JP2009072734A - Seawater desalting apparatus using air stream circulation - Google Patents

Seawater desalting apparatus using air stream circulation Download PDF

Info

Publication number
JP2009072734A
JP2009072734A JP2007246329A JP2007246329A JP2009072734A JP 2009072734 A JP2009072734 A JP 2009072734A JP 2007246329 A JP2007246329 A JP 2007246329A JP 2007246329 A JP2007246329 A JP 2007246329A JP 2009072734 A JP2009072734 A JP 2009072734A
Authority
JP
Japan
Prior art keywords
seawater
region
vaporization
condensation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246329A
Other languages
Japanese (ja)
Other versions
JP4250775B1 (en
Inventor
Motohide Takezaki
元英 竹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007246329A priority Critical patent/JP4250775B1/en
Application granted granted Critical
Publication of JP4250775B1 publication Critical patent/JP4250775B1/en
Publication of JP2009072734A publication Critical patent/JP2009072734A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seawater desalting apparatus that sharply conserves necessary energy by simple handling and a simple mechanism to perform the desalting of seawater while enhancing the concentration of a substance dissolved in seawater at the same time and utilizes salt in seawater as byproduct resources of the desalting of seawater to relax even environmental pollution. <P>SOLUTION: An evaporation region 1 and a condensing region 2, both of which are adjacent to each other through a heat exchanger, communicate with each other up and down in the seawater desalting apparatus. This seawater desalting apparatus is equipped with a heat supply part 13 for heating the upper part in the seawater desalting apparatus to store the heat of the upper part in the apparatus, an air stream circulation means for circulating an air stream between the evaporation region 1 and the condensing region 2, a seawater preheating pipe for sending raw material seawater 4 to the evaporation region 1 while preheating the same, and an evaporation means for evaporating the seawater toward the evaporation region 1. The raw material seawater 4 preheated by the seawater preheating pipe to raise temperature is evaporated by the evaporation means and the air stream in the apparatus is circulated within the apparatus by the air stream circulation means to condense steam formed by evaporation while evaporating and condensing the raw material seawater 4 to desalt the seawater 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、気流循環による海水の淡水化装置に関する。   The present invention relates to a seawater desalination apparatus using air circulation.

従来の海水の淡水化装置として、多段フラッシュ法などの海水蒸発法や、エネルギー節減に優れた逆浸透膜による海水淡水化法を採用したものが開示される(例えば、特許文献1参照)。
特開2004−025108号公報
As a conventional seawater desalination apparatus, an apparatus employing a seawater evaporation method such as a multistage flash method or a seawater desalination method using a reverse osmosis membrane excellent in energy saving is disclosed (for example, see Patent Document 1).
JP 2004-025108 A

しかしながら、上記多段フラッシュ法は機構が複雑であり多量のエネルギーを消費する。また逆浸透膜による海水淡水化はいまだ装置内部での海水淡水化工程で相当量のエネルギー消費を伴う。また薬品処理やメンテナンスの手間がかかり、濃縮海水6の廃棄問題や騒音等の公害を伴うことがある。エネルギーを節減すること、公害を防止すること、同時に海水に溶けている塩ほか各種希少資源の利用を可能にすることは、時代の要請に応えるものである。   However, the multistage flash method has a complicated mechanism and consumes a large amount of energy. Moreover, seawater desalination using reverse osmosis membranes still involves a considerable amount of energy consumption in the seawater desalination process inside the equipment. In addition, it takes time for chemical treatment and maintenance, and may involve disposal of concentrated seawater 6 and pollution such as noise. Saving energy, preventing pollution, and simultaneously enabling the use of salt and other rare resources in seawater meet the demands of the times.

そこで本発明においては、簡易な取り扱いと簡易な機構によって、必要なエネルギーを大幅に節約して海水淡水化を行い、同時に海水に溶け込んでいる物質の濃度を高め、海水中の塩を淡水化の副産物資源として利用可能とすることで、前記公害をも緩和しうる海水淡水化装置を提供することを課題とする。   Therefore, in the present invention, by simple handling and a simple mechanism, the required energy is greatly saved and seawater desalination is performed. At the same time, the concentration of substances dissolved in seawater is increased, and salt in seawater is desalinated. It is an object of the present invention to provide a seawater desalination apparatus that can alleviate the pollution by making it available as a by-product resource.

上記課題を解決するため、本発明では下記(1)ないし(3)の手段を講じている。   In order to solve the above problems, the present invention takes the following means (1) to (3).

(1)すなわち、本発明の気流循環による海水の淡水化装置は、
領域内の海水を気化して水蒸気を得る気化領域1と、領域内の水蒸気を凝結して淡水を得る凝結領域2とが、これら領域間の境界壁を構成する熱交換体を介して隣接し、
各領域が、装置内の上方及び下方にそれぞれある上方連通部7及び下方連通部8において連通してなり、
・装置内上方の上方連通部7付近に設けられて装置内上部を加熱および蓄熱する熱供給部13と、
・装置内下方の下方連通部8付近に設けられて装置内の気化領域1及び凝結領域2間で気流を循環させる気流循環手段と、
・装置外部の原料海水タンク40から装置下方を貫通して装置内部を通り、原料海水4を予熱しながら上方連通部7付近の気化領域1に送る海水予熱管3と、
・熱供給部13付近で海水を気化領域1の高所へ放出して蒸発させる気化手段とを具備する。
そして、海水予熱管3で予熱されて高温となった原料海水4を気化手段によって気化させると共に、装置内の気流を気流循環手段によって装置内で循環させることで、気化によってできた水蒸気を凝結させ、原料海水4を気化凝結によって淡水化することを特徴とする。
(1) That is, the seawater desalination apparatus using the air circulation according to the present invention is:
A vaporizing region 1 for vaporizing seawater in the region to obtain water vapor and a condensing region 2 for condensing water vapor in the region to obtain fresh water are adjacent to each other through a heat exchanger constituting a boundary wall between these regions. ,
Each region communicates with the upper communication portion 7 and the lower communication portion 8 located above and below the apparatus, respectively.
A heat supply unit 13 provided in the vicinity of the upper communication part 7 above the apparatus and heating and storing the upper part of the apparatus;
An airflow circulation means provided near the lower communication portion 8 below the apparatus and circulates an airflow between the vaporization region 1 and the condensation region 2 in the device;
A seawater preheating pipe 3 that passes from the raw material seawater tank 40 outside the apparatus to the lower part of the apparatus, passes through the inside of the apparatus, and feeds the raw material seawater 4 to the vaporization region 1 in the vicinity of the upper communication part 7;
Vaporization means for discharging seawater to a high place in the vaporization region 1 and evaporating in the vicinity of the heat supply unit 13;
Then, the raw seawater 4 preheated by the seawater preheating pipe 3 is vaporized by the vaporizing means, and the airflow in the apparatus is circulated in the apparatus by the airflow circulating means to condense the vapor generated by the vaporization. The raw seawater 4 is desalinated by vaporization condensation.

熱供給部13によって、装置内下部よりも上部が高温となるように保つことができる。   The heat supply unit 13 can keep the upper part at a higher temperature than the lower part in the apparatus.

気化手段は、気化領域1内へ原料海水4又は一次気化しきれなかった濃縮海水6を気化させるものである。熱供給部13付近である気化領域1の上部から放出することで効率的な気化が可能である。   The vaporizing means vaporizes the raw seawater 4 or the concentrated seawater 6 that could not be primarily vaporized into the vaporization region 1. Efficient vaporization is possible by releasing from the upper part of the vaporization area | region 1 which is the heat supply part 13 vicinity.

(2)海水予熱管3は装置内の凝結領域2を通り、海水予熱管3の管内外の熱交換によって、
・装置外に取り出される凝結領域2内の凝結水9の熱を原料海水4に回収させる熱回収ステップと、
・凝結領域2下部気流の水蒸気凝結を原料海水4に促進させる凝結促進ステップと、
・そして凝結領域2内の気流である水蒸気の凝結作用によって原料海水4を高温にする高温化ステップとを施すものであることが好ましい。
(2) The seawater preheating pipe 3 passes through the condensation region 2 in the apparatus, and heat exchange inside and outside the seawater preheating pipe 3
A heat recovery step for recovering the heat of the condensed water 9 in the condensed region 2 taken out of the apparatus to the raw seawater 4;
A condensing promotion step for promoting raw material seawater 4 to condense water vapor in the lower airflow in the condensing region 2;
-And it is preferable to give the high temperature step which makes raw material seawater 4 high temperature by the condensing effect | action of the water vapor | steam which is the airflow in the condensing area | region 2.

(3)気化手段は、領域上部から海水を噴霧する海水噴霧装置Sを具備することが好ましい。このようなものであれば原料海水4内の塩5やスケールが析出した場合でも清掃が容易となる。   (3) It is preferable that a vaporization means comprises the seawater spray apparatus S which sprays seawater from the area | region upper part. If it is such, cleaning will become easy even if the salt 5 and scale in the raw material seawater 4 precipitate.

上記いずれかの海水の淡水化装置として、気化領域1と凝結領域2とがスロープ又は管体を介して接した構造を採用しうる。このスロープ又は管体は熱交換体からなり、例えば装置内上部から下部に向かって、螺旋状或いは階段状に延設される。   As one of the seawater desalination apparatuses described above, a structure in which the vaporizing region 1 and the condensing region 2 are in contact with each other through a slope or a tubular body may be employed. The slope or tube body is formed of a heat exchanger, and extends, for example, spirally or stepwise from the upper part to the lower part in the apparatus.

上記構造における凝結手段の例として、凝結領域2内のスロープ又は管体で仕切られた凝結領域2内の上方から下方に向かって、気化した水蒸気を通過させるものが挙げられる。この凝結領域2内の気化気流の通過中に、気化領域1との仕切りを形成する熱交換体によって熱交換を行うことで、貴下気流から連続的に凝結水9を得ることができる。このとき凝結水9は、スロープ又は管体の床面を流下して容易に回収される。   As an example of the condensing means in the above structure, there is one that allows vaporized water vapor to pass from the upper side to the lower side in the condensing region 2 partitioned by a slope or a tube in the condensing region 2. During the passage of the vaporized airflow in the condensation area 2, the condensed water 9 can be continuously obtained from the noble airflow by performing heat exchange with a heat exchanger that forms a partition with the vaporization area 1. At this time, the condensed water 9 is easily recovered by flowing down the slope or the floor of the pipe body.

また気化手段としては上記(3)のほかに、気化領域1と凝結領域2とが上下方向に幾重にも重なって、各領域が熱交換体からなるトレーの上下面を介して接するものとし、このトレー内に形成した原料海水4の水面から海水を気化させる構造を採用することができる。これは、気化領域1内のスロープ又は管体の床面に原料海水4を流下させ、床面を形成する熱交換体によって熱交換を行ないながら海水面から海水を気化させるものである。   As the vaporizing means, in addition to the above (3), the vaporization region 1 and the condensation region 2 are overlapped in the vertical direction, and each region is in contact with the upper and lower surfaces of the tray made of a heat exchanger, A structure in which seawater is vaporized from the surface of the raw seawater 4 formed in the tray can be employed. In this method, the raw seawater 4 flows down on the slope or tube floor in the vaporizing region 1, and the seawater is vaporized from the seawater while heat exchange is performed by the heat exchanger that forms the floor.

本発明では、上記手段を講じることによって、簡易な取り扱いと簡易な機構によって、従来の海水の淡水化装置がなしえなかった大幅なエネルギーの節減を可能としつつ海水淡水化を行うことができる。また、海水に溶け込んでいる塩5や塩5以外の企業資源の獲得にも道を開き、海水淡水化時に生じる公害の発生を抑えることができる。   In the present invention, seawater desalination can be carried out by taking the above-mentioned means while enabling a significant energy saving that cannot be achieved by a conventional seawater desalination apparatus by simple handling and a simple mechanism. In addition, it can open the way to acquisition of salt 5 dissolved in seawater and corporate resources other than salt 5, and can suppress the occurrence of pollution that occurs during seawater desalination.

本発明の実施の形態について図面を参照して詳細に説明する。図1ないし3は、本発明の実施例1の気流循環による海水の淡水化装置を示し、そのうち図1は縦断面構造を模式的に示す説明図であり、図2、図3はそれぞれ図1のイ−イ及びロ−ロ断面図である。実施例1は原料海水4を一回だけ噴霧気化させる一系統の構造例であり、濃縮海水6の回収も行なえる。   Embodiments of the present invention will be described in detail with reference to the drawings. 1 to 3 show a seawater desalination apparatus according to the first embodiment of the present invention, in which seawater desalination apparatus is shown. FIG. 1 is an explanatory view schematically showing a longitudinal sectional structure, and FIGS. FIG. Example 1 is a structure example of one system in which the raw seawater 4 is sprayed and vaporized only once, and the concentrated seawater 6 can also be recovered.

図4は、本発明の実施例2の気流循環による海水の淡水化装置の縦断面構造を説明する模式図である。実施例2は、実施例1に加えて、内底B3で仕切った下方チャンバー20を有し、また(同一の気化領域1内で)濃縮海水6を再び気化させる二次系統を有しており、副産物である塩5の製造・回収も同時に行うことができる。   FIG. 4 is a schematic diagram illustrating a longitudinal cross-sectional structure of a seawater desalination apparatus using airflow circulation according to Embodiment 2 of the present invention. In addition to Example 1, Example 2 has a lower chamber 20 partitioned by an inner bottom B3, and has a secondary system for vaporizing the concentrated seawater 6 again (within the same vaporization region 1). The production and recovery of the salt 5, which is a by-product, can also be performed at the same time.

図5は、本発明の実施例3の気流循環による海水の淡水化装置の縦断面構造を説明する模式図である。実施例3は、実施例1に加えて、内壁B2で仕切った内円柱部を有し、またこの内円柱部内で濃縮海水6を再び気化させる二次系統を有しており、副産物である塩5の回収も同時に行なうことができる。   FIG. 5 is a schematic diagram for explaining a longitudinal cross-sectional structure of a seawater desalination apparatus using air flow circulation according to a third embodiment of the present invention. In addition to Example 1, Example 3 has an inner cylindrical part partitioned by an inner wall B2, and also has a secondary system for re-evaporating the concentrated seawater 6 in the inner cylindrical part, and a salt that is a byproduct. 5 can also be collected at the same time.

