散水した冷却水の一部が蒸発したり、飛散したりするため、循環運転を継続すると、循環ラインの冷却水中のスケール成分濃度が高くなり、さらに継続すると循環ラインが詰まるおそれもある。
このため、通常は蒸発飛散した冷却水と同量の水を補給すると共に、循環ライン内の冷却水の一部を排水した後、新鮮な補給水(水道水)を補給している。
There are open and closed cooling towers.
The open-type cooling tower uses a fan to sprinkle cooling water from the upper water tank installed above the packing material while passing air from the outside to the inside of the cylindrical packing material. The cooling water is cooled by direct contact with the outside air. The cooling water after cooling is collected and circulated in a lower water tank installed below the filler.
In this cooling process, part of the sprinkled cooling water evaporates or scatters. Therefore, if the circulation operation is continued, the concentration of scale components in the cooling water in the circulation line will increase, and if it continues further, the circulation line may be clogged. There is also.
For this reason, normally, the same amount of water as the evaporated and scattered cooling water is replenished, and a part of the cooling water in the circulation line is drained, and then fresh replenishing water (tap water) is replenished.

特許文献1、2には、上記循環ライン中に逆浸透膜装置を配置して循環水を処理することで、スケール成分濃度の上昇を抑制する発明が記載されている。
特許文献3〜5には、逆浸透膜などを使用して上記循環ラインから排水された水を処理し、再利用する発明が記載されている。
Patent Documents 1 and 2 describe inventions in which the reverse osmosis membrane device is disposed in the circulation line to treat the circulating water, thereby suppressing an increase in scale component concentration.
Patent Documents 3 to 5 describe inventions in which water drained from the circulation line is treated and reused using a reverse osmosis membrane or the like.

特開平2−95493号公報Japanese Patent Laid-Open No. 2-95493 特開平4−250880号公報JP-A-4-250880 特開2002−18437号公報JP 2002-18437 A 特開2002−310595号公報JP 2002-310595 A 特開2003−1256号公報JP 2003-1256 A

本発明は、冷却水の排水量と補給水の補給量を減少させ、運転コストを低減させることができる、冷却塔と冷凍機を備えた冷却システムの運転方法を提供することを課題とする。   An object of the present invention is to provide a method for operating a cooling system including a cooling tower and a refrigerator, which can reduce the amount of cooling water discharged and the amount of makeup water supplied, thereby reducing the operating cost.

本発明は、開放式冷却塔と冷凍機を備えた冷却システムの運転方法であって、
前記冷却システムが、
前記開放式冷却塔と前記冷凍機の間で、前記開放式冷却塔から、冷却水の送水ライン、冷凍機、冷却水の返送ラインを通り、前記冷却塔に戻る冷却水の循環ラインを有しており、
さらに前記開放式冷却塔が、冷却水の補給水ラインと冷却水の排水ラインを有しているものであり、
前記冷却システムの運転方法が、
前記冷却水循環ラインに冷却水を循環させる冷却水の循環運転を継続するとき、
前記冷却水の循環ライン内に蓄積したスケールを前記冷却水の排水ラインから冷却水の一部と共に排水し、前記排水により減少した冷却水を前記冷却水の補給ラインから補給する運転方法であり、
前記補給ラインから補給する補給水のとして、電気伝導度が100μS/cm以下の水を使用する、冷却システムの運転方法を提供する。
The present invention is a method of operating a cooling system comprising an open cooling tower and a refrigerator,
The cooling system comprises:
Between the open-type cooling tower and the refrigerator, there is a cooling water circulation line from the open-type cooling tower, passing through a cooling water supply line, a refrigerator, a cooling water return line, and returning to the cooling tower. And
Furthermore, the open-type cooling tower has a cooling water supply water line and a cooling water drain line,
An operation method of the cooling system is:
When continuing the cooling water circulation operation for circulating the cooling water to the cooling water circulation line,
The scale accumulated in the cooling water circulation line is drained together with a part of the cooling water from the cooling water drain line, and the cooling water reduced by the drainage is replenished from the cooling water replenishment line,
Provided is a cooling system operating method in which water having an electric conductivity of 100 μS / cm or less is used as makeup water to be replenished from the replenishment line.

本発明の処理システムの運転方法によれば、循環ライン内の循環水の電気伝導度を低いレベルで維持することができるようになる。
このため、冷却水の排水量を大きく削減することができ、冷却水の補給水として水道水を使用した場合と比べると、上水道料金と下水道料金を合わせた大きな運転コストの低減効果が得られる。
According to the operation method of the treatment system of the present invention, the electrical conductivity of the circulating water in the circulation line can be maintained at a low level.
For this reason, the amount of cooling water drainage can be greatly reduced, and compared with the case where tap water is used as the replenishing water for cooling water, a large operating cost reduction effect is obtained by combining the water supply charges and the sewerage charges.

本発明の冷却システムの運転方法を実施するための冷却システムの処理フロー図。The processing flow figure of the cooling system for enforcing the operating method of the cooling system of the present invention.

<冷却システム>
図1に示す冷却システムでは、冷却塔1、冷凍機2、中水槽3、受水槽4、逆浸透膜装置(RO装置)5、補給水槽6の設置場所は特に制限されるものではない。
冷却塔1と冷凍機2は、冷却塔1から冷凍機2に向かって流れる、ポンプ21が配置された冷却水ライン11で接続されている。
冷却塔1は、特許文献1〜5にも記載されている公知のものであり、冷凍機2から戻された加温された冷却水を外気と熱交換する開放型のものである。
冷却塔1は、中水槽3と接続された排水ライン13を有している。排水ライン13には開閉バルブを配置することができる。
冷凍機2は特に制限されるものではなく、蒸気圧縮冷凍機、吸収式冷凍機、吸着式冷凍機などを挙げることができる。
<Cooling system>
In the cooling system shown in FIG. 1, the installation locations of the cooling tower 1, the refrigerator 2, the middle water tank 3, the water receiving tank 4, the reverse osmosis membrane device (RO device) 5, and the makeup water tank 6 are not particularly limited.
The cooling tower 1 and the refrigerator 2 are connected by a cooling water line 11 in which a pump 21 is arranged and flows from the cooling tower 1 toward the refrigerator 2.
The cooling tower 1 is a well-known thing described also in patent documents 1-5, and is an open type thing which heat-exchanges the warmed cooling water returned from the refrigerator 2 with external air.
The cooling tower 1 has a drain line 13 connected to the middle water tank 3. An open / close valve can be disposed in the drain line 13.
The refrigerator 2 is not particularly limited, and examples thereof include a vapor compression refrigerator, an absorption refrigerator, and an adsorption refrigerator.

冷凍機2と冷却塔1は、冷凍機2から冷却塔1に向かって流れる冷却水の返送ライン12で接続されている。
冷却塔1から、冷却水ライン11、冷凍機2および冷却水の返送ライン12を通り、冷却塔1に戻る冷却水の循環ラインが形成されている。
冷却水循環ラインには、図示していない電気伝導度を測定するための採水ラインが接続されており、さらに前記採水ラインには電気伝導度の測定器が接続されており、電気伝導度が自動計測できるようになっていてもよい。
The refrigerator 2 and the cooling tower 1 are connected by a return line 12 of cooling water flowing from the refrigerator 2 toward the cooling tower 1.
A cooling water circulation line is formed from the cooling tower 1 through the cooling water line 11, the refrigerator 2, and the cooling water return line 12 and returning to the cooling tower 1.
A water sampling line for measuring electrical conductivity (not shown) is connected to the cooling water circulation line, and a measuring device for electrical conductivity is further connected to the water sampling line. Automatic measurement may be possible.

受水槽4には、水道水や地下水を貯水する。
受水槽4と逆浸透膜装置(RO装置)5は、RO装置ポンプ22が配置された送水ライン14で接続されている。
RO装置5は、例えば、ダイセン・メンブレン・システムズ株式会社より販売されている、装置型式VCR40シリーズ、VCR80シリーズ、NER40シリーズ、NER80シリーズ、SHRシリーズなどを用いることができる。
The water receiving tank 4 stores tap water and groundwater.
The water receiving tank 4 and the reverse osmosis membrane device (RO device) 5 are connected by a water supply line 14 in which the RO device pump 22 is arranged.
As the RO device 5, for example, device types VCR40 series, VCR80 series, NER40 series, NER80 series, SHR series and the like sold by Daisen Membrane Systems Co., Ltd. can be used.