図6ないし8は、本発明の実施例4の気流循環による海水の淡水化装置を示す。具体的には図6は実施例4の縦断面構造を説明する模式図である。図7は、図6から海水噴霧の系統を抽出した海水の系統説明図であり、原料海水4の一次系統を左図に、続けて行われる濃縮海水6の二次系統を右図に示す。図8は、図6から気流及び凝結水9の系統を抽出した気流の系統説明図であり、気流の一次凝結系統とこれによる凝結水9の回収系統を左図に、同時に行われる二次凝結系統とこれによる凝結水9の回収系統を右図に示す。   6 to 8 show a seawater desalination apparatus according to Embodiment 4 of the present invention by air circulation. Specifically, FIG. 6 is a schematic diagram for explaining the longitudinal sectional structure of the fourth embodiment. FIG. 7 is an explanatory diagram of the seawater system obtained by extracting the seawater spray system from FIG. 6, and the primary system of the raw seawater 4 is shown on the left side, and the secondary system of the concentrated seawater 6 performed subsequently is shown on the right side. FIG. 8 is a system explanatory diagram of the air stream obtained by extracting the system of the air stream and condensed water 9 from FIG. 6. The primary condensation system of the air stream and the recovery system of the condensed water 9 thereby are shown in the left diagram, and the secondary condensation performed simultaneously. The system and the collection system for condensed water 9 are shown in the right figure.

<気流循環による海水の淡水化装置の基本構成(図1)>
本発明の気流循環による海水の淡水化装置内では、領域内の海水を気化して水蒸気を得る気化領域1と、領域内の水蒸気を凝結して淡水を得る凝結領域2とが、これら領域間の境界壁を構成する熱交換体を介して隣接し、装置内下方にある下方連通部8及び装置内上方にある上方連通部7にて各領域が連通される。また装置内上部には熱供給部13が設けられ、装置内上方を装置内下部よりも高温の飽和水蒸気で満たすように蓄熱する。
<Basic configuration of seawater desalination system by air circulation (Fig. 1)>
In the seawater desalination apparatus according to the present invention, the vaporization region 1 for vaporizing seawater in the region to obtain water vapor and the condensing region 2 for condensing water vapor in the region to obtain fresh water are between these regions. The regions communicate with each other through a lower communication portion 8 located in the lower part in the apparatus and an upper communication part 7 located in the upper part in the apparatus. Moreover, the heat supply part 13 is provided in the upper part in an apparatus, and heat storage is carried out so that the upper part in an apparatus may be filled with saturated water vapor | steam higher than the lower part in an apparatus.

また装置内には気流を気化領域1−凝結領域2間で循環させる気流循環手段として送風機Fを有する。   In addition, the apparatus has a blower F as an airflow circulation means for circulating an airflow between the vaporization region 1 and the condensation region 2.

この気流循環手段によって適度な気流循環を発生させても、以下に説明するように、浮力の大きい飽和水蒸気が自然と装置内上方に向い、蓄熱される。すなわち装置内の下部には比重の大きい空気が残ると共に、凝結水9の回収によって熱が流出する。このため、装置内下部は上部よりも温度が低く、装置内下部では原料海水4に近い(わずか数℃差の)温度を保っている。例えば、原料海水4の温度が25℃、装置外に回収される凝結水9の温度が28℃程度のとき、装置内上部の温度95℃、装置内下部の温度は30℃程度となる。   Even if an appropriate air circulation is generated by the air circulation means, saturated water vapor having a large buoyancy is naturally directed upward in the apparatus and stored as described below. That is, air with a large specific gravity remains in the lower part of the apparatus, and heat flows out by collecting condensed water 9. For this reason, the temperature in the lower part in the apparatus is lower than that in the upper part, and the temperature in the lower part in the apparatus is close to the raw material seawater 4 (with a difference of only a few degrees C). For example, when the temperature of the raw material seawater 4 is 25 ° C. and the temperature of the condensed water 9 recovered outside the apparatus is about 28 ° C., the temperature inside the apparatus is 95 ° C. and the temperature inside the apparatus is about 30 ° C.

装置下部から淡水化後の凝結水9を取り出すことに伴う熱損失は避けることができないものであるが、装置内上部の熱供給部13によって、この流失熱量と同程度の熱量を装置内に供給し、装置内で熱収支が釣りあうようにし、この熱収支の釣りあいの下で、装置内上部で連続的に熱供給することとしている。そして、高温域ほど水蒸気の浮力がおおきくなり、発生した水蒸気は装置内上方に向かう。このため、装置内では下方から上方に行くほど高温域になり、水蒸気が飽和して飽和水蒸気の割合が大きくなると共に、気流中の空気成分の割合が小さいものとなる。水蒸気たる熱エネルギーの塊の、上方に向かうという性質を利用することで、装置下部を比較的低温に保ち、また装置内上部の蓄熱領域を比較的高温に保つものとしている。   Although heat loss due to taking out the desalinated condensed water 9 from the lower part of the apparatus is unavoidable, the heat supply unit 13 at the upper part of the apparatus supplies the same amount of heat as the amount of lost heat. However, the heat balance is balanced in the apparatus, and heat is continuously supplied to the upper part of the apparatus under the balance of the heat balance. And the buoyancy of water vapor increases as the temperature increases, and the generated water vapor moves upward in the apparatus. For this reason, in the apparatus, the temperature increases from the lower side to the upper side, so that the water vapor is saturated and the ratio of the saturated water vapor is increased, and the ratio of the air component in the airflow is decreased. The lower part of the apparatus is kept at a relatively low temperature and the heat storage region in the upper part of the apparatus is kept at a relatively high temperature by utilizing the property of the mass of heat energy that is water vapor going upward.

また、装置外の原料海水タンク40から連通され、装置下方を貫通して装置内部の凝結領域2を通って、原料海水4を予熱しながら上方連通部7付近の気化領域1にある気化手段にまで送る海水予熱管3を具備する。海水予熱管3は、凝結領域2内の下方から上方へ連通され、原料海水4を予熱すると共に、凝結領域2下部の気流から水蒸気の凝結を促進しながら、気化領域1上部の気化手段まで原料海水4を送り込む管体である。   Further, it is communicated from the raw material seawater tank 40 outside the apparatus, passes through the lower part of the apparatus, passes through the condensation area 2 inside the apparatus, and vaporizes in the vaporization area 1 in the vicinity of the upper communication part 7 while preheating the raw material seawater 4. A seawater preheating pipe 3 is provided. The seawater preheating pipe 3 communicates from the lower side to the upper side in the condensation region 2 to preheat the raw material seawater 4 and promote the condensation of water vapor from the airflow in the lower part of the condensation region 2 to the vaporization means in the upper part of the vaporization region 1. It is a pipe body that feeds seawater 4.

海水予熱管3によって予熱されながら装置内上部に運ばれた原料海水4は、気化手段によって気化領域1内に放出され、水蒸気が気化される。各実施例では気化手段として、図2に示すような多数の噴霧ノズルを有した海水噴霧装置Sを使用している。予熱された海水(原料海水4又は濃縮海水6)を熱供給部13付近の気化領域1高所から微細粒として噴霧することで、理想的な気化を促すことができる。   The raw material seawater 4 carried to the upper part of the apparatus while being preheated by the seawater preheating pipe 3 is discharged into the vaporization region 1 by vaporization means, and water vapor is vaporized. In each embodiment, a seawater spray device S having a number of spray nozzles as shown in FIG. 2 is used as the vaporizing means. By spraying preheated seawater (raw seawater 4 or concentrated seawater 6) as fine particles from the height of the vaporization region 1 near the heat supply unit 13, ideal vaporization can be promoted.

このようにして原料海水4又は濃縮海水6から蒸発させ、ほぼ飽和して空気成分が僅かとなった高温の水蒸気を、上方連通部7から気流循環手段によって凝結領域2内に強制的に導入する。凝結領域2に入ると、気化領域1との温度差が生じて水蒸気が凝結し、熱水の凝結水9が産生される。   In this way, the high-temperature water vapor that has been evaporated from the raw seawater 4 or the concentrated seawater 6 and is almost saturated and the air component becomes slight is forcibly introduced into the condensation region 2 from the upper communication portion 7 by the air circulation means. . When entering the condensing region 2, a temperature difference from the vaporizing region 1 is generated, the water vapor condenses, and the condensed water 9 of hot water is produced.

またこのとき、気化領域1では、高温の凝結領域2から熱せられて、海水の水蒸気圧が上昇し、同時に気化領域1内の気流温度も上昇して、原料海水4の気化が促進される。このように、凝結領域2−気化領域1間における気流循環、並びに水蒸気の気化及び凝結作用を組み合わせた熱交換を継続させることで、海水淡水化を行うことができる。   Moreover, at this time, in the vaporization area | region 1, it heats from the high temperature condensation area | region 2, the water vapor pressure of seawater rises, and the airflow temperature in the vaporization area | region 1 also rises simultaneously, and vaporization of the raw material seawater 4 is accelerated | stimulated. Thus, seawater desalination can be performed by continuing the heat exchange which combined the airflow circulation between the condensation area | region 2-vaporization area | region 1, and the vaporization and condensation effect | action of water vapor | steam.

ここで、従来の海水淡水化法においては、海水から分離した水蒸気を水に戻すとき、海水を冷却材に用いており、凝結熱を海水で冷却することで海水中に回収するものとしている。しかし凝結熱を完全に回収することは困難であり、気液相変化における大量の熱流失を避けることができなかった。   Here, in the conventional seawater desalination method, when water vapor separated from seawater is returned to water, seawater is used as a coolant, and condensation heat is recovered in seawater by cooling with seawater. However, it was difficult to completely recover the heat of condensation, and a large amount of heat loss during the gas-liquid phase change could not be avoided.

また、従来、エネルギーコストの面で優位とされてきた逆浸透膜法でも大量の濃縮海水6の廃棄を行っている。   In addition, a large amount of concentrated seawater 6 is also discarded by the reverse osmosis membrane method, which has conventionally been dominant in terms of energy costs.

これらに対して、上記のような本発明の気流循環による海水淡水化法では、水蒸気の凝結熱の大部分が海水の気化に直接使われるため、多くの熱が流出することなく、また冷却液用の海水は必要とされない。よって、本発明の装置内では海水淡水化が完結し、装置内部での熱エネルギーの消耗が殆ど無く、濃縮海水6廃棄の必要も殆どない。このため、本発明はエネルギーコストの面から見ても明らかに優位であり、淡水化の運転コストを極めて低いものに抑えることができる。   On the other hand, in the seawater desalination method according to the present invention as described above, most of the heat of condensation of water vapor is directly used for the vaporization of seawater. Seawater for use is not required. Therefore, seawater desalination is completed in the apparatus of the present invention, there is almost no consumption of thermal energy in the apparatus, and there is almost no need to discard the concentrated seawater 6. For this reason, the present invention is clearly superior in terms of energy cost, and the operation cost of desalination can be suppressed to an extremely low level.

(気流循環手段)
気流循環手段たる送風機Fは、図1,3に示すように下方連通部8付近の凝結領域管15内に設けられ、気化領域1で生成した水蒸気を凝結領域2に強制導入することで、気流量を調節しながら気流を各領域間に循環させる。
(Airflow circulation means)
As shown in FIGS. 1 and 3, the blower F as an air flow circulation means is provided in the condensation region pipe 15 near the lower communication portion 8, and forcibly introduces water vapor generated in the vaporization region 1 into the condensation region 2. Airflow is circulated between each region while adjusting the flow rate.

装置内を循環する気流は、通過する各領域内の温度変化によって、図9のグラフ上の各値のように、気流に含まれる水蒸気量の増減を繰り返す。ここで装置下部の下方連通部8付近では装置内の各領域で最も温度が低く、気流中の水蒸気成分が殆ど消滅して気流量が最小になる。この水蒸気量が最小になる位置では比重が最も大きくかつ浮力が最も小さい状態になるため、この状態の位置に送風機Fを設けることで、浮力に逆らうことなく気流を効率的にコントロールすることができる。また気流循環手段を通過する気流の流量が小さいものであっても、装置上部の高温飽和水蒸気が凝結領域2に大量に導入され、気化領域1ではその後を追って気流が上昇することで、気流の循環がスムーズに行われることとなる。   The airflow circulating in the apparatus repeatedly increases and decreases the amount of water vapor contained in the airflow as shown by the values on the graph of FIG. 9 due to the temperature change in each passing region. Here, in the vicinity of the lower communication portion 8 at the lower part of the apparatus, the temperature is the lowest in each region in the apparatus, and the water vapor component in the airflow is almost eliminated and the air flow is minimized. Since the specific gravity is the largest and the buoyancy is the smallest at the position where the amount of water vapor is minimized, the air flow can be efficiently controlled without countering the buoyancy by providing the blower F at the position in this state. . Even if the flow rate of the airflow passing through the airflow circulation means is small, a large amount of high-temperature saturated water vapor at the top of the apparatus is introduced into the condensation region 2, and the airflow rises later in the vaporization region 1. Circulation is performed smoothly.

上昇気流の気化領域1の高所にて、海水から水蒸気が発生すると、比重の大きい空気成分の多くは上昇を妨げられ、多くの水蒸気が自然と装置内上方に集まり、やがて装置内上部は高温の水蒸気飽和状態となる。装置内上部では、多くの水蒸気に僅かな空気成分が含まれる状態の気流が、上方連通部7から凝結領域2内に導入され、その後、下方連通部8付近の気化領域1に設けた気流循環手段たる送風機Fによって、凝結領域2から気化領域1へ強制排風される。このようにして気流が装置内を循環する。   When water vapor is generated from seawater at a high location in the vaporization region 1 of the updraft, most of the air components with large specific gravity are prevented from rising, and much water vapor naturally gathers in the upper part of the device, and eventually the upper part of the device is hot. It becomes a water vapor saturation state. In the upper part of the apparatus, an air flow in which a small amount of air component is contained in a large amount of water vapor is introduced into the condensation region 2 from the upper communication portion 7, and then the air flow circulation provided in the vaporization region 1 near the lower communication portion 8. By means of the blower F as a means, forced air is exhausted from the condensation region 2 to the vaporization region 1. In this way, the air current circulates in the apparatus.

本発明はこのように、浮力の大きい水蒸気を凝結領域2に強制導入することで、気化領域1における気化と凝結領域2における凝結とを表裏一体に同時進行させることができる。   In this way, the present invention allows the vaporization in the vaporization region 1 and the condensation in the condensation region 2 to proceed simultaneously on the front and back by forcibly introducing water vapor having a large buoyancy into the condensation region 2.

上方連通部7では高温かつ高水蒸気圧の気流が大きな浮力を持っており、気流循環手段の強制力なしには気流はその場所に留まろうとする。そこで気流循環手段たる送風機Fを下方連通部8に配置し、気化領域1内に排風することで、大きな浮力を持つ気体を凝結領域2内に吸引して凝結領域2内を下降させることができる。   In the upper communication part 7, the high-temperature and high water vapor pressure air flow has a large buoyancy, and the air flow tries to stay in that place without the forced force of the air flow circulating means. Therefore, a fan F serving as an air flow circulating means is arranged in the lower communication portion 8 and exhausted into the vaporization region 1, whereby a gas having a large buoyancy can be sucked into the condensation region 2 and lowered in the condensation region 2. it can.

(海水予熱管3)
海水予熱管3は熱交換体からなる凝結領域管15の内部を通り、管内外の熱交換によって原料海水4を予熱しながら装置内の気化領域1内へ供給する。装置内の気化領域1内の気化手段にいたるまで、原料海水4は、装置外に取り出される凝結水9から原料海水4へ熱を回収せしめる熱回収ステップと、凝結領域2下部気流の水蒸気凝結を促進させる熱回収ステップと、そして凝結領域2内の気流である水蒸気の凝結作用による高温化ステップとが施される。この3ステップによって、原料海水4は気化手段に至るまでに高温状態となる。
(Seawater preheating pipe 3)
The seawater preheating pipe 3 passes through the inside of the condensation area pipe 15 made of a heat exchanger, and supplies the raw seawater 4 into the vaporization area 1 in the apparatus while preheating the heat exchange inside and outside the pipe. The raw seawater 4 is subjected to a heat recovery step for recovering heat from the condensed water 9 taken out of the apparatus to the raw seawater 4 until the vaporization means in the vaporizing area 1 in the apparatus, and water vapor condensation of the lower airflow in the condensed area 2 is performed. A heat recovery step to be promoted and a high temperature step by the condensing action of water vapor which is an air flow in the condensing region 2 are performed. By these three steps, the raw material seawater 4 reaches a high temperature state before reaching the vaporizing means.

(気化手段)
気化手段は、気化領域1における海水の気化を促す手段であり、具体的には、領域上部から海水を噴霧する海水噴霧装置S(実施例1〜4)によって、あるいは気化領域1内に多段に設けた海水蒸発面からの海水蒸発(図示せず)によって、あるいは、装置内を螺旋状に下るスロープ上に原料海水4を流下させ、この螺旋状の海水流下面からの海水蒸発(図示せず)によって行われる。このうち、海水予熱管3及び熱供給部13によって海水を予熱及び加熱するとともに気化領域1高所に設けた海水噴霧装置Sを使用する実施例1〜4の形態が、最も効率的な水蒸気発生方法である。
(Vaporization means)
The vaporization means is means for promoting the vaporization of seawater in the vaporization region 1. Specifically, the vaporization unit is multistage in the vaporization region 1 by the seawater spray device S (Examples 1 to 4) that sprays seawater from the upper part of the region. The raw seawater 4 flows down by seawater evaporation (not shown) from the provided seawater evaporation surface, or on a slope that spirals down in the apparatus, and seawater evaporation from the lower surface of the spiral seawater flow (not shown) ). Among these, the form of Examples 1-4 which uses the seawater spraying apparatus S provided in the vaporization area | region 1 height while using the seawater preheating pipe | tube 3 and the heat supply part 13 for preheating and heating seawater produces the most efficient water vapor | steam. Is the method.

海水予熱管3によって高温となった原料海水4は、気化領域1高所から海水噴霧装置Sによって噴霧されることで、海水に濡れた熱交換体の蒸発面からだけでなく、浮遊する原料海水4の霧からも効率よく気化する。   The raw seawater 4 heated to high temperature by the seawater preheating pipe 3 is sprayed from the height of the vaporization region 1 by the seawater spray device S, so that the floating raw seawater not only from the evaporation surface of the heat exchanger wet with seawater. Evaporates efficiently from 4 fog.

なお、装置の連続運転によってすでに装置内部に熱が蓄積し、気化領域1上部も高温高水蒸気圧状態になっている上、凝結領域2からも水蒸気凝結熱が常に流入しているため、気化領域1の海水蒸発による温度低下が予防される。水蒸気が盛んに発生して体積が増加することで、比重の大きい空気成分は上昇しにくくなり、上方連通部7付近では高温であって飽和した気流状態を保つことができる。これによって、下方の気流循環手段たる送風機Fを通過する気流量が僅かであっても、気流循環による海水淡水化は効率的に行われる。   In addition, since heat has already accumulated inside the apparatus due to continuous operation of the apparatus, the upper part of the vaporization region 1 is also in a high-temperature and high water vapor pressure state, and steam condensation heat always flows from the condensation region 2. The temperature decrease due to seawater evaporation of 1 is prevented. Since the water vapor is actively generated and the volume is increased, an air component having a large specific gravity is less likely to rise, and a high temperature and saturated airflow state can be maintained in the vicinity of the upper communication portion 7. Thus, even if the air flow rate passing through the blower F, which is the lower airflow circulation means, is small, seawater desalination by the airflow circulation is performed efficiently.

(螺旋海水流下面)
海水噴霧装置S以外の他の気化手段として、気化領域1と凝結領域2とが熱交換体の境界板で隣接し、この境界板は螺旋を描きながら上下方向に連続して、緩やかに湾曲しながら傾斜したスロープを形成することができる。このスロープ上を原料海水4が流下し、螺旋形状によって大きな距離を確保した螺旋海水流下面から気化を促すことができる。この構成によれば、気化領域1の境界面が、第一の境界床面として、原料海水4の流れる海水蒸発面を構成すると共に、凝結領域2の境界面が、第二の境界床面として、凝結領域2天井に発生した水滴の落下した凝結水9の流下水面を構成する。この螺旋海水流下板は、広い熱交換面を連続形成しながら螺旋を描くことで各領域が長い距離を確保してつながり、上部の熱供給部13付近の上方連通部7に上方端を有すると共に、下部の送風機F付近の下方連通部8に下方端を有する。
(Spiral sea current bottom)
As other vaporization means other than the seawater spraying device S, the vaporization region 1 and the condensation region 2 are adjacent to each other through a boundary plate of a heat exchanger, and this boundary plate is continuously curved in a vertical direction while drawing a spiral. An inclined slope can be formed. The raw seawater 4 flows down on the slope, and vaporization can be promoted from the lower surface of the spiral seawater flow in which a large distance is secured by the spiral shape. According to this structure, while the boundary surface of the vaporization area | region 1 comprises the seawater evaporation surface where the raw material seawater 4 flows as a 1st boundary floor surface, the boundary surface of the condensation area | region 2 serves as a 2nd boundary floor surface. Condensation region 2 constitutes the falling water surface of condensed water 9 in which water droplets generated on the ceiling have fallen. This spiral seawater flow lower plate is connected to each other by securing a long distance by drawing a spiral while continuously forming a wide heat exchange surface, and has an upper end in the upper communication part 7 near the upper heat supply part 13. The lower communication portion 8 near the lower blower F has a lower end.

この螺旋海水流下面を形成した構成によれば、気化領域1の第一の境界床面が熱交換体の螺旋板状のスロープからなり、海水予熱管3から供給された原料海水4は、このスロープを伝って流下しつつ海水が蒸発する。スロープの上面側は気化領域1の床面を構成すると共に、下面側は凝結領域2の天井面を構成する。この凝結領域2の天井面に水蒸気が凝結し、そのときに出る熱が熱交換体たるスロープを介して気化領域1床面側の原料海水4に伝達され、気化領域1の海水の気化が促される。   According to the configuration in which the spiral seawater flow lower surface is formed, the first boundary floor surface of the vaporization region 1 is formed of a spiral plate-like slope of a heat exchanger, and the raw material seawater 4 supplied from the seawater preheating pipe 3 is Seawater evaporates while flowing down the slope. The upper surface side of the slope constitutes the floor surface of the vaporization region 1 and the lower surface side constitutes the ceiling surface of the condensation region 2. Water vapor condenses on the ceiling surface of the condensing region 2, and the heat generated at that time is transmitted to the raw material seawater 4 on the vaporization region 1 floor side through the slope as a heat exchanger, and the vaporization of the seawater in the vaporization region 1 is promoted. It is.

この螺旋海水流下面を形成した構成において、海水予熱管3は、凝結領域2の床面を下方から上方まで這わせた熱交換ホースからなるものでもよい。この熱交換ホースによって、原料海水4は、ホース外にある凝結領域2の床面を流れる熱水から直接熱を回収することができる。また同時に原料海水4は、凝結領域2内の気流から凝結水9が発生するときに生じる凝結熱によっても予熱される。このように気化領域1と凝結領域2とが上下方向に螺旋状に伸びて交互に形成される構造も、比較的簡易な構造といえる。
海水が高温になっていれば飽和水蒸気圧も非常に大きく、海水面からの蒸発力も相当に大きいものとなる。これを利用して、は、原料海水4が螺旋状の単一面を長く流れていくという螺旋海水流下板を、本装置の一態様として採用することができる。
In the configuration in which the spiral seawater flow lower surface is formed, the seawater preheating pipe 3 may be composed of a heat exchange hose in which the floor surface of the condensation region 2 is stretched from below to above. By this heat exchange hose, the raw seawater 4 can directly recover heat from the hot water flowing on the floor surface of the condensation region 2 outside the hose. At the same time, the raw seawater 4 is also preheated by the condensation heat generated when the condensed water 9 is generated from the air flow in the condensation region 2. A structure in which the vaporized region 1 and the condensed region 2 are alternately formed by extending spirally in the vertical direction can be said to be a relatively simple structure.
If the seawater is hot, the saturated water vapor pressure will be very high, and the evaporation power from the seawater will be considerably high. Utilizing this, a spiral seawater falling plate in which the raw seawater 4 flows for a long time on a single spiral surface can be adopted as one aspect of the present apparatus.

(熱供給部13)
熱供給部13は、装置内上部の上方連通部7付近に熱を供給し、装置内の海水或いは気化領域1内の気流を加熱するものである。より効果的な海水加熱のためには、原料海水4が気化領域1内に供給された直後の気流を直接加熱するものが好ましい。また、高温の原料海水4が気化領域1内に供給され蒸発した直後の、液体成分すなわち水分を含まない状態の水蒸気とし、そこに熱を供給すること、及び、上方連通部7付近にて海水の沸騰温度以上に加熱することが望ましい。
(Heat supply unit 13)
The heat supply unit 13 supplies heat to the vicinity of the upper communication unit 7 in the upper part of the apparatus, and heats the seawater in the apparatus or the airflow in the vaporization region 1. For more effective seawater heating, it is preferable to directly heat the airflow immediately after the raw seawater 4 is supplied into the vaporization region 1. Further, immediately after the high-temperature raw material seawater 4 is supplied into the vaporization region 1 and evaporated, the liquid component, that is, water vapor-free water vapor is supplied, heat is supplied thereto, and the seawater is near the upper communication portion 7. It is desirable to heat above the boiling temperature.

液体成分を含まない水蒸気の気流を直接加熱することで、上方連通部7付近の気流温度を海水の沸点よりも高くすることができる。沸点を超える温度の上方連通部7の気流を熱源として、気化手段たる海水噴霧装置Sから噴霧される原料海水4の温度を沸点まで上昇させ、上方連通部7付近の気流の水蒸気圧を最大化させることができる。空気成分を僅かしか含まないこの上方連通部7付近の高温気流で、高度に効率的な海水の淡水化が可能になる。   By directly heating an air stream of water vapor that does not contain a liquid component, the air stream temperature in the vicinity of the upper communication part 7 can be made higher than the boiling point of seawater. The temperature of the raw seawater 4 sprayed from the seawater spray device S, which is a vaporization means, is increased to the boiling point by using the airflow in the upper communication portion 7 having a temperature exceeding the boiling point as a heat source, and the water vapor pressure of the airflow in the vicinity of the upper communication portion 7 is maximized. Can be made. A highly efficient seawater desalination becomes possible with the high-temperature airflow in the vicinity of the upper communication portion 7 containing only a small amount of air components.

熱供給部13によって供給された熱は、その後、以下のように熱伝達される。先ず、装置内上方の上方連通部7付近に設けられた熱供給部13によって供給された熱は、装置内上部に水蒸気を媒体として装置内上部の蓄熱領域に蓄熱される。このため海水の淡水化運転中において、装置内下部よりも装置内上部が高温に保たれ、蓄熱領域が形成される。その後、この高温水蒸気は気流循環手段によって凝結領域2内に強制導入され、凝結領域2では凝結時に凝結熱を放出して、海水予熱管3内の原料海水4や、気化領域1内に熱伝達される。   The heat supplied by the heat supply unit 13 is then transferred as follows. First, the heat supplied by the heat supply unit 13 provided in the vicinity of the upper communication part 7 in the upper part of the apparatus is stored in a heat storage region in the upper part of the apparatus using water vapor as a medium. For this reason, during seawater desalination operation, the upper part in the apparatus is kept at a higher temperature than the lower part in the apparatus, and a heat storage region is formed. Thereafter, this high-temperature steam is forcibly introduced into the condensation region 2 by the air flow circulation means, and the condensation region 2 releases condensation heat at the time of condensation, and heat is transferred to the raw seawater 4 in the seawater preheating pipe 3 and the vaporization region 1. Is done.

なお、熱供給部13は必ずしも上方連通部7の気流出口付近に設けられるものではない。また熱供給部13で供給される熱源としては、高熱量のものは必ずしも要求されないことから、発電や船舶エンジン作動に伴う廃熱や太陽熱など幅広い種類が利用可能である。   The heat supply unit 13 is not necessarily provided near the air flow outlet of the upper communication unit 7. Moreover, as a heat source supplied by the heat supply unit 13, a heat source having a high heat quantity is not necessarily required, and thus a wide variety such as waste heat and solar heat accompanying power generation and ship engine operation can be used.

(気流循環による海水の淡水化方法)
本発明の気流循環による海水の淡水化方法は、自然の大気圧下において運転し、気化領域1内の海水蒸発に必要な熱エネルギーのほとんどすべてを水蒸気凝結領域2における水蒸気凝縮熱でまかなうものである。気流循環に起因して、各領域の境界にある熱交換体が熱交換を行うことで海水の淡水化を行う。具体的には、気化領域1−凝結領域2間の気流循環によって、気化領域1での海水から蒸発した水蒸気が、凝結領域2で凝結し、凝結しきれなかった水蒸気が再び気化領域1に入る。
(Seawater desalination method by air circulation)
The seawater desalination method according to the present invention is operated under natural atmospheric pressure, and almost all of the thermal energy required for seawater evaporation in the vaporization zone 1 is covered by the steam condensation heat in the steam condensation zone 2. is there. Due to the air circulation, the heat exchanger at the boundary of each region exchanges heat to desalinate the seawater. Specifically, the water vapor evaporated from the seawater in the vaporization region 1 is condensed in the condensation region 2 by the air flow circulation between the vaporization region 1 and the condensation region 2, and the water vapor that has not been fully condensed enters the vaporization region 1 again. .

この気化凝結作用は、気流の状態変化、及び、気化領域1と凝結領域2との間に温度差が生じることに起因して、表裏一体で同時進行する。水蒸気の比重が大気と比べて大変小さい上に、飽和水蒸気圧が高温域で急激に大きくなるところへ温度の膨張効果も加わって、装置内部の高所にある気体が大きな浮力を有する。このため装置内上部に高温水蒸気を確実に、かつ簡易な機構によって閉じ込めることができる。   This vaporization and condensation action proceeds simultaneously on the front and back sides due to a change in the state of the air flow and a temperature difference between the vaporization region 1 and the condensation region 2. The specific gravity of water vapor is very small compared to the atmosphere, and the effect of temperature expansion is added to the point where the saturated water vapor pressure increases rapidly in the high temperature region, so that the gas in the high place inside the apparatus has a large buoyancy. For this reason, high temperature steam can be reliably confined in the upper part of the apparatus by a simple mechanism.