RO装置5の透過水出口5aと補給水槽6は、RO装置処理水(RO水)の送水ライン15で接続されている。
RO装置5の濃縮水出口5bは、濃縮水ライン18により中水槽3に接続されているか、または図示するように濃縮水ライン18が排水ライン15に接続されていてもよい。
なお、運転開始時、または必要に応じて冷却塔1に冷却用の水(水道水、地下水)を供給できるようにするため、RO装置5を介さずに受水槽4と補給水槽6を接続するライン19とポンプ23を設けることができる。
The permeated water outlet 5a of the RO device 5 and the replenishing water tank 6 are connected by a water supply line 15 for RO device treated water (RO water).
The concentrated water outlet 5b of the RO device 5 is connected to the middle water tank 3 by the concentrated water line 18, or the concentrated water line 18 may be connected to the drainage line 15 as shown in the figure.
In addition, in order to be able to supply cooling water (tap water, groundwater) to the cooling tower 1 at the start of operation or as necessary, the water receiving tank 4 and the replenishing water tank 6 are connected without using the RO device 5. Line 19 and pump 23 can be provided.

補給水槽6と冷却塔1は、冷却水の補給水ライン16で接続されている。冷却水の補給水ライン16には、スケール防止剤が入った容器7からスケール防止剤を添加するためのライン17が接続されていてもよい。
スケール防止剤は公知のものを使用することができ、例えば、ホスホン酸系、ポリリン酸系、ポリアクリル酸系、ポリアクリルアミド系などのスケール防止剤を使用することができる。
The makeup water tank 6 and the cooling tower 1 are connected by a makeup water line 16 for the cooling water. A line 17 for adding the scale inhibitor from the container 7 containing the scale inhibitor may be connected to the cooling water supply water line 16.
Known scale inhibitors can be used, and for example, phosphonic acid-based, polyphosphoric acid-based, polyacrylic acid-based, and polyacrylamide-based scale inhibitors can be used.

<冷却システムの運転方法>
冷凍機2の運転を開始し、冷却塔1から冷却水を冷却水ライン11で送る。
冷却水ライン11で送られた冷却水は、冷凍機2での熱交換により加温された後、戻りライン12で冷却塔1に戻されて再度冷却された後、再び冷却水ライン11から冷凍機2に送られる。
冷却システムの運転中は、このような冷却水循環ラインを利用した循環運転が継続して実施される。
<Cooling system operation method>
The operation of the refrigerator 2 is started, and cooling water is sent from the cooling tower 1 through the cooling water line 11.
The cooling water sent in the cooling water line 11 is heated by heat exchange in the refrigerator 2, then returned to the cooling tower 1 in the return line 12, cooled again, and then frozen from the cooling water line 11 again. Sent to machine 2.
During operation of the cooling system, circulation operation using such a cooling water circulation line is continuously performed.

冷却塔1において水を冷却するときには、戻ってきた加温された冷却水と外気を熱交換させることで冷却する。この際、冷却水の一部が、蒸発・飛散する。
このため、冷却システムの循環運転を継続すると、シリカ、マグネシウム、カルシウムなどのスケール成分濃度が次第に高くなってくる。
このときのスケール成分濃度を電気伝導度で評価することで、電気伝導度が所定値になったとき、運転を継続したまま、またはポンプ21を停止して循環ラインの循環運転を停止して、排水ライン13から循環ライン内の冷却水の一部を中水槽3に排水する。中水槽3内の排水は、そのまま中水として再利用することができる。
When water is cooled in the cooling tower 1, it is cooled by exchanging heat between the returned heated cooling water and the outside air. At this time, a part of the cooling water is evaporated and scattered.
For this reason, if the circulation operation of the cooling system is continued, the concentration of the scale components such as silica, magnesium, calcium and the like gradually increases.
By evaluating the scale component concentration at this time by electric conductivity, when the electric conductivity reaches a predetermined value, the operation is continued or the pump 21 is stopped to stop the circulation operation of the circulation line, A part of the cooling water in the circulation line is drained from the drain line 13 to the middle water tank 3. The waste water in the middle water tank 3 can be reused as it is.