装置内上部に閉じ込めた高温水蒸気は、送風機Fによって装置内下部に送られ、その後も繰り返し装置内上下方向に強制的に気流循環させる。気流が上方に流動するときは気化領域1を通り、下方に流動するときは凝結領域2を通るという、熱交換を伴う気流循環を繰り返すことで、連続的に海水の淡水化を行う。   The high-temperature steam confined in the upper part of the apparatus is sent to the lower part of the apparatus by the blower F, and then repeatedly forcibly circulates in the vertical direction in the apparatus. Seawater is continuously desalinated by repeating air flow circulation with heat exchange, which passes through the vaporization region 1 when the air flow flows upward and passes through the condensation region 2 when it flows downward.

また原料海水4は、装置内を通る圧送管によって圧送され、装置内上部の気化領域1内に噴霧散布される。この圧送管の内外でも熱交換が行われ、海水淡水化の熱エネルギー節減の目的にかなうものとしている。   Moreover, the raw material seawater 4 is pumped by the pumping pipe which passes in the inside of the apparatus, and is sprayed and sprayed in the vaporization area | region 1 of the upper part in an apparatus. Heat exchange is carried out both inside and outside of this pumping pipe, which is intended to serve the purpose of reducing thermal energy in seawater desalination.

このようにして海水淡水化を行うことで、気液相変化時の熱放出に伴う熱のロスを極限に抑え、海水の淡水化率を極限に上げることができる。この海水淡水化装置は、シンプルな機構でありながら、大量の淡水造水が極めて少ないエネルギーで行えることで、公害も少ない。また製造コストやメンテナンスの手間のかからないものである。これらは従来の海水淡水化法ではなしえなかった成果である。   By performing seawater desalination in this way, heat loss due to heat release during gas-liquid phase change can be suppressed to the limit, and the seawater desalination rate can be increased to the limit. Although this seawater desalination apparatus is a simple mechanism, a large amount of freshwater freshwater can be produced with very little energy, and there is little pollution. In addition, it does not require manufacturing costs and maintenance. These are achievements that could not be achieved by conventional seawater desalination methods.

上記のような、気流循環式の海水淡水化方法は、大気圧下で海水の沸騰温度以下で海水淡水化を行うため、海水噴霧ではとりわけ構造がシンプルとなる。   The air circulation type seawater desalination method as described above performs seawater desalination at a temperature equal to or lower than the boiling temperature of seawater under atmospheric pressure.

気化領域1内の塩5の析出などの汚れは清潔な原料海水4の噴射洗浄装置14によって洗い流すことができる。また、海水噴霧装置Sの周辺にこびりついたスケールの処理は、海水淡水化中に発生するガスを溜めておくことで清掃することができる。なお必要に応じて噴射洗浄装置14に薬品を溶かした薬品液を使用してこの薬品液で洗い流すこともできる。   Dirt such as precipitation of the salt 5 in the vaporization region 1 can be washed away by the cleansing apparatus 14 for the clean raw seawater 4. Moreover, the process of the scale stuck around the seawater spray apparatus S can be cleaned by storing the gas generated during seawater desalination. If necessary, a chemical solution in which a chemical is dissolved in the jet cleaning device 14 can be used and washed away with this chemical solution.

本装置は、原料海水4の供給量を少しずつ減らして調節することで、海水淡水化率(原料海水4に対する造水した淡水の重量比をいう。)の極めて高い状態での造水が可能となる。原料海水4供給量を極端に減らすと、気化領域1下部に濃縮海水6が到達できず、乾燥した塩5分が気化領域1に堆積付着するので、これを利用して海水の淡水化とともに製塩5を行うことも可能である。造水割合を高くすれば、造水のコストを引き下げて、濃縮海水6の廃棄による公害もなくなる。このように、目的に応じて海水淡水化率を可変しうるものとすることで、海水中の有用な微量元素など、資源価値の確保につながる。以下、実施例に基づいて詳述する。   This device can reduce the supply amount of raw seawater 4 little by little and adjust the seawater desalination rate (referring to the weight ratio of fresh water generated relative to the raw seawater 4). It becomes. If the supply amount of raw seawater 4 is drastically reduced, the concentrated seawater 6 cannot reach the lower part of the vaporization area 1 and the dried salt 5 minutes deposits and adheres to the vaporization area 1. 5 can also be performed. Increasing the water production rate reduces the cost of water production and eliminates pollution caused by the disposal of the concentrated seawater 6. In this way, by making the seawater desalination rate variable according to the purpose, it is possible to secure the value of resources such as useful trace elements in seawater. Hereinafter, it explains in full detail based on an Example.

実施例1(図1〜図3)は、原料海水4を気化領域1で一度だけ加熱蒸発させる一つの気化系統と、加熱蒸発させた気体を凝結領域2へ送り込んで凝結させる一つの凝結系統とを有し、両領域間に気流を循環させながら、これらをあわせた一系統内で気化と凝結を続けて行なうものである。   Example 1 (FIGS. 1 to 3) includes one vaporization system that heats and evaporates the raw seawater 4 only once in the vaporization region 1, and one condensation system that feeds and condenses the heat-evaporated gas into the condensation region 2. The gas is circulated between the two regions, and vaporization and condensation are continuously performed in one system that combines them.

具体的には図1に示すように、装置本体B内の上下方向に沿って螺旋状に走る熱交換体からなるダクトが凝結領域管15として設けられる。凝結領域管15は、上端の下方連通部8および下端の下方連通部8でそれぞれ、装置本体B内に開放される。   Specifically, as shown in FIG. 1, a duct made of a heat exchange element that spirally runs along the vertical direction in the apparatus main body B is provided as the condensation region pipe 15. The condensation region pipe 15 is opened into the apparatus main body B at the lower communication portion 8 at the upper end and the lower communication portion 8 at the lower end, respectively.

なお、実施例1の凝結領域管15は一本の円管状のダクトが螺旋を描きながら上下に積み重なって走るものとしているが、他の形態として、同一平面内で渦を描き、最外周と中央を各両端とした複数の渦状ダクトが複数上下に間隔をあけて連結配置されたものとしてもよい(図示せず)。この場合、凝結領域2は装置本体B内を上下方向へ階段状に形成される。   The condensing region pipe 15 of the first embodiment is configured such that one circular duct is piled up and down while drawing a spiral, but as another form, a vortex is drawn in the same plane, and the outermost circumference and the center are drawn. A plurality of vortex ducts having both ends thereof may be connected to each other at intervals in the vertical direction (not shown). In this case, the condensation region 2 is formed in a stepped shape in the vertical direction in the apparatus main body B.

また、この凝結領域管15の下端付近の管内に、気流循環手段である送風機Fが設けられる。この気流循環手段によって、凝結領域管15の上端から管内を通って下端へ、さらにこの下端から管外の装置本体B内に気流を流すことで、凝結領域管15の下端から装置本体B内に噴出された気流が装置本体B内を通って再び凝結領域管15の上端にまで凝結領域管15の内外を気流循環させるものとしている。   Further, a blower F which is an airflow circulation means is provided in a tube near the lower end of the condensation region tube 15. By this air flow circulation means, an air flow is caused to flow from the upper end of the condensation region pipe 15 to the lower end through the inside of the tube and from the lower end into the apparatus main body B outside the tube, so that the lower end of the condensation region pipe 15 enters the device main body B. It is assumed that the jetted airflow circulates in and out of the condensation region pipe 15 through the apparatus main body B to the upper end of the condensation region tube 15 again.

また凝結領域管15の上端付近に原料海水4を気化させる気化手段として海水噴霧装置Sを設けている。これらによって、凝結領域管15の管内部が凝結領域2となり、管外部であって装置本体B内の空間全体が気化領域1となる。凝結領域管15の上端の開放部は、気化領域1と凝結領域2を装置本体B内上方で連通する上方連通部7となり、凝結領域管15の下端の開放部は、気化領域1と凝結領域2を装置本体B内下方で連通する下方連通部8となる。   Further, a seawater spray device S is provided as a vaporizing means for vaporizing the raw seawater 4 near the upper end of the condensation region pipe 15. As a result, the inside of the condensation region pipe 15 becomes the condensation region 2, and the entire space inside the apparatus main body B outside the tube becomes the vaporization region 1. The open portion at the upper end of the condensation region pipe 15 becomes an upper communication portion 7 that connects the vaporization region 1 and the condensation region 2 in the upper part of the apparatus main body B, and the open portion at the lower end of the condensation region tube 15 is the vaporization region 1 and the condensation region. 2 is a lower communication part 8 that communicates with the lower part in the apparatus main body B.

この凝結領域管15の中を、下方連通部8付近から上方連通部7まで、海水予熱管3である熱交換ホースが這い、その後熱交換ホースは、上方連通部7から突出して、装置本体B内上方の海水噴霧装置Sに連通される。また海水予熱管3たる熱交換ホースは下方連通部8付近の下端にて送水管と連通される。送水管は、原料海水タンク40から原料海水4ポンプおよびバルブを介して連通され、分岐管150の管内へ貫通して、分岐管150内を通って、分岐管150の分岐部にて海水予熱管3たる熱交換ホースと連通される。   A heat exchange hose that is a seawater preheating pipe 3 runs from the vicinity of the lower communication portion 8 to the upper communication portion 7 in the condensation region pipe 15, and then the heat exchange hose protrudes from the upper communication portion 7, and the apparatus main body B It communicates with the seawater spraying device S located inside and above. The heat exchange hose serving as the seawater preheating pipe 3 communicates with the water supply pipe at the lower end near the lower communication portion 8. The water pipe is communicated from the raw seawater tank 40 via the raw seawater 4 pump and a valve, penetrates into the pipe of the branch pipe 150, passes through the branch pipe 150, and the seawater preheating pipe at the branch portion of the branch pipe 150. It communicates with 3 heat exchange hoses.

原料海水タンク40内の原料海水4は、ポンプによって装置本体B内へ送り込まれ、さらに凝結領域2内に這う海水予熱管3内を通って、予熱されながら装置内下方から上方の海水噴霧装置Sへ圧送され、この海水噴霧装置Sから、装置本体B内の気化領域1に原料海水4を噴霧する。装置内上部は熱供給部13によって加熱されており、噴霧された海水の多くが、装置内上方から下方へ解放されることで気化する。   The raw material seawater 4 in the raw material seawater tank 40 is fed into the apparatus main body B by a pump, and further passes through the seawater preheating pipe 3 that goes into the condensation region 2 and is preheated, and the seawater spraying device S located above and below the apparatus is preliminarily heated. The raw seawater 4 is sprayed from the seawater spraying device S to the vaporization region 1 in the device main body B. The upper part in the apparatus is heated by the heat supply unit 13, and most of the sprayed seawater is vaporized by being released from the upper part to the lower part in the apparatus.

気化した水蒸気は、その圧倒的に小さい比重と気流循環手段である送風機Fとによって、装置本体B内の上方へ向かい、上方連通部7から凝結領域管15内に導かれる。   The vaporized water vapor is directed upward in the apparatus main body B by the overwhelmingly small specific gravity and the blower F which is an air flow circulation means, and is guided into the condensation region pipe 15 from the upper communication portion 7.

その後、凝結領域管15内にて,気化した気流が凝結し、凝結水9が凝結領域管15内を流下する。凝結領域管15の下方連通部8付近は、略水平方向を向くとともに、この水平方向を向いた管本体から下方へ分岐管150が連通されており、この分岐管150はさらに、逆止弁17およびバルブを介して装置本体B外の凝結水タンク90に連通されている。この逆止弁17は、分岐管150を通じて気流が装置本体B内部に流れ込むことのないようにするものである。凝結領域管15内に発生して同管内を流下した凝結水9は、下方連通部8に向かうことなく分岐管150に導かれ、その後凝結水タンク90に回収される。   Thereafter, the vaporized air flow condenses in the condensation region pipe 15, and the condensed water 9 flows down in the condensation region pipe 15. The vicinity of the lower communication portion 8 of the condensation region pipe 15 is directed substantially in the horizontal direction, and a branch pipe 150 is communicated downward from the pipe body facing the horizontal direction. The branch pipe 150 is further connected to the check valve 17. And it is connected to the condensed water tank 90 outside the apparatus main body B through the valve. The check valve 17 prevents the airflow from flowing into the apparatus main body B through the branch pipe 150. The condensed water 9 generated in the condensation region pipe 15 and flowing down in the condensation pipe 15 is guided to the branch pipe 150 without going to the lower communication portion 8, and then collected in the condensed water tank 90.

気化領域1内へ噴霧されて気化しきれなかった原料海水4は、濃縮海水6として気化領域1内下部である装置本体Bの底部の濃縮海水池に貯留する。装置本体Bの底部は装置本体Bの外部に備えた原料海水タンク40の上部と、バルブを介して連通することで、貯留した濃縮海水6を回収することができる。   The raw seawater 4 that has been sprayed into the vaporization region 1 and has not been vaporized is stored as concentrated seawater 6 in the concentrated seawater basin at the bottom of the apparatus main body B, which is the lower part of the vaporization region 1. The bottom of the apparatus main body B communicates with the upper part of the raw material seawater tank 40 provided outside the apparatus main body B via a valve, whereby the stored concentrated seawater 6 can be recovered.

また、装置本体Bの外部には、装置内部から逆止弁17とバルブを介して連通した分岐管150の先に凝結水タンク90が備えられ、さらに、分岐管150を貫通した送水管の先に圧送ポンプPを介して原料海水タンク40が連通して備えられる。   Further, outside the apparatus main body B, a condensed water tank 90 is provided at the tip of the branch pipe 150 communicating from the inside of the apparatus via the check valve 17 and the valve, and further, the tip of the water supply pipe penetrating the branch pipe 150. The raw material seawater tank 40 is provided in communication with the pressure pump P.

実施例2(図4)は、一つの気化領域1と、一つの凝結領域2と、この一つの凝結領域2内を通る2系統の気化手段とを有する。すなわち、原料海水4を気化領域1で加熱蒸発させる第一気化系統と、加熱蒸発しきれずに気化領域1の内底B3に貯留した濃縮海水6を再び気化領域1で加熱蒸発させる第二気化系統と、第一及び第二気化後の気体を凝結領域2へ送り込んで凝結させる一つの凝結系統とを有する。両領域間に気流を循環させながら、一次気化及び凝結ののち、二次気化及び凝結を繰り返して行なうものである。   Example 2 (FIG. 4) has one vaporization region 1, one condensation region 2, and two systems of vaporization means passing through the one condensation region 2. That is, a first vaporization system that heats and evaporates the raw seawater 4 in the vaporization region 1 and a second vaporization system that heats and evaporates the concentrated seawater 6 stored in the inner bottom B3 of the vaporization region 1 without being completely evaporated by heating. And one condensing system in which the gas after the first and second vaporization is sent to the condensing region 2 to condense. The secondary vaporization and condensation are repeatedly performed after the primary vaporization and condensation while circulating the air flow between both regions.

(下方チャンバー20)
また実施例2では、気化領域1の下方を内底B3で仕切り、装置本体Bの下方にこの内底B3で仕切った下方チャンバー20を有する。
(Lower chamber 20)
In Example 2, the lower part of the vaporizing region 1 is partitioned by the inner bottom B3, and the lower chamber 20 partitioned by the inner bottom B3 is provided below the apparatus main body B.

下方チャンバー20は、気化領域1の下方を塞ぐ内底B3を境界壁として装置本体Bの下方に形成される。内底B3には、装置本体Bの気化領域1との連通ダクトが貫通されており、この連通ダクトには下方チャンバー20から気化領域1へと気流を吹き込む送風機Fが、気流循環手段として設けられる。凝結領域管15内を通った気流は、下方連通部8から下方チャンバー20内に排出され、送風機Fによって連通ダクトから装置本体Bの気化領域1へと上方流通する。気化領域1の上部にある上方連通部7から再び凝結領域2内へ導かれることで、気流が装置内を上下方向に循環するとともに、下方チャンバー20を介して各領域内を循環循環する。   The lower chamber 20 is formed below the apparatus main body B with an inner bottom B3 closing the lower part of the vaporization region 1 as a boundary wall. A communication duct with the vaporization region 1 of the apparatus main body B is passed through the inner bottom B3, and a blower F that blows an airflow from the lower chamber 20 to the vaporization region 1 is provided as an airflow circulation means in the communication duct. . The airflow that has passed through the condensation region pipe 15 is discharged from the lower communication portion 8 into the lower chamber 20, and flows upward from the communication duct to the vaporization region 1 of the apparatus main body B by the blower F. By being guided again into the condensation region 2 from the upper communication part 7 at the upper part of the vaporization region 1, the air current circulates in the vertical direction in the apparatus and circulates and circulates in each region through the lower chamber 20.

凝結領域管15の下端付近は内底B3を貫通し、下方チャンバー20内で下方連通部8として下端が開放される。下端付近は実施例1のような分岐管150を有さず、管下端の下方連通部8から凝結後の気流及び凝結水9が共に下方チャンバー20内に流出する。   The vicinity of the lower end of the condensation region pipe 15 penetrates the inner bottom B <b> 3, and the lower end is opened as the lower communication portion 8 in the lower chamber 20. The vicinity of the lower end does not have the branch pipe 150 as in the first embodiment, and the condensed airflow and the condensed water 9 flow out into the lower chamber 20 from the lower communication portion 8 at the lower end of the pipe.

(2系統の気化手段)
2系統の気化手段は、原料海水4を外部の原料海水タンク40から加熱圧送して気化領域1で一次気化させる一次気化手段と、一次気化しきれずに気化領域1下方へ溜まった濃縮海水6の貯留池から再び加熱圧送して同一の気化領域1で二次気化させる二次気化手段とからなる。
(Two systems of vaporization)
The two types of vaporization means are: primary vaporization means for heating and pressure-feeding raw seawater 4 from an external raw material seawater tank 40 to perform primary vaporization in the vaporization area 1, and concentrated seawater 6 accumulated below the vaporization area 1 without being completely vaporized. And a secondary vaporization means for performing secondary vaporization in the same vaporization region 1 by heating and pressure feeding again from the reservoir.

一次気化手段は、原料海水タンク40内から第一圧送ポンプP1を介して下方チャンバー20内部へ貫通した送水管に連通され、下方チャンバー20内で蛇行配走した下方予熱管と、下方予熱管の先端に連通され、下方連通部8の開放端から凝結領域管15内を通って上方連通部7の開放端まで配走した第一海水予熱管31と、第一海水予熱管31の先端に連通されて装置本体B内上部に設けられた第一海水噴霧装置S1とからなる。   The primary vaporization means communicates with the water supply pipe penetrating from the raw material seawater tank 40 into the lower chamber 20 via the first pressure feed pump P1, and includes a lower preheating pipe meandering in the lower chamber 20 and a lower preheating pipe. The first seawater preheating pipe 31 communicated with the tip and arranged from the open end of the lower communication portion 8 through the condensation region pipe 15 to the open end of the upper communication portion 7 and the tip of the first seawater preheat pipe 31. And a first seawater spraying device S1 provided in the upper part of the device main body B.

二次気化手段は、装置本体Bの内底B3に貯留された濃縮海水6の貯留池から第二圧送ポンプP2を介して凝結領域管15内へ貫通した送水管に連通され、この貫通部から凝結領域管15内を通って上方連通部7の開放端まで配走した第二海水予熱管32と、第二海水予熱管32に連通されて装置本体B内上部に設けられた第二海水噴霧装置S2とからなる。   The secondary vaporization means communicates with the water supply pipe penetrating from the reservoir of the concentrated seawater 6 stored in the inner bottom B3 of the apparatus main body B into the condensation region pipe 15 via the second pressure feed pump P2, and from this penetration part. A second seawater preheating pipe 32 that runs through the condensation region pipe 15 to the open end of the upper communication portion 7 and a second seawater spray that is connected to the second seawater preheating pipe 32 and provided in the upper part of the apparatus main body B. It consists of device S2.

すなわち、実施例2の凝結領域管15内に沿って、下方チャンバー20内にある下端から装置本体B上部にある上端までの第一海水予熱管31と、装置本体B内の下方貫通部から装置本体B上部にある上端までの第二海水予熱管32との2本の海水予熱管3が通る。2本の海水予熱管3は共に凝結領域管15内を這って、共に凝結領域2間の上端である上方連通部7から突出し、そしてそれぞれ第一海水噴霧装置S1および第二海水噴霧装置S2に連通する。   That is, the first seawater preheating pipe 31 from the lower end in the lower chamber 20 to the upper end in the upper part of the apparatus main body B and the lower penetrating part in the apparatus main body B along the condensation region pipe 15 of the second embodiment. Two seawater preheating pipes 3 with the second seawater preheating pipe 32 up to the upper end at the upper part of the main body B pass. The two seawater preheating pipes 3 both crawl inside the condensation region pipe 15 and project from the upper communication part 7 which is the upper end between the condensation regions 2 and are respectively connected to the first seawater spraying device S1 and the second seawater spraying device S2. Communicate.

(内底B3)
内底B3には、噴霧によって気化しきれなかった濃縮海水6が凝結海水として貯留する濃縮海水池が形成される。その内底B3は、図4に示すようなすり鉢状或いは下方錐体からなるものとし、内底B3の最下突出部から下方チャンバー20を通って装置外部の塩回収装置18へ連通する塩回収管を設けてある。塩回収管の管外には、複数枚の盤状の熱交換フィン19が、下方チャンバー20内に突出するように固定される。熱交換フィン19によって、塩5回収時に熱が外部の塩回収装置18側へ放出するのを防ぐものとしている。
(Inner bottom B3)
In the inner bottom B3, a concentrated seawater pond in which the concentrated seawater 6 that has not been vaporized by spraying is stored as condensed seawater is formed. The inner bottom B3 has a mortar shape or a lower cone as shown in FIG. 4, and the salt recovery communicates from the lowest projecting portion of the inner bottom B3 through the lower chamber 20 to the salt recovery apparatus 18 outside the apparatus. A tube is provided. A plurality of disk-shaped heat exchange fins 19 are fixed outside the salt recovery pipe so as to protrude into the lower chamber 20. The heat exchange fins 19 prevent heat from being released to the external salt recovery device 18 side when the salt 5 is recovered.

特記しないその他の構成及び淡水化の工程は、実施例1と同様である。   Other configurations and desalination steps not specifically mentioned are the same as those in the first embodiment.

実施例3(図5)は、原料海水4/凝結海水をそれぞれ第一/第二気化領域12で加熱蒸発させる二つの気化系統と、それぞれの気化系統で加熱蒸発させた気体を、第一/第二凝結領域22へ送り込んで各々凝結させる二つの凝結系統とを有し、装置内部上方の蓄熱領域を介して、各系統の気化領域1−凝結領域2間に気流を循環させながら、2系統内でそれぞれ気化と凝結を続けて行なうものである。   Example 3 (FIG. 5) includes two vaporization systems that heat and evaporate the raw seawater 4 / condensed seawater in the first / second vaporization region 12, respectively, and gas that is heated and evaporated in the respective vaporization systems. Two condensing systems that are fed into the second condensing region 22 and condense each, and two systems are connected while circulating airflow between the vaporization region 1 and the condensing region 2 of each system through the heat storage region above the inside of the apparatus. Each of them is continuously vaporized and condensed.

実施例3は、円柱缶状の装置本体Bが、装置本体B高さよりも低い円筒状の内壁B2及び内壁B2下端を塞ぐ円形の内底B3によって仕切られることで、外筒部と内円柱部との二重構造になっている。内壁B2は、装置本体B下方および上方に、それぞれ濃縮海水6用及び蓄熱領域用の隙間を開けて装置本体B内部に設けられる(図5)。内底B3が内壁B2の下端を塞ぐことで、内底B3及び内壁B2によって二次系統の円柱部が形成される。   In the third embodiment, the cylindrical can-shaped device main body B is partitioned by a cylindrical inner wall B2 that is lower than the height of the device main body B and a circular inner bottom B3 that closes the lower end of the inner wall B2. And has a double structure. The inner wall B2 is provided inside the apparatus main body B with a gap for the concentrated seawater 6 and the heat storage area respectively below and above the apparatus main body B (FIG. 5). As the inner bottom B3 closes the lower end of the inner wall B2, a cylindrical part of the secondary system is formed by the inner bottom B3 and the inner wall B2.

外筒部で一次淡水化したのち、濃縮海水池の上澄み部分にある濃縮海水6が第二圧送ポンプP2によって、内円柱部内の第二海水予熱管32に送られ、さらに第二海水予熱管32で予熱されながら内円柱部内の第二海水噴霧装置S2に圧送され、内円柱部内の第二気化領域12に加熱噴霧されることで気化し、気化水蒸気を含む気流が第二上方連通部72から第二凝結領域管152内に送り込まれることで、二次淡水化が行われる。二次淡水化は、第二気化領域12とこの領域内を螺旋状に通る第二凝結領域管152とで構成される。   After primary desalination at the outer cylinder, the concentrated seawater 6 in the supernatant of the concentrated seawater pond is sent to the second seawater preheating pipe 32 in the inner cylindrical part by the second pumping pump P2, and further the second seawater preheating pipe 32 is supplied. Is heated by the second seawater spraying device S2 in the inner cylindrical portion while being preheated in the inner cylindrical portion, and is vaporized by being heated and sprayed to the second vaporization region 12 in the inner cylindrical portion. Secondary desalination is performed by being fed into the second condensation region pipe 152. Secondary desalination is composed of a second vaporization region 12 and a second condensation region tube 152 that spirals through this region.

図5において凝結領域2は外側及び内側の二本の円管状のダクトが螺旋を描きながら上下に積み重なって走る。外側のダクトは、外筒部の第一気化領域11内を螺旋状に走って同領域の上下部に両端開放され、内側のダクトは、外筒部の第二気化領域12内を螺旋状に走って同領域の上下部に両端開放される。図5の構造によって、第一気化領域11下方に流れ込む濃縮海水6濃度を、塩5の析出しない程度の海水淡水化率に留め、第二気化領域12で100%の海水淡水化率を達成し、第二気化領域12下部に塩5を析出させることができる。   In FIG. 5, the condensing region 2 runs with two outer and inner circular ducts piled up and down while drawing a spiral. The outer duct runs spirally in the first vaporization region 11 of the outer cylinder portion and is open at both ends at the upper and lower portions of the same region, and the inner duct spirals in the second vaporization region 12 of the outer cylinder portion. Run and open at the top and bottom of the same area. With the structure of FIG. 5, the concentration of concentrated seawater 6 flowing below the first vaporization region 11 is kept at a seawater desalination rate that does not cause salt 5 to precipitate, and a 100% seawater desalination rate is achieved in the second vaporization region 12. The salt 5 can be deposited at the lower part of the second vaporization region 12.

第一気化領域11において発生した高濃度の濃縮海水6は、下部の濃縮海水池に溜まる。海水に塩5が析出するのは約35%以上の濃度からである。原料海水4は、高濃度にならないと塩5が析出しないため、第一気化領域11では供給する原料海水4の量を一定の時間間隔で増減させ、周期的に内部洗浄をしつつ海水淡水化を行うことができる。前記濃縮海水池の海水をポンプで揚水して、第二気化領域12内に再び送り込み、第二気化領域12上部で噴霧することで、海水霧の多くは第二気化領域12の下部に達することなく、生成塩5が第二気化領域12の下部に析出される。   The high concentration concentrated seawater 6 generated in the first vaporization region 11 accumulates in the lower concentration seawater pond. It is from the density | concentration of about 35% or more that salt 5 precipitates in seawater. Since the salt water 5 does not precipitate unless the raw material seawater 4 becomes high in concentration, the amount of the raw material seawater 4 to be supplied is increased or decreased at regular time intervals in the first vaporization region 11, and the seawater is desalinated while periodically cleaning the inside. It can be performed. Most of the seawater mist reaches the bottom of the second vaporization region 12 by pumping the seawater of the concentrated seawater pond with a pump, sending it back into the second vaporization region 12 and spraying it on the upper portion of the second vaporization region 12. The product salt 5 is deposited below the second vaporization region 12.

凝結領域2は、下端から気流循環手段による気流が気化領域1に排出され、又凝結水9が凝結水9回収手段によって装置外へ連通された配管を通じて回収される。原料海水4は凝結領域2内を通るホースからなる原料海水4予熱管3を通って凝結領域2上部の開放端から海水噴霧装置Sに連通される。凝結領域2内部では水蒸気が凝結し、この凝結に伴う放熱は気化領域1の海水蒸発に用いられる。凝結領域2内では、装置内上部から下部に行くにしたがって、凝結水9の量が増すと共に、凝結領域2内を通る気流の流量が減少する。温度が低下して水蒸気を僅かしか含まなくなった気流は、凝結領域2の下端で開放された下方連通部8から、送風機Fによって気化領域1内に強制排出される。   In the condensation area 2, the airflow from the airflow circulation means is discharged from the lower end to the vaporization area 1, and the condensed water 9 is recovered through a pipe connected to the outside of the apparatus by the condensed water 9 recovery means. The raw material seawater 4 is communicated with the seawater spraying device S from the open end of the upper part of the condensation region 2 through the raw material seawater 4 preheating pipe 3 composed of a hose passing through the condensation region 2. Water vapor condenses inside the condensation region 2, and the heat release accompanying this condensation is used for seawater evaporation in the vaporization region 1. In the condensation region 2, the amount of condensed water 9 increases and the flow rate of the airflow passing through the condensation region 2 decreases from the upper part to the lower part in the apparatus. The air flow that has decreased in temperature and contains only a small amount of water vapor is forcibly discharged into the vaporization region 1 by the blower F from the lower communication portion 8 opened at the lower end of the condensation region 2.