本発明では、冷却水循環ラインを循環する冷却水の電気伝導度が好ましくは1000μS/cm以上、より好ましくは1200μS/cm以上になったときに、循環ライン内のスケール成分を冷却水の一部と共に排水ライン13から中水槽3に排水する。
その後、補給水槽6内の水を補給水ライン16から冷却塔1に補給する。
このとき、補給水槽6内の水は、電気伝導度が100μS/cm以下であり、好ましくは電気伝導度が80μS/cm以下、より好ましくは電気伝導度が70μS/cm以下であり、Caイオン、Mgイオン、Naイオン、Clイオン、イオン状シリカなどの濃度の低いものが好ましい。
補給水槽6内の水は、前記した電気伝導度になるようにした、RO装置5で製造されたRO水、RO水と地下水または水道水を混合した混合水を使用することができる。
RO装置5で製造されたRO水を使用するときは、受水槽4から送水ライン14により地下水または水道水をRO装置5供給してRO水を製造し、補給水槽6に送って貯水しておいたものを使用する。
RO水と地下水または水道水を混合した混合水を使用するときは、前記と同様にして補給水槽6にRO水を送ると共に、受水槽4から送水ライン19により地下水または水道水を補給水槽6に送って貯水しておいたものを使用する。
In the present invention, when the electrical conductivity of the cooling water circulating through the cooling water circulation line is preferably 1000 μS / cm or more, more preferably 1200 μS / cm or more, the scale component in the circulation line is combined with a part of the cooling water. Drain from the drain line 13 to the middle tank 3.
Thereafter, water in the make-up water tank 6 is supplied to the cooling tower 1 from the make-up water line 16.
At this time, the water in the makeup water tank 6 has an electric conductivity of 100 μS / cm or less, preferably an electric conductivity of 80 μS / cm or less, more preferably an electric conductivity of 70 μS / cm or less, and Ca ions, Those having a low concentration such as Mg ion, Na ion, Cl ion and ionic silica are preferred.
The water in the replenishing water tank 6 can be RO water produced by the RO device 5 and mixed water obtained by mixing RO water and ground water or tap water so as to have the above-described electrical conductivity.
When the RO water produced by the RO device 5 is used, the RO water 5 is supplied from the water receiving tank 4 through the water supply line 14 to the RO device 5 to produce the RO water, which is then sent to the makeup water tank 6 for storage. Use what you had.
When mixed water in which RO water and ground water or tap water are mixed is used, RO water is sent to the make-up water tank 6 in the same manner as described above, and ground water or tap water is supplied from the water receiving tank 4 to the make-up water tank 6 through the water supply line 19. Use what you have sent and stored.

冷却システムの運転条件の一実施形態は、次のとおりである。
循環ラインの循環水量が250m3/Hであるとき、排水ライン13からの排水量(年間平均排水量)は、循環水量の約0.4容量%の約1m3/Hであり、蒸発・飛散量は約2.1m3/Hである。このため、これらの合計の約3.1m3/Hと同量程度の補給水を補給する。
このように循環水量の一部を電気伝導度の低い水で置換することで、循環ライン内の電気伝導度を低いレベルで維持することができるようになる。
One embodiment of the operating conditions of the cooling system is as follows.
When the circulating water volume in the circulation line is 250 m 3 / H, the drainage volume from the drain line 13 (annual average drainage volume) is about 1 m 3 / H, which is about 0.4% by volume of the circulating water volume. About 2.1 m 3 / H. For this reason, the same amount of makeup water as about 3.1 m 3 / H in total is replenished.
Thus, by replacing a part of the circulating water amount with water having low electrical conductivity, the electrical conductivity in the circulation line can be maintained at a low level.