実施例3の構成において、第一海水予熱管31及び熱供給部13によって高温になった原料海水4は、第一噴霧装置から噴霧される。これにより、第一気化領域11内で例えば90%近くを蒸発させてしまうと、内底B3に貯留する濃縮海水池の濃縮海水6濃度は30%を越えるものとなる。この高濃度の濃縮海水6を第二海水予熱管32に圧送し、第二気化領域12内で同じく90%近く蒸発させると、第二気化領域12の下部には殆ど水分が残らず、海水に含まれる塩5が堆積することとなる。そこで実施例2と同様、内底B3から装置外部へ連通する塩回収管を設け、その先を装置外部で逆止弁17、バルブを介して塩回収装置18に連通させている。   In the structure of Example 3, the raw material seawater 4 which became high temperature by the 1st seawater preheating pipe | tube 31 and the heat supply part 13 is sprayed from a 1st spraying apparatus. Accordingly, if, for example, nearly 90% is evaporated in the first vaporization region 11, the concentration of the concentrated seawater 6 in the concentrated seawater reservoir stored in the inner bottom B3 exceeds 30%. When this concentrated high-concentration seawater 6 is pumped to the second seawater preheating pipe 32 and evaporated in the second vaporization region 12 by nearly 90%, almost no water remains in the lower part of the second vaporization region 12, and the seawater The contained salt 5 will be deposited. Therefore, as in the second embodiment, a salt recovery pipe that communicates from the inner bottom B3 to the outside of the apparatus is provided, and the tip communicates with the salt recovery apparatus 18 via the check valve 17 and the valve outside the apparatus.

第一凝結領域管151、第二凝結領域管152は共に、下方連通部8付近にて、実施例1と同様の分岐管150と、分岐管150の途中を貫通する実施例1と同様の原料海水4の送水管を有する。第二凝結領域管152の分岐管150は、図5に示すように内壁B2を貫通して、第一凝結領域管151の分岐管150と合流した上で、この合流した分岐管150が逆止弁17とバルブを介して凝結水タンク90の上部と連通する。   The first condensing region pipe 151 and the second condensing region pipe 152 are both in the vicinity of the lower communication portion 8, the same branch pipe 150 as in the first embodiment, and the same raw material as in the first embodiment that penetrates the middle of the branch pipe 150. It has a water pipe for seawater 4. As shown in FIG. 5, the branch pipe 150 of the second condensation region pipe 152 passes through the inner wall B <b> 2 and joins with the branch pipe 150 of the first condensation region pipe 151. The valve 17 communicates with the upper part of the condensed water tank 90 through the valve.

特記しないその他の構成及び淡水化の工程は、実施例1と同様である。   Other configurations and desalination steps not specifically mentioned are the same as those in the first embodiment.

実施例4(図6〜図8)は、原料海水4/凝結海水をそれぞれ第一/第二気化領域12で加熱蒸発させる二つの気化系統と、各気化系統で加熱蒸発させた気体をそれぞれ第一/第二凝結領域22へ送り込んで各々凝結させる二つの凝結系統とを有し、装置内部上方の蓄熱領域、及び装置内部下方にて両系統の気化領域1と連通した下方チャンバー20を介して、各系統の気化領域1−凝結領域2間に気流を循環させながら、2系統内でそれぞれ気化と凝結を続けて行なうものである。   Example 4 (FIGS. 6 to 8) includes two vaporization systems that heat and evaporate the raw seawater 4 / condensed seawater in the first / second vaporization region 12, respectively, and the gas that is vaporized by heating in each vaporization system. Two condensing systems that are fed into the first / second condensing region 22 to condense each, via a heat storage region above the inside of the device and a lower chamber 20 that communicates with the vaporizing region 1 of both systems inside the device. The vaporization and the condensation are continuously performed in the two systems while circulating the air flow between the vaporization region 1 and the condensation region 2 of each system.

(二重構造)
実施例4も実施例3と同様、装置本体Bの円筒状の外壁B1の内側に、外壁B1よりも筒形の小さい円筒状の内壁B2が設けられることで、外筒部と内円柱部との二重構造になっている。
(Double structure)
Similarly to the third embodiment, the fourth embodiment is also provided with a cylindrical inner wall B2 having a cylindrical shape smaller than the outer wall B1 on the inner side of the cylindrical outer wall B1 of the apparatus main body B. It has a double structure.

(第二系統)
外筒部で一次淡水化したのち、濃縮海水6池の上澄み部分が、第二圧送ポンプP2によって濃縮海水6連通管33を通り、内円筒部の第二凝結領域管152内へ貫通して同管内の第二海水予熱管32に連通され、第二海水噴霧装置S2に送られる。第二海水噴霧装置S2から内円筒部内の第二気化領域12内に噴霧されることで、気化した気流が第二上方連通部72から第二凝結領域管152内に流入し、同管内で二次凝結が行われる。二次凝結は、第二気化領域12を螺旋状に通る第二凝結領域管152内で行なわれる。第二凝結領域管152は、平面視内円柱部内であって装置本体B上方の蓄熱領域で上端開放された第二上方連通部72と、下方チャンバー20内で開放された第二下方連通部82とを両端に有する。
(Second system)
After primary desalination in the outer cylinder, the supernatant of the 6 concentrated seawater ponds passes through the concentrated seawater 6 communication pipe 33 by the second pumping pump P2 and penetrates into the second condensation region pipe 152 of the inner cylindrical part. It communicates with the second seawater preheating pipe 32 in the pipe and is sent to the second seawater spray device S2. By being sprayed from the second seawater spraying device S2 into the second vaporization region 12 in the inner cylindrical portion, the vaporized airflow flows into the second condensation region pipe 152 from the second upper communication portion 72, and in the second pipe, Next condensation takes place. Secondary condensation takes place in a second condensation zone tube 152 that spirals through the second vaporization zone 12. The second condensing region pipe 152 is in the cylindrical portion in the plan view and is opened at the upper end in the heat storage region above the apparatus main body B, and the second lower communicating portion 82 opened in the lower chamber 20. And at both ends.

(第一/第二凝結領域22)
実施例4の凝結領域2は、外側(図8左図)及び内側(図8右図)の二本の円管状のダクトからなる第一凝結領域管151/第二凝結領域管152内に形成される。第一凝結領域管151/第二凝結領域管152内は、螺旋を描きながら、それぞれ第一及び第二気化領域12内を上下に積み重なって走る。外側のダクトは、外筒部の第一気化領域11内の上部の蓄熱領域内に上端開放された第一上方連通部71を有し、内側のダクトは、外筒部の第二気化領域12内の上部の蓄熱領域内に上端開放された第二上方連通部72を有する。
(First / second condensation region 22)
The condensing region 2 of Example 4 is formed in the first condensing region tube 151 / the second condensing region tube 152 composed of two circular ducts on the outer side (the left diagram in FIG. 8) and the inner side (the right diagram in FIG. 8). Is done. The first condensation region pipe 151 and the second condensation region pipe 152 run while being stacked up and down in the first and second vaporization regions 12, respectively, while drawing a spiral. The outer duct has a first upper communication portion 71 whose upper end is opened in the upper heat storage region in the first vaporization region 11 of the outer cylinder portion, and the inner duct is the second vaporization region 12 of the outer cylinder portion. The upper upper heat storage region has a second upper communication portion 72 opened at the upper end.

(各気化領域1の塩5の析出)
第一気化領域11において発生した高濃度の濃縮海水6は、第一気化領域11の外筒部下部であって、下方チャンバー20の区画である内底B3の濃縮海水池に溜まる。前記濃縮海水池の濃縮海水6を第二圧送ポンプP2で揚水して、第二気化領域12内に再び送り込み、第二気化領域12上部へ送水したうえで第二気化領域12の噴霧装置によって噴霧することで、海水霧の多くは第二気化領域12の下部に達することなく、生成塩5が第二気化領域12の下部に析出される。
(Deposition of salt 5 in each vaporization region 1)
The high-concentration concentrated seawater 6 generated in the first vaporization region 11 is accumulated in the concentrated seawater basin at the inner bottom B <b> 3, which is a lower part of the outer cylinder portion of the first vaporization region 11 and is a section of the lower chamber 20. The concentrated seawater 6 in the concentrated seawater pond is pumped up by the second pumping pump P2 and sent again into the second vaporization region 12 and fed to the upper part of the second vaporization region 12 and sprayed by the spraying device in the second vaporization region 12. By doing so, most of the seawater mist does not reach the lower part of the second vaporization region 12, and the generated salt 5 is deposited at the lower part of the second vaporization region 12.

また海水に塩5が析出するのは約35%以上の濃度からであるといわれており、原料海水4は、高濃度にならないと塩5が析出しない。この性質を利用して、第一気化領域11では供給する原料海水4の量を一定の時間間隔で増減させ、周期的に内部洗浄をしつつ海水淡水化を行うことができる。   In addition, it is said that the salt 5 is precipitated in the seawater from a concentration of about 35% or more, and the salt water 5 does not precipitate unless the raw material seawater 4 has a high concentration. Using this property, the amount of the raw material seawater 4 to be supplied can be increased or decreased at regular time intervals in the first vaporization region 11, and seawater desalination can be performed while periodically performing internal cleaning.

この構造によって、第一気化領域11下方に流れ込む濃縮海水6濃度を、塩5の析出しない程度の海水淡水化率に留め、第二気化領域12で100%の海水淡水化率を達成し、第二気化領域12下部に塩5を析出させることができる。     With this structure, the concentration of concentrated seawater 6 flowing below the first vaporization region 11 is kept at a seawater desalination rate that does not allow salt 5 to precipitate, and a seawater desalination rate of 100% is achieved in the second vaporization region 12. The salt 5 can be deposited at the lower part of the vaporization region 12.

(下方チャンバー20)
実施例4では、二重構造となった外筒と内円柱部の下方に共通した装置本体Bと同一平面形状の内底B3を介して、装置本体B下方に隣設した下方チャンバー20を設けている。外側及び内側のダクトの下部は共に、この下方チャンバー20を貫通して、各ダクトの下端が下方チャンバー20内に開放される。下方チャンバー20は外筒部と内円柱部の両方を含む平面領域として下方に区画配置され、外筒部、内円柱部のそれぞれに連通している。
(Lower chamber 20)
In the fourth embodiment, a lower chamber 20 provided adjacent to the lower part of the apparatus main body B is provided via an inner bottom B3 having the same plane shape as the apparatus main body B common to the lower part of the outer cylinder and the inner cylindrical portion having a double structure. ing. Both the lower part of the outer and inner ducts penetrate the lower chamber 20, and the lower end of each duct is opened into the lower chamber 20. The lower chamber 20 is partitioned and disposed below as a planar region including both the outer cylinder part and the inner cylinder part, and communicates with each of the outer cylinder part and the inner cylinder part.

(凝結領域管15内の気流の動き)
第一/第二凝結領域管151/152内では、装置内上部から下部に行くにしたがって、凝結水9の量が増すと共に、凝結内を通る気流の流量が減少する。第一凝結領域管151の第一下方連通部81及び第二凝結領域管152の下方連通部8は共に、実施例2と同様、分岐管150を有さずに下方チャンバー20内へ開放されている。
(Airflow movement in condensation region pipe 15)
In the first / second condensation region pipe 151/152, the amount of condensed water 9 increases and the flow rate of the airflow passing through the condensation decreases from the upper part to the lower part in the apparatus. Both the first lower communicating portion 81 of the first condensing region pipe 151 and the lower communicating portion 8 of the second condensing region tube 152 are opened into the lower chamber 20 without the branch pipe 150 as in the second embodiment. ing.

第一、第二凝結領域管151、152を通り、温度が低下して水蒸気を僅かしか含まなくなった気流は、それぞれ第一、第二下方連通部82から共に下方チャンバー20内に排出されたのち、下方チャンバー20内で混合された上で、第一気化領域11、第二気化領域12と連通した連通ダクトから、第一送風機F1及び第二送風機F2によってそれぞれ第一気化領域11、第二気化領域12へ送出される。     After passing through the first and second condensing region pipes 151 and 152, the air flow that has been reduced in temperature and contains only a small amount of water vapor is discharged from the first and second lower communication portions 82 into the lower chamber 20, respectively. The first vaporization region 11 and the second vaporization are respectively mixed by the first blower F1 and the second blower F2 from the communication duct which is mixed in the lower chamber 20 and communicated with the first vaporization region 11 and the second vaporization region 12. It is sent to area 12.

又、ダクト下端の下方連通部8で凝結領域2の気流と共に下方チャンバー20内に開放された凝結水9が、下方チャンバー20内に溜まり、下方チャンバー20底部から装置外へ連通された配管を通じて装置外部の凝結水タンク90に回収される。   The condensed water 9 released in the lower chamber 20 together with the air flow in the condensation region 2 at the lower communication portion 8 at the lower end of the duct is accumulated in the lower chamber 20 and is connected to the apparatus through a pipe communicated from the bottom of the lower chamber 20 to the outside of the apparatus. It is collected in an external condensed water tank 90.

(下方チャンバー20内の原料海水4の動き)
原料海水タンク40から圧送ポンプPを介して圧送された原料海水4は、下方チャンバー20内を蛇行した下方海水予熱管30を通って、外側のダクトの下開放端からダクト内のホースに連通される。
(Movement of raw seawater 4 in the lower chamber 20)
The raw seawater 4 pumped from the raw seawater tank 40 via the pumping pump P is communicated with the hose in the duct from the lower open end of the outer duct through the lower seawater preheating pipe 30 meandering through the lower chamber 20. The

特記しないその他の構成及び淡水化の工程は、実施例1と同様であり、下方チャンバー20の構成及び作用は、実施例2と同様である。   Other configurations and desalination steps not specifically mentioned are the same as those in the first embodiment, and the configuration and operation of the lower chamber 20 are the same as those in the second embodiment.

その他、本発明は上述した実施例或いは上述した他の構成例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、各実施例の要素毎の入れ替えや組み合わせ、要素抽出や形態変更等、種々の変更を行うことも可能である。   In addition, the present invention is not limited to the above-described embodiments or the above-described other configuration examples, and replacement and combination for each element of each embodiment, element extraction, and form change are made without departing from the spirit of the present invention. It is also possible to make various changes.

本発明では他に、海水に溶けている各種の希少元素を濃縮して結晶化させる可能性も有する。   In the present invention, there is another possibility that various rare elements dissolved in seawater are concentrated and crystallized.

本発明の実施例1の気流循環による海水の淡水化装置の系統を示す側面視説明図である。It is side view explanatory drawing which shows the system | strain of the seawater desalination apparatus by the airflow circulation of Example 1 of this invention. 実施例1の気流循環による海水の淡水化装置における上部の構成を示す図1の平面視イ−イ断面説明図である。It is plane view II cross-sectional explanatory drawing of FIG. 1 which shows the structure of the upper part in the desalination apparatus of the seawater by the airflow circulation of Example 1. FIG. 実施例1の気流循環による海水の淡水化装置における下部の構成を示す図1の平面視ロ−ロ断面説明図である。FIG. 2 is a plane cross-sectional explanatory diagram of FIG. 1 showing a configuration of a lower portion in the seawater desalination apparatus using airflow circulation according to the first embodiment. 本発明の実施例2の気流循環による海水の淡水化装置の系統を示す説明図である。It is explanatory drawing which shows the system | strain of the seawater desalination apparatus by the airflow circulation of Example 2 of this invention. 本発明の実施例3の気流循環による海水の淡水化装置の系統を示す説明図である。It is explanatory drawing which shows the system | strain of the desalination apparatus of the seawater by the airflow circulation of Example 3 of this invention. 本発明の実施例4の気流循環による海水の淡水化装置の系統を示す説明図である。It is explanatory drawing which shows the system | strain of the seawater desalination apparatus by the airflow circulation of Example 4 of this invention. 実施例4の気流循環による海水の淡水化装置における、原料海水4及び濃縮海水6の第一(左)及び第二(右)系統を示す説明図である。It is explanatory drawing which shows the 1st (left) and 2nd (right) system | strain of the raw material seawater 4 and the concentrated seawater 6 in the seawater desalination apparatus by the airflow circulation of Example 4. FIG. 実施例4の気流循環による海水の淡水化装置における、気流及び凝結水9の第一(左)及び第二(右)系統を示す説明図である。It is explanatory drawing which shows the 1st (left) and 2nd (right) system | strain of the airflow and the condensed water 9 in the seawater desalination apparatus by the airflow circulation of Example 4. FIG. 水の飽和水蒸気圧の関係を示すグラフである。It is a graph which shows the relationship of the saturated water vapor pressure of water.

符号の説明Explanation of symbols

1 気化領域
11 第一気化領域
12 第二気化領域
2 凝結領域
21 第一凝結領域
22 第二凝結領域
3 海水予熱管
30 下方海水予熱管
31 第一海水予熱管
32 第二海水予熱管
4 原料海水
40 原料海水タンク
5 塩
6 濃縮海水
60 濃縮海水タンク
7 上方連通部
71 第一上方連通部
72 第二上方連通部
8 下方連通部
81 第一下方連通部
82 第二下方連通部
9 凝結水
90 凝結水タンク
13 熱供給部
14 噴射洗浄装置
15 凝結領域管
150 分岐管
151 第一凝結領域管
152 第二凝結領域管
17 逆止弁
18 塩回収装置
19 熱交換フィン
20 下方チャンバー
B 装置本体
B1 外壁
B2 内壁
B3 内底
F 送風機
F1 第一送風機
F2 第二送風機
P 圧送ポンプ
P1 第一圧送ポンプ
P2 第二圧送ポンプ
S 海水噴霧装置
S1 第一海水噴霧装置
S2 第二海水噴霧装置
DESCRIPTION OF SYMBOLS 1 Vaporization area | region 11 1st vaporization area | region 12 2nd vaporization area | region 2 1st condensation area | region 22 2nd condensation area | region 3 Seawater preheating pipe 30 Lower seawater preheating pipe 31 First seawater preheating pipe 32 Second seawater preheating pipe 4 Raw material seawater 40 Raw seawater tank 5 Salt 6 Concentrated seawater 60 Concentrated seawater tank 7 Upper communication part 71 First upper communication part 72 Second upper communication part 8 Lower communication part 81 First lower communication part 82 Second lower communication part 9 Condensed water 90 Condensed water tank 13 Heat supply unit 14 Spray cleaning device 15 Condensation area pipe 150 Branch pipe 151 First condensation area pipe 152 Second condensation area pipe 17 Check valve 18 Salt recovery device 19 Heat exchange fin 20 Lower chamber B Apparatus body B1 Outer wall B2 inner wall B3 inner bottom F blower F1 first blower F2 second blower P pressure feed pump P1 first pressure feed pump P2 second pressure feed pump S seawater spray device S1 first seawater spray device S The second seawater spraying device

上記課題を解決するため、本発明では下記(1)ないし(3)の手段を講じている。
(1)すなわち、本発明の気流循環による海水の淡水化装置は、
・装置本体内の上下方向に螺旋状に走ると共に上端及び下端でそれぞれ装置本体B内に開放された菅体からなり、管外部の「気化領域1」及び上下端が気化領域1に連通する管内部の「凝結領域2」と名づけた二つの領域間の境界壁を構成する凝結領域管15と、
・気化領域高所に設けられて装置本体内部上方を高温に蓄熱する熱供給部13と、
・装置本体下方に設けられ凝結領域2から気化領域1に気流を循環させる気流循環手段Fと、
・装置外から装置下方を貫通して凝結領域管内を通りその上端から気化領域1上部まで原料海水4を運ぶ間に熱交換して原料海水4を予熱する海水予熱管3と、
・気化領域1高所から原料海水を噴霧して蒸発させ装置内部高所に高温水蒸気を作るための海水噴霧装置Sを具備し、
・これらにより、熱交換体である凝結領域管を介して隣接した気化領域1および凝結領域2の両領域を気流循環させ熱交換し気化および水蒸気凝結を行なう海水の淡水化装置であって、
・気化領域高所に作った浮力の大きい高温水蒸気を凝結領域管上端から吸引し、凝結領域菅内部下方で温度の低い水に戻すときに放出される潜熱が、隣接する気化領域において海水を効果的に蒸発させることで、水蒸気凝結と海水蒸発が表裏一体に同時進行することを特徴とする
(2)前記海水予熱管の作用に関して、
装置外に取り出される海水淡水化の結果である凝結水の熱を原料海水に回収させる熱回収ステップと、
凝結領域下部において水蒸気量の減少した気流からさらに水蒸気凝結を促進させる凝結促進ステップと、
そして凝結領域内高所の高温水蒸気との熱交換によって原料海水を高温にする高温化ステップとを持つことにより、海水噴霧される高温海水の飽和水蒸気圧が上昇し、
熱供給部により装置に供給される熱エネルギー量が少ない条件下でも装置内部高所に高温で純度の高い水蒸気を大量に発生させることで効率的に海水淡水化する。
すなわち海水予熱管3は装置内の凝結領域2を通り、海水予熱管3の管内外の熱交換によって、
・装置外に取り出される凝結領域2内の凝結水9の熱を原料海水4に回収させる熱回収ステップと、
・凝結領域2下部気流の水蒸気凝結を原料海水4に促進させる凝結促進ステップと、
・そして凝結領域2内の気流である水蒸気の凝結作用によって原料海水4を高温にする高温化ステップとを施すものである。
(3)前記気流循環による海水淡水化装置において、
熱供給部13によって装置内部高所を高温水蒸気で蓄熱高温することで装置内下方はその上方との間に温度差を有し、
また気化領域高所に原料海水を噴霧し発生させて得た高温水蒸気を気流循環手段により温度の低い凝結領域管の下方に吸引し水に戻すときに出る潜熱が隣接する気化領域海水の気化に直接使われ、
凝結領域と気化領域の両領域を気流循環させることで、水蒸気の気化および凝結を表裏一体に同時進行させた熱交換を継続する
In order to solve the above problems, the present invention takes the following means (1) to (3).
(1) That is, the seawater desalination apparatus using the air circulation according to the present invention is:
A pipe that runs in a spiral manner in the vertical direction in the apparatus main body and is opened in the apparatus main body B at the upper end and the lower end, respectively, and the “vaporization region 1” outside the tube and the upper and lower ends communicate with the vaporization region 1 A condensing region tube 15 that forms a boundary wall between the two regions named "condensation region 2"inside;
A heat supply unit 13 that is provided at a high position in the vaporization region and stores heat inside the apparatus main body at a high temperature;
An airflow circulation means F provided below the apparatus main body for circulating an airflow from the condensation region 2 to the vaporization region 1;
A seawater preheating pipe 3 that preheats the raw seawater 4 by exchanging heat while carrying the raw seawater 4 from the outside of the apparatus through the condensation area pipe, passing through the condensation area pipe to the upper part of the vaporization area 1;
・ Equipped with a seawater spraying device S for spraying and evaporating raw material seawater from the height of the vaporization area 1 to create high-temperature steam at the height inside the device,
-By these, a seawater desalination device that performs gas exchange and vaporization and water vapor condensation by circulating air through the vaporization region 1 and the condensation region 2 adjacent to each other through a condensation region pipe that is a heat exchanger,
・ Latent heat released when high-temperature steam with high buoyancy created in the high area of the vaporization zone is sucked from the upper end of the condensation zone pipe and returned to the low-temperature water inside the condensation zone 効果, and seawater is effective in the adjacent vaporization zone It is characterized by water vapor condensation and seawater vaporization proceeding simultaneously on the front and back by evaporating in a continuous manner .
(2) Regarding the action of the seawater preheating pipe,
A heat recovery step for recovering the heat of condensed water, which is the result of seawater desalination taken out of the apparatus, into raw seawater;
A condensation promoting step for further promoting water vapor condensation from an air flow having a reduced water vapor amount in a lower part of the condensation region;
And by having a high-temperature step to heat the raw seawater by heat exchange with high-temperature steam at high places in the condensation area, the saturated steam pressure of high-temperature seawater sprayed with seawater rises,
Even under conditions where the amount of heat energy supplied to the apparatus by the heat supply unit is small, seawater desalination is efficiently achieved by generating a large amount of high-temperature and high-purity steam at high locations inside the apparatus.
That is, the seawater preheating pipe 3 passes through the condensation region 2 in the apparatus, and heat exchange inside and outside the seawater preheating pipe 3
A heat recovery step for recovering the heat of the condensed water 9 in the condensed region 2 taken out of the apparatus to the raw seawater 4;
A condensing promotion step for promoting raw material seawater 4 to condense water vapor in the lower airflow in the condensing region 2;
-And the high temperature step which makes raw material seawater 4 high temperature by the condensing effect | action of the water vapor | steam which is the airflow in the condensing area | region 2 is given.
(3) In the seawater desalination apparatus using the air flow circulation,
The high temperature inside the device is stored with high temperature steam by the heat supply unit 13 so that the lower part in the device has a temperature difference with the upper part,
In addition, the latent heat generated when the high-temperature water vapor obtained by spraying the raw material seawater at the high area of the vaporization zone is sucked back to the water by the airflow circulation means under the low-temperature condensation zone pipe is used to vaporize the adjacent vaporization zone seawater. Used directly,
By circulating the air flow in both the condensation area and the vaporization area, the heat exchange in which the vaporization and condensation of the water vapor proceed simultaneously on the front and back sides is continued .

気化手段は、気化領域高所から海水噴霧する海水噴霧装置Sを具備する。このようなものであると、原料海水4内の塩5やスケールが析出した場合でも清掃が容易となる。The vaporization means includes a seawater spray device S that sprays seawater from a high area in the vaporization region. If it is such, cleaning becomes easy even when the salt 5 and scale in the raw material seawater 4 are deposited.

上記いずれかの海水の淡水化装置として、気化領域1と凝結領域2とが管体を介して接した構造を採用しうる。この管体は熱交換体からなり、例えば装置内上部から下部に向かって、螺旋状延設される。 As one of the seawater desalination apparatuses described above, a structure in which the vaporizing region 1 and the condensing region 2 are in contact with each other through a tubular body may be employed. This tubular body is formed of a heat exchanger, and extends in a spiral shape, for example, from the upper part to the lower part in the apparatus.

上記構造における凝結手段の例として、凝結領域2内の管体で仕切られた凝結領域2内の上方から下方に向かって、気化した水蒸気を通過させるものが挙げられる。この凝結領域2内の気化気流の通過中に、気化領域1との仕切りを形成する熱交換体によって熱交換を行うことで、前記気流から連続的に凝結水9を得ることができる。このとき凝結水9は、管体の床面を流下して容易に回収される。 As an example of the condensing means in the above structure, there is one that allows vaporized water vapor to pass from the upper side to the lower side in the condensing region 2 partitioned by the tube in the condensing region 2. During the passage of the vaporized stream of the condensing region 2, by performing heat exchange by the heat exchanger to form a partition between the vaporizing region 1, it is possible to obtain a continuous condensed water 9 from the air flow. At this time, the condensed water 9 flows down the floor of the tubular body and is easily recovered.

<気流循環による海水の淡水化装置の基本構成(図1)>
本発明の気流循環による海水の淡水化装置内では、領域内の海水を気化して水蒸気を得る気化領域1と、領域内の水蒸気を凝結して淡水を得る凝結領域2とが、これら領域間の境界壁を構成する熱交換体を介して隣接し、装置内下方にある下方連通部8及び装置内上方にある上方連通部7にて各領域が連通される。また装置内上部には熱供給部13が設けられ、装置内上方が高温水蒸気に満ち蓄熱される。
<Basic configuration of seawater desalination system by air circulation (Fig. 1)>
In the seawater desalination apparatus according to the present invention, the vaporization region 1 for vaporizing seawater in the region to obtain water vapor and the condensing region 2 for condensing water vapor in the region to obtain fresh water are between these regions. The regions communicate with each other through a lower communication portion 8 located in the lower part in the apparatus and an upper communication part 7 located in the upper part in the apparatus. A heat supply unit 13 is provided in the upper part of the apparatus, and the upper part of the apparatus is filled with high-temperature steam to store heat.

(気流循環手段)
装置内を循環する気流は、通過する各領域内の温度変化によって気流に含まれる水蒸気量の増減を繰り返す(図9参照)。ここで装置下部の下方連通部8付近では装置内の各領域で最も温度が低く、気流中の水蒸気成分が殆ど消滅して気流量が最小になる。この水蒸気量が最小になる位置では比重が最も大きくかつ浮力が最も小さい状態になるため、この状態の位置に送風機Fを設けることで、浮力に逆らうことなく気流を効率的にコントロールすることができる。また気流循環手段を通過する気流の流量が小さいものであっても、装置上部の高温飽和水蒸気が凝結領域2に大量に導入され、気化領域1ではその後を追って気流が上昇することで、気流の循環がスムーズに行われることとなる。
(Airflow circulation means)
The airflow circulating in the apparatus repeatedly increases and decreases the amount of water vapor contained in the airflow according to the temperature change in each passing region (see FIG. 9) . Here, in the vicinity of the lower communication portion 8 at the lower part of the apparatus, the temperature is the lowest in each region in the apparatus, and the water vapor component in the airflow is almost eliminated and the air flow is minimized. Since the specific gravity is the largest and the buoyancy is the smallest at the position where the amount of water vapor is minimized, the air flow can be efficiently controlled without countering the buoyancy by providing the blower F at the position in this state. . Even if the flow rate of the airflow passing through the airflow circulation means is small, a large amount of high-temperature saturated water vapor at the top of the apparatus is introduced into the condensation region 2, and the airflow rises later in the vaporization region 1. Circulation is performed smoothly.