実施例1
図1に示す処理システムの運転を実施した。
受水層4には、電気伝導度が190μS/cmの水道水を常時貯水した。
RO装置5によりRO水(電気伝導度は約40μS/cm)を製造し、補給水槽6内に貯水しておいた。
ポンプ21を駆動させて、冷却塔1と熱交換器2の間の循環ラインで循環水量250m3/Hで循環運転した。
冷却水として、最初は受水槽4と同じ水道水を使用し、補給水としてRO装置5の造水能力分のRO水を使用し、不足分を補うため全体の2割程度は水道水を混合して使用した。
RO水と水道水を混合した補給水の電気伝導度は、約67μS/cmであった。
運転中に、蒸発飛散による減少水量は補給水槽6の貯水から補給した。
Example 1
The processing system shown in FIG. 1 was operated.
In the water receiving layer 4, tap water having an electric conductivity of 190 μS / cm was always stored.
RO water (electric conductivity is about 40 μS / cm) was manufactured by the RO device 5 and stored in the makeup water tank 6.
The pump 21 was driven to circulate in the circulation line between the cooling tower 1 and the heat exchanger 2 with a circulating water amount of 250 m 3 / H.
As the cooling water, the same tap water as the water receiving tank 4 is initially used, and the RO water for the capacity of the RO device 5 is used as the make-up water. To compensate for the shortage, about 20% of the total is mixed with the tap water. Used.
The electric conductivity of the makeup water mixed with RO water and tap water was about 67 μS / cm.
During operation, the amount of water decreased due to evaporation and scattering was replenished from the water stored in the replenishing water tank 6.

定期的に循環ラインに接続した採水ラインから採水して、電気伝導度を測定し、循環ライン内の冷却水の電気伝導度が1200μS/cmを超えたとき、ポンプ21を停止して循環運転を一時的に停止した。   Periodically, water is collected from a water collection line connected to the circulation line, and the electrical conductivity is measured. When the electrical conductivity of the cooling water in the circulation line exceeds 1200 μS / cm, the pump 21 is stopped and circulated. Operation was temporarily stopped.

その後、排水ライン13から循環ライン内の冷却水の一部を中水槽3に排水した。排水量は、補給水槽6の貯水量と同程度とした。
排水後、排水量と同量程度の補給水(電気伝導度67μS/cm)を補給水ライン16から冷却塔1に補給して、循環運転を再開した。
このような運転サイクルで1年の継続運転を実施した。
その結果、運転期間中の平均排水量は7.4m3/dayであった。
Thereafter, a part of the cooling water in the circulation line was drained from the drain line 13 to the middle water tank 3. The amount of drainage was approximately the same as the amount of water stored in the makeup tank 6.
After drainage, replenishment water (electric conductivity 67 μS / cm) of the same amount as the drainage was replenished to the cooling tower 1 from the replenishment water line 16 and the circulation operation was resumed.
A continuous operation for one year was carried out in such an operation cycle.
As a result, the average amount of drainage during the operation period was 7.4 m 3 / day.

比較例1
補給水として、水道水(電気伝導度約190μS/cm)を使用したほかは、実施例1と同様にして1年の循環運転を実施した。
その結果、運転期間中の平均排水量は23.2m3/dayであった。
Comparative Example 1
A one-year circulation operation was carried out in the same manner as in Example 1 except that tap water (electric conductivity of about 190 μS / cm) was used as makeup water.
As a result, the average amount of drainage during the operation period was 23.2 m 3 / day.

実施例1と比較例1の対比から、実施例1の運転方法を実施することによって、平均排水量を大きく削減することができた。このため、金電気料金および下水道料金の両方を節約することができ、これはRO装置の運転に使用する電気料金を差し引いても、大きな運転コストの節約となった。
また運転時にスケール防止剤を添加する場合であっても、実施例1は比較例1よりも添加量を大きく減量することができる。
From the comparison between Example 1 and Comparative Example 1, the average amount of drainage could be greatly reduced by carrying out the operation method of Example 1. For this reason, both the gold electricity charge and the sewerage charge can be saved, and even if the electricity charge used for the operation of the RO device is subtracted, the operation cost is greatly reduced.
Further, even when a scale inhibitor is added during operation, Example 1 can reduce the amount of addition much more than that of Comparative Example 1.

本発明の冷却塔と冷凍機を備えた冷却システムの運転方法は、冷却塔を使用した比較的大規模の冷却システムに使用することができる。   The method for operating a cooling system including a cooling tower and a refrigerator according to the present invention can be used for a relatively large-scale cooling system using a cooling tower.

1 冷却塔
2 冷凍機
3 中水槽
4 受水槽
5 RO装置
6 補給水槽
DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Refrigerator 3 Middle water tank 4 Receiving tank 5 RO apparatus 6 Supplementary water tank

Claims (3)

開放式冷却塔と冷凍機を備えた冷却システムの運転方法であって、
前記冷却システムが、
前記開放式冷却塔と前記冷凍機の間で、前記開放式冷却塔から、冷却水の送水ライン、冷凍機、冷却水の返送ラインを通り、前記冷却塔に戻る冷却水の循環ラインを有しており、
さらに前記開放式冷却塔が、冷却水の補給水ラインと冷却水の排水ラインを有しているものであり、
前記冷却システムの運転方法が、
前記冷却水循環ラインに冷却水を循環させる冷却水の循環運転を継続するとき、
前記冷却水の循環ライン内に蓄積したスケールを前記冷却水の排水ラインから冷却水の一部と共に排水し、前記排水により減少した冷却水を前記冷却水の補給ラインから補給する運転方法であり、
前記補給ラインから補給する補給水として、電気伝導度が100μS/cm以下の水を使用する、冷却システムの運転方法。
A method of operating a cooling system comprising an open cooling tower and a refrigerator,
The cooling system comprises:
Between the open-type cooling tower and the refrigerator, there is a cooling water circulation line from the open-type cooling tower, passing through a cooling water supply line, a refrigerator, a cooling water return line, and returning to the cooling tower. And
Furthermore, the open-type cooling tower has a cooling water supply water line and a cooling water drain line,
An operation method of the cooling system is:
When continuing the cooling water circulation operation for circulating the cooling water to the cooling water circulation line,
The scale accumulated in the cooling water circulation line is drained together with a part of the cooling water from the cooling water drain line, and the cooling water reduced by the drainage is replenished from the cooling water replenishment line,
An operation method of a cooling system, wherein water having an electric conductivity of 100 μS / cm or less is used as makeup water to be replenished from the replenishment line.
前記冷却水の循環ラインを循環する冷却水の電気伝導度が1000μS/cm以上になったときに冷却水の循環運転を停止して、排水ラインから冷却水の一部を排水し、前記補給水ラインから逆浸浸透膜装置で処理した処理水を含む電気伝導度が100μS/cm以下の水を補給する、請求項1記載の冷却システムの運転方法。   When the electrical conductivity of the cooling water circulating through the cooling water circulation line reaches 1000 μS / cm or more, the cooling water circulation operation is stopped, a part of the cooling water is drained from the drain line, and the makeup water is supplied. The operation method of the cooling system according to claim 1, wherein water having an electric conductivity of 100 μS / cm or less including treated water treated by a reverse osmosis membrane device is replenished from a line. 前記補給水が、逆浸浸透膜装置で処理した処理水、または逆浸浸透膜装置で処理した処理水と地下水もしくは水道水の混合水である、請求項1または2記載の冷却システムの運転方法。   The method of operating a cooling system according to claim 1 or 2, wherein the makeup water is treated water treated with a reverse osmosis membrane device, or a mixed water treated with a reverse osmosis membrane device and ground water or tap water. .
JP2015059821A 2015-03-23 2015-03-23 Operation method of cooling system Pending JP2016180517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015059821A JP2016180517A (en) 2015-03-23 2015-03-23 Operation method of cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015059821A JP2016180517A (en) 2015-03-23 2015-03-23 Operation method of cooling system

Publications (1)

Publication Number Publication Date
JP2016180517A true JP2016180517A (en) 2016-10-13

Family

ID=57132069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015059821A Pending JP2016180517A (en) 2015-03-23 2015-03-23 Operation method of cooling system

Country Status (1)

Country Link
JP (1) JP2016180517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928816B1 (en) * 2018-05-15 2019-03-14 주식회사 댄 Cooling Water Control System And Control Method Of Cooling Water

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295493A (en) * 1988-10-03 1990-04-06 Nippon Telegr & Teleph Corp <Ntt> Circulation type treatment of cleaning water
JPH04250880A (en) * 1990-12-29 1992-09-07 Nitto Denko Corp Method for circulating cooling water
JPH07151491A (en) * 1993-11-29 1995-06-16 Kurita Water Ind Ltd Operating method of circulating cooling water system
JPH08299989A (en) * 1995-05-08 1996-11-19 Gastar Corp Electrode type water treating device provided with detecting function for concentrated degree of solution
JP2000167568A (en) * 1998-12-10 2000-06-20 Hitachi Zosen Corp Waste water recovery and reutilization
JP2002018437A (en) * 2000-05-02 2002-01-22 Kurita Water Ind Ltd Treating method and treating device of water containing calcium and silica
JP2002310595A (en) * 2001-04-12 2002-10-23 Ebara Corp Cooler
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2004177053A (en) * 2002-11-28 2004-06-24 Kurita Water Ind Ltd Operation method of open cooling water system
JP2013013853A (en) * 2011-07-04 2013-01-24 Miura Co Ltd Water treatment system
JP2014092302A (en) * 2012-11-01 2014-05-19 Miura Co Ltd Water treatment system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295493A (en) * 1988-10-03 1990-04-06 Nippon Telegr & Teleph Corp <Ntt> Circulation type treatment of cleaning water
JPH04250880A (en) * 1990-12-29 1992-09-07 Nitto Denko Corp Method for circulating cooling water
JPH07151491A (en) * 1993-11-29 1995-06-16 Kurita Water Ind Ltd Operating method of circulating cooling water system
JPH08299989A (en) * 1995-05-08 1996-11-19 Gastar Corp Electrode type water treating device provided with detecting function for concentrated degree of solution
JP2000167568A (en) * 1998-12-10 2000-06-20 Hitachi Zosen Corp Waste water recovery and reutilization
JP2002018437A (en) * 2000-05-02 2002-01-22 Kurita Water Ind Ltd Treating method and treating device of water containing calcium and silica
JP2002310595A (en) * 2001-04-12 2002-10-23 Ebara Corp Cooler
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2004177053A (en) * 2002-11-28 2004-06-24 Kurita Water Ind Ltd Operation method of open cooling water system
JP2013013853A (en) * 2011-07-04 2013-01-24 Miura Co Ltd Water treatment system
JP2014092302A (en) * 2012-11-01 2014-05-19 Miura Co Ltd Water treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928816B1 (en) * 2018-05-15 2019-03-14 주식회사 댄 Cooling Water Control System And Control Method Of Cooling Water

Similar Documents

Publication Publication Date Title
Giampieri et al. Thermodynamics and economics of liquid desiccants for heating, ventilation and air-conditioning–An overview
KR102436188B1 (en) Water minimizing method and apparatus for use with evaporative cooling devices
JP4966708B2 (en) Air purification device
Tan et al. Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling
JP2008086989A (en) Water supply apparatus
Eades Energy and water recovery using air-handling unit condensate from laboratory HVAC systems
KR102010998B1 (en) Apparatus for preventing scales on electrode for saving energy of Thermo-hygrostat and the method thereof
CN110753819A (en) Water recovery in desiccant enhanced evaporative cooling systems
CN101624238A (en) Scale and corrosion inhibiting agent for circular cooling water of oxygen preparation plant as well as method and application thereof
JP5136830B2 (en) Cooling tower makeup water quality control device
US20130174913A1 (en) Method and apparatus for controlling total dissolved solids in a liquid circulation system
JP2016180517A (en) Operation method of cooling system
JP5703552B2 (en) Water treatment system
KR20110090760A (en) An air conditioning system
JP5359745B2 (en) Water treatment system
KR101378917B1 (en) Device for generating electro-analysised water circulation system high-efficiency sodium hypochlorite
JP5454122B2 (en) Water treatment system
Alhamid et al. Study on the effectiveness of ozonation technique in preventing scale precipitation on closed system cooling towers
JP2012233636A (en) Geothermal heat utilization system
JP5487907B2 (en) Water treatment system
JP5703554B2 (en) Water treatment system
JP2006105542A (en) Air conditioner and operation method thereof
JP5707708B2 (en) Water treatment system
JP2005061680A (en) Water supply/discharge control device for cooling tower
CN113803811A (en) Control method for automatic water changing of evaporative condenser water tank

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108