(気化手段)
気化手段は、気化領域1における海水の気化を促す手段であり、具体的には、領域上部から海水を噴霧する海水噴霧装置S(実施例1〜4)によって行われる。海水予熱管3及び熱供給部13によって海水を予熱及び加熱するとともに気化領域1高所に設けた海水噴霧装置Sを使用する実施例1〜4の形態が、最も効率的な水蒸気発生方法である。
(Vaporization means)
The vaporization means is means for promoting the vaporization of seawater in the vaporization region 1, and is specifically performed by a seawater spray device S (Examples 1 to 4) that sprays seawater from the upper part of the region . The form of Examples 1-4 which uses the seawater spraying apparatus S provided in the vaporization area | region 1 high place while preheating and heating seawater with the seawater preheating pipe | tube 3 and the heat supply part 13 is the most efficient water vapor | steam generation method. .

海水予熱管3は、凝結領域2の床面を下方から上方まで這わせた熱交換ホースからなるものでもよい。この熱交換ホースによって、原料海水4は、ホース外にある凝結領域2の床面を流れる熱水から直接熱を回収することができる。また同時に原料海水4は、凝結領域2内の気流から凝結水9が発生するときに生じる凝結熱によっても予熱される。このように気化領域1と凝結領域2とが上下方向に螺旋状に伸びて交互に形成される構造も、比較的簡易な構造といえる。海水が高温になっていれば飽和水蒸気圧も非常に大きく、海水面からの蒸発力も相当に大きいものとなる The seawater preheating pipe 3 may be composed of a heat exchange hose in which the floor surface of the condensation region 2 is raised from below to above. By this heat exchange hose, the raw seawater 4 can directly recover heat from the hot water flowing on the floor surface of the condensation region 2 outside the hose. At the same time, the raw seawater 4 is also preheated by the condensation heat generated when the condensed water 9 is generated from the air flow in the condensation region 2. A structure in which the vaporized region 1 and the condensed region 2 are alternately formed by extending spirally in the vertical direction can be said to be a relatively simple structure. If the seawater is hot, the saturated water vapor pressure will be very high, and the evaporation power from the seawater will be considerably high .

具体的には図1に示すように、装置本体B内の上下方向に沿って螺旋状に走る熱交換体からなるダクトが凝結領域管15として設けられる。凝結領域管15は、上端の上方連通部7および下端の下方連通部8でそれぞれ、装置本体B内に開放される。 Specifically, as shown in FIG. 1, a duct made of a heat exchange element that spirally runs along the vertical direction in the apparatus main body B is provided as the condensation region pipe 15. The condensation region pipe 15 is opened in the apparatus main body B at the upper communication portion 7 at the upper end and the lower communication portion 8 at the lower end, respectively.

気化領域1内へ噴霧されて気化しきれなかった原料海水4は、濃縮海水6として気化領域1内下部である装置本体Bの底部の濃縮海水6池に貯留する。装置本体Bの底部は装置本体Bの外部に備えたタンクと、バルブを介して連通することで、貯留した濃縮海水6を回収することができる。
The raw seawater 4 which has been sprayed into the vaporization region 1 and has not been vaporized is stored as concentrated seawater 6 in the concentrated seawater 6 pond at the bottom of the apparatus main body B which is the lower part in the vaporization region 1. The bottom of the apparatus main body B communicates with a tank provided outside the apparatus main body B via a valve, whereby the stored concentrated seawater 6 can be recovered.

上記課題を解決するため、本発明では下記(1)ないし(3)の手段を講じている。
(1)すなわち、本発明の気流循環による海水の淡水化装置は、
・装置本体内の上下方向に螺旋状に走ると共に上端及び下端でそれぞれ装置本体B内に開放された菅体からなり、管外部の「気化領域1」及び上下端が気化領域1に連通する管内部の「凝結領域2」と名づけた二つの領域間の境界壁を構成する凝結領域管15と、
・気化領域高所に設けられて装置本体内部上方を高温に蓄熱する熱供給部13と、
・装置本体下方に設けられ凝結領域2から気化領域1に気流を循環させる気流循環手段Fと、
・装置外から装置下方を貫通して凝結領域管内を通りその上端から気化領域1上部まで原料海水4を運ぶ間に熱交換して原料海水4を予熱する海水予熱管3と、
・気化領域1高所から原料海水を噴霧して蒸発させ装置内部高所に高温水蒸気を作るための海水噴霧装置Sを具備し、
・これらにより、熱交換体である凝結領域管を介して隣接した気化領域1および凝結領域2の両領域を気流循環させ熱交換し気化および水蒸気凝結を行なう海水の淡水化装置であって、
・気化領域高所に作った浮力の大きい高温水蒸気を凝結領域管上端から吸引し、凝結領域菅内部下方で温度の低い水に戻すときに放出される潜熱が、隣接する気化領域において海水を効果的に蒸発させることで、水蒸気凝結と海水蒸発が表裏一体に同時進行することを特徴とする。
(2)前記海水予熱管3は、
・装置外に取り出される海水淡水化の結果である凝結水の熱を原料海水に回収させる熱回収ステップと、
・凝結領域下部において水蒸気量の減少した気流からさらに水蒸気凝結を促進させる凝結促進ステップと、そして
・凝結領域内高所の高温水蒸気との熱交換によって原料海水を高温にする高温化ステップとを施すものである。
(3)前記気流循環による海水淡水化装置において、
熱供給部13によって装置内部高所を高温水蒸気で蓄熱高温することで装置内下方はその上方との間に温度差を有し、
また気化領域高所に原料海水を噴霧し発生させて得た高温水蒸気を気流循環手段により温度の低い凝結領域管の下方に吸引し水に戻すときに出る潜熱が隣接する気化領域海水の気化に直接使われ、
凝結領域と気化領域の両領域を気流循環させることで、水蒸気の気化および凝結を表裏一体に同時進行させた熱交換を継続する。
In order to solve the above problems, the present invention takes the following means (1) to (3).
(1) That is, the seawater desalination apparatus using the air circulation according to the present invention is:
A pipe that runs in a spiral manner in the vertical direction in the apparatus main body and is opened in the apparatus main body B at the upper end and the lower end, respectively, and the “vaporization region 1” outside the tube and the upper and lower ends communicate with the vaporization region 1 A condensing region tube 15 that forms a boundary wall between the two regions named "condensation region 2"inside;
A heat supply unit 13 that is provided at a high position in the vaporization region and stores heat inside the apparatus main body at high temperature;
An airflow circulation means F provided below the apparatus main body for circulating an airflow from the condensation region 2 to the vaporization region 1;
A seawater preheating pipe 3 that preheats the raw seawater 4 by exchanging heat while carrying the raw seawater 4 from the outside of the apparatus through the condensation area pipe, passing through the condensation area pipe to the upper part of the vaporization area 1;
・ Equipped with a seawater spraying device S for spraying and evaporating raw material seawater from the height of the vaporization area 1 to create high-temperature steam at the height inside the device,
-By these, a seawater desalination device that performs gas exchange and vaporization and water vapor condensation by circulating air through the vaporization region 1 and the condensation region 2 adjacent to each other through a condensation region pipe that is a heat exchanger,
・ Latent heat released when high-temperature steam with high buoyancy created in the high area of the vaporization zone is sucked from the upper end of the condensation zone pipe and returned to the low-temperature water inside the condensation zone 効果, and seawater is effective in the adjacent vaporization zone It is characterized by water vapor condensation and seawater vaporization proceeding simultaneously on the front and back by evaporating in a continuous manner.
(2) The seawater preheating pipe 3
A heat recovery step for recovering the heat of condensed water resulting from seawater desalination taken out of the apparatus into raw seawater;
Performing - a set accelerating step to promote the further steam condensation from the reduced gas stream of water vapor in the condensation region lower, and a high temperature step of the raw material seawater hot by heat exchange with hot water vapor-condensing region altitude Is.
(3) In the seawater desalination apparatus using the air flow circulation,
The high temperature inside the device is stored with high temperature steam by the heat supply unit 13 so that the lower part in the device has a temperature difference with the upper part,
In addition, the latent heat generated when the high-temperature water vapor obtained by spraying the raw material seawater at the high area of the vaporization zone is sucked back to the water by the airflow circulation means under the low-temperature condensation zone pipe is used to vaporize the adjacent vaporization zone seawater. Used directly,
By circulating the air flow in both the condensation area and the vaporization area, the heat exchange in which the vaporization and condensation of the water vapor proceed simultaneously on the front and back sides is continued.

Claims (3)

領域内の海水を気化して水蒸気を得る気化領域と、領域内の水蒸気を凝結して淡水を得る凝結領域とが、これら領域間の境界壁を構成する熱交換体を介して隣接し、各領域が、装置内の上方及び下方において連通してなり、
装置内に設けられて装置内上部を加熱および蓄熱する熱供給部と、装置内に設けられて装置内の気化領域及び凝結領域間で気流を循環させる気流循環手段と、装置内部を通り、原料海水を予熱しながら上方連通部付近の気化領域に送る海水予熱管と、熱供給部付近で海水を気化領域へ蒸発させる気化手段とを具備し、
海水予熱管で予熱されて高温となった原料海水を気化手段によって気化させると共に、装置内の気流を気流循環手段によって装置内で循環させることで、気化によってできた水蒸気を凝結させ、原料海水を淡水化することを特徴とする気流循環による海水の淡水化装置。
A vaporization region that vaporizes seawater in the region to obtain water vapor and a condensation region that condenses the water vapor in the region to obtain fresh water are adjacent to each other via a heat exchanger that forms a boundary wall between these regions, The area communicates in the upper and lower part of the device,
A heat supply unit provided in the apparatus for heating and storing the upper part of the apparatus, an air circulation unit provided in the apparatus for circulating an air flow between a vaporization region and a condensation region in the apparatus, and a raw material passing through the apparatus A seawater preheating pipe that sends the seawater to the vaporization region near the upper communication portion while preheating the seawater, and a vaporization means for evaporating the seawater to the vaporization region near the heat supply unit,
The raw seawater that has been preheated by the seawater preheating pipe is vaporized by the vaporization means, and the airflow in the apparatus is circulated in the apparatus by the airflow circulation means to condense the vapor generated by vaporization, thereby A seawater desalination apparatus using air circulation, characterized in that it is desalinated.
海水予熱管は装置内の凝結領域を通り、海水予熱管の管内外の熱交換によって、装置外に取り出される凝結領域内の凝結水の熱を原料海水に回収させる熱回収ステップと、凝結領域下部気流の水蒸気凝結を原料海水に促進させる凝結促進ステップと、凝結領域内の気流である水蒸気の凝結作用によって原料海水を高温にする高温化ステップとを施す請求項1記載の気流循環による海水の淡水化装置。   The heat recovery step in which the seawater preheating pipe passes through the condensation area in the device, and heat of the condensed water in the condensation area taken out of the apparatus is recovered by the heat exchange inside and outside the seawater preheating pipe, and the lower part of the condensation area The fresh water of seawater by airflow circulation according to claim 1, wherein a condensation promoting step for promoting steam condensing of the air current to the raw seawater and a step of increasing the temperature of the raw material seawater by condensing action of the water vapor that is the airflow in the condensing region are performed. Device. 気化手段は、気化領域上部から海水を噴霧する海水噴霧装置を具備する請求項1または2記載の気流循環による海水の淡水化装置。   The seawater desalination apparatus according to claim 1 or 2, wherein the vaporizing means includes a seawater spraying apparatus for spraying seawater from the upper part of the vaporization region.
JP2007246329A 2007-09-23 2007-09-23 Seawater desalination equipment using air circulation Expired - Fee Related JP4250775B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246329A JP4250775B1 (en) 2007-09-23 2007-09-23 Seawater desalination equipment using air circulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246329A JP4250775B1 (en) 2007-09-23 2007-09-23 Seawater desalination equipment using air circulation

Publications (2)

Publication Number Publication Date
JP4250775B1 JP4250775B1 (en) 2009-04-08
JP2009072734A true JP2009072734A (en) 2009-04-09

Family

ID=40608280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246329A Expired - Fee Related JP4250775B1 (en) 2007-09-23 2007-09-23 Seawater desalination equipment using air circulation

Country Status (1)

Country Link
JP (1) JP4250775B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051852A (en) * 2009-09-03 2011-03-17 Sumitomo Seika Chem Co Ltd Method and apparatus for producing carbon monoxide gas
KR101171262B1 (en) 2011-02-14 2012-08-06 아주대학교산학협력단 Power generator using vapor pressure difference between sea water and fresh water
CN102838221A (en) * 2012-09-19 2012-12-26 浙江省海洋水产养殖研究所 Water for ocean aquaculture, preparation method and application
CN105621514A (en) * 2016-03-18 2016-06-01 常州大学 Salt-containing wastewater concentration treatment device with air as medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451711A (en) * 2019-08-13 2019-11-15 武汉宏澳绿色能源工程有限责任公司 A kind of system and method for realizing high-salt wastewater condensing crystallizing using air air lift
WO2021064780A1 (en) * 2019-09-30 2021-04-08 義章 宮里 Steam generation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051852A (en) * 2009-09-03 2011-03-17 Sumitomo Seika Chem Co Ltd Method and apparatus for producing carbon monoxide gas
KR101171262B1 (en) 2011-02-14 2012-08-06 아주대학교산학협력단 Power generator using vapor pressure difference between sea water and fresh water
CN102838221A (en) * 2012-09-19 2012-12-26 浙江省海洋水产养殖研究所 Water for ocean aquaculture, preparation method and application
CN105621514A (en) * 2016-03-18 2016-06-01 常州大学 Salt-containing wastewater concentration treatment device with air as medium

Also Published As

Publication number Publication date
JP4250775B1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2010076841A1 (en) Air flow-circulation seawater desalination plant
US20190282921A1 (en) Systems including a condensing apparatus such as a bubble column condenser
JP4250775B1 (en) Seawater desalination equipment using air circulation
CN102557168B (en) Heat-pipe low-temperature multi-effect sea water desalinating system and process flow
CN106422378B (en) Method and apparatus for Water warfare
CN102259941B (en) Vertical tube seawater spewing and boiling evaporator
WO2006138516A2 (en) Air heated diffusion driven water purification system
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
JP2007319784A (en) Desalination system and its desalination method
US9309129B1 (en) Multi-effects desalination system
JP2015150553A (en) Fresh water generation device and fresh water generation method
CN104163460A (en) Strong brine evaporation and crystallization system
US9790103B2 (en) Hydrogen-powered desalination plant
KR101323160B1 (en) Marine vertical multistage desalinator
US9227853B2 (en) Desalination unit for the production of potable water from sub-soil brine
CN202542898U (en) Heat pipe type low-temperature multi-effect seawater dilution system
KR101587123B1 (en) Freshwater Apparatus of Seawater of MED and VMD Hybrid Type using Ejector
JP2012217963A (en) Seawater desalination apparatus
KR101377360B1 (en) high efficiency vacuum deaerctor
KR101974014B1 (en) Evaporative Desalination Apparatus, Desalination Method and System therewith
JP2015077584A (en) Desalination plant
KR101567655B1 (en) TVC-MED having Non-condensible Gas Venting System
KR101642842B1 (en) System for seawater concentrating and scale crystallizing
KR102189530B1 (en) MED having Separated Vapor Path
JP2010167403A (en) Distilling apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees