JP2510373B2 - Magnetic shield type bushing using composite superconductor - Google Patents

Magnetic shield type bushing using composite superconductor

Info

Publication number
JP2510373B2
JP2510373B2 JP4088152A JP8815292A JP2510373B2 JP 2510373 B2 JP2510373 B2 JP 2510373B2 JP 4088152 A JP4088152 A JP 4088152A JP 8815292 A JP8815292 A JP 8815292A JP 2510373 B2 JP2510373 B2 JP 2510373B2
Authority
JP
Japan
Prior art keywords
superconducting
magnetic shield
lead portion
outer cylinder
current lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4088152A
Other languages
Japanese (ja)
Other versions
JPH06103846A (en
Inventor
英吉 犬飼
良弘 阿部
光一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA KOGYO DAIGAKUCHO
Chubu Electric Power Co Inc
Original Assignee
NAGOYA KOGYO DAIGAKUCHO
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA KOGYO DAIGAKUCHO, Chubu Electric Power Co Inc filed Critical NAGOYA KOGYO DAIGAKUCHO
Priority to JP4088152A priority Critical patent/JP2510373B2/en
Publication of JPH06103846A publication Critical patent/JPH06103846A/en
Application granted granted Critical
Publication of JP2510373B2 publication Critical patent/JP2510373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Insulators (AREA)
  • Insulating Bodies (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導マグネットなど
の超電導応用機器を収納し、その超電導応用機器を液体
ヘリウム等の冷却体で冷却するように構成された機器収
納容器に取り付けられて外部電源装置と超電導応用機器
とを電気的に接続するためのブッシングに係り、詳しく
は超電導応用機器に電気的に接続された電流リ−ド部
と、その電流リ−ド部を外部磁界からシ−ルドさせる磁
気シ−ルド部に複合超電導体を用いた磁気シ−ルド型ブ
ッシングに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting application device such as a superconducting magnet, which is attached to an equipment storage container configured to cool the superconducting application device with a cooling body such as liquid helium. The present invention relates to a bushing for electrically connecting a device and a superconducting application device, and more specifically, a current lead portion electrically connected to the superconducting application device and the current lead portion shielded from an external magnetic field. The present invention relates to a magnetic shield type bushing using a composite superconductor in the magnetic shield part.

【0002】[0002]

【従来の技術】従来、図8に示すように、超電導マグネ
ットなどの超電導応用機器MGを収納して、その超電導
応用機器MGを液体ヘリウムHeで冷却する機器収納容
器53には、超電導応用機器MGに対して外部から所要
電力を供給する電源装置からの給電線54,55と液体
ヘリウムHe中の超電導応用機器MGに接続されたリ−
ド線56,57とを電気的に接続するためのブッシング
58が取り付けられている。上記ブッシング58は、高
温超電導材料のバルク材で形成された棒状の2本の電極
59,60を、上記液体ヘリウムHeからの対流冷熱に
より冷却し、超電導特性を得るように構成されたもの
で、その電極59,60の上端部には給電線54,55
が接続されるとともに、下端部にはリ−ド線56,57
が接続されている。
2. Description of the Related Art Conventionally, as shown in FIG. 8, a superconducting applied device MG such as a superconducting magnet is housed and a superconducting applied device MG is stored in a device storage container 53 for cooling the superconducting applied device MG with liquid helium He. To the superconducting application device MG in the liquid helium He and the power supply lines 54 and 55 from the power supply device that supplies the required power from the outside.
A bushing 58 for electrically connecting the lead wires 56 and 57 is attached. The bushing 58 is configured to cool two rod-shaped electrodes 59 and 60 formed of a bulk material of high temperature superconducting material by convection cold heat from the liquid helium He to obtain superconducting characteristics. At the upper ends of the electrodes 59 and 60, power supply lines 54 and 55 are provided.
Is connected and lead wires 56 and 57 are provided at the lower end.
Is connected.

【0003】[0003]

【発明が解決しようとする課題】上記従来のブッシング
58は、機械的強度が脆弱な高温超電導材料のバルク材
で形成された2本の電極59,60を用いているため、
通電回路が短絡したときの大電流による強い磁界を受け
る結果、電磁力が2本の電極59,60に印加され、そ
の電極59,60が折れてしまうことがあるという問題
がある。また、電極59,60にクエンチ現象が起きる
と、通電電流によるクエンチ発生箇所の発熱により温度
が上昇し、温度上昇域が急激に広がるため、電極59,
60全体の超電導特性が失われ、電気抵抗が増加する結
果、瞬時に発熱破壊を引き起こすという問題がある。更
に、外部磁界の影響を受けると、電極59,60が磁気
不安定状態になって発熱し、超電導特性が失われてしま
うという問題がある。また、高温超電導材料のバルク材
で形成された電極59,60に対してリ−ド線を接続す
る際、半田付け等が困難であるため電気的接続が容易で
ないという問題がある。
The conventional bushing 58 uses two electrodes 59 and 60 formed of a bulk material of a high temperature superconducting material having weak mechanical strength.
As a result of receiving a strong magnetic field due to a large current when the energizing circuit is short-circuited, an electromagnetic force is applied to the two electrodes 59 and 60, and the electrodes 59 and 60 may be broken. In addition, when the quenching phenomenon occurs in the electrodes 59, 60, the temperature rises due to heat generation at the quenching point due to the energization current, and the temperature rise region rapidly expands.
There is a problem that the superconducting properties of the entire 60 are lost and the electric resistance increases, and as a result, heat generation is instantaneously destroyed. Further, there is a problem that the electrodes 59 and 60 are in a magnetically unstable state and generate heat when being affected by an external magnetic field, and the superconducting characteristics are lost. Further, when connecting the lead wires to the electrodes 59 and 60 formed of the bulk material of the high temperature superconducting material, there is a problem that electrical connection is not easy because soldering or the like is difficult.

【0004】そこで本発明では、電源装置からの電流を
超電導応用機器に通電させるための電流リ−ド部と、そ
の電流リ−ド部を囲むように配置されて外部からの磁気
をシ−ルドする磁気シ−ルド部とに、金属と超電導物質
から成る複合超電導体を用いることにより、 (1)電流リ−ド部の機械的強度を強くして、回路が短
絡したようなときの大電流による電磁力が加わっても破
壊しないようにする。 (2)電流リ−ド部の超電導物質にクエンチ現象が起き
た場合でも、超電導応用機器に対する電流の通電を導電
率の高い金属の筒形容器を通してバイパスさせることに
より、発熱による装置破壊を防ぐ。 (3)電流リ−ド部に対する外部接続リ−ド線の電気的
接続を容易にさせる。 (4)電流リ−ド部の形状を任意に形成できるようにす
る。 (5)電流リ−ド部の形状に合わせて磁気シ−ルド部の
形状を任意に形成できるようにして、電流リ−ド部の輸
送電流の向上を図るとともに、磁気シ−ルド部の超電導
物質のマイスナ−効果によりはじき出された磁束を比透
磁率の高い金属を通すことにより、磁気シ−ルド効果を
高める。 ということを解決すべき技術的課題とするものである。
Therefore, in the present invention, a current lead portion for passing a current from the power supply device to the superconducting application equipment and a current lead portion are arranged so as to surround the current lead portion and shield the magnetism from the outside. By using a composite superconductor composed of a metal and a superconducting material for the magnetic shield part, (1) the mechanical strength of the current lead part is increased, and a large current is generated when the circuit is short-circuited. Do not destroy even if electromagnetic force is applied. (2) Even if a quench phenomenon occurs in the superconducting material in the current lead portion, the device is prevented from being damaged by heat generation by bypassing the passage of the electric current to the superconducting applied device through the metal cylindrical container having high conductivity. (3) The electrical connection of the external connection lead wire to the current lead portion is facilitated. (4) The shape of the current lead portion can be arbitrarily formed. (5) The shape of the magnetic shield part can be arbitrarily formed in accordance with the shape of the current shield part to improve the transport current of the current shield part and to superconduct the magnetic shield part. The magnetic shield effect is enhanced by passing the magnetic flux repelled by the Meissner effect of the substance through a metal having a high relative permeability. That is the technical problem to be solved.

【0005】[0005]

【課題を解決するための手段】上記課題解決のための技
術的手段は、超電導材を用いて製作された超電導応用機
器を収納し、その超電導応用機器を液体ヘリウムで冷却
する機器収納容器に取り付けられて、外部の電源装置と
前記超電導応用機器とを電気的に接続する電流リ−ド部
と、その電流リ−ド部を囲むように配置されて外部から
の磁気をシ−ルドする磁気シ−ルド部とを備えたブッシ
ングにおいて、前記電流リ−ド部を、導電率の高い金属
で形成された筒形容器と、その筒形容器に加熱溶融状態
で注入され冷却固化されたあと、筒形容器とともに熱処
理されて超電導物質に変換されたセラミック融液固化物
とを有する複合超電導体で構成する一方、前記磁気シ−
ルド部を、外筒及び内筒の内、少なくとも外筒が強磁性
体で形成された二重筒形金属容器と、その二重筒形金属
容器の外筒と内筒の間の空隙部に加熱溶融状態で注入さ
れ冷却固化されたあと、二重筒形金属容器とともに熱処
理されて超電導物質に変換されたセラミック融液固化物
とを有する複合超電導体で構成することである。
[Means for Solving the Problems] The technical means for solving the above-mentioned problems is to store a superconducting applied device manufactured by using a superconducting material, and attach the superconducting applied device to a device container for cooling the superconducting applied device with liquid helium. And a magnetic shield for electrically connecting an external power supply device and the superconducting application device, and a magnetic shield for surrounding the current lead portion to shield external magnetism. -In a bushing provided with a sleeve portion, the current lead portion is a tubular container formed of a metal having high conductivity, and the tubular container after being poured into the tubular container in a heating and melting state and cooled and solidified, The magnetic shield is composed of a composite superconductor having a ceramic melt solidified product which is heat-treated with the shaped container and converted into a superconducting substance.
The outer cylinder and the inner cylinder, at least the outer cylinder is a double-cylinder metal container in which at least the outer cylinder is formed of a ferromagnetic material, and the space between the outer cylinder and the inner cylinder of the double-cylinder metal container. It is composed of a composite superconductor having a ceramic melt solidified product which is poured into a heating and melting state, cooled and solidified, and then heat treated together with a double cylindrical metal container and converted into a superconducting substance.

【0006】[0006]

【作用】上記複合超電導体を用いた磁気シ−ルド型ブッ
シングにおいて、電流リ−ド部は、導電率の高い金属の
筒形容器に超電導物質に変換されたセラミック融液固化
物が挿入された構成になっているため、電流リ−ド部は
所要の冷却状態にあれば、電気抵抗がほとんどゼロで電
流を通電するとともに、超電導物質は比較的脆弱である
が、上記金属の筒形容器で機械的に補強されているた
め、例え二つの電流リ−ド部が近接された位置に配設さ
れて、その二つの電流リ−ド部に短絡電流等の大きな電
流が流れ、大きな電磁力が発生しても、電流リ−ド部が
機械的に破壊されるというような問題が解消される。ま
た、電流通電中に超電導物質がクエンチ状態になって
も、上記金属の筒形容器が電流のバイパス通路として機
能するため、超電導物質のジュ−ル熱による破損が防止
される。一方、磁気シ−ルド部は、少なくとも外筒が比
透磁率の高い強磁性体で形成されているため、超電導物
質のマイスナ−効果によりはじき出された磁束が比透磁
率の高い金属中を通るため、磁気シ−ルド効果が高くな
る。
In the magnetic shield type bushing using the above-mentioned composite superconductor, the current lead portion is formed by inserting the ceramic melt solidified substance converted into the superconducting substance into the metal cylindrical container having high conductivity. Because of the structure, if the current lead portion is in the required cooling state, it conducts current with almost zero electric resistance, and the superconducting material is relatively fragile. Since they are mechanically reinforced, for example, two current lead parts are arranged in close proximity, and a large current such as a short circuit current flows through the two current lead parts, causing a large electromagnetic force. Even if it occurs, the problem that the current lead part is mechanically destroyed is solved. Further, even if the superconducting substance is in a quenching state during the passing of electric current, the metal cylindrical container functions as a bypass passage for the electric current, so that the superconducting substance is prevented from being damaged by the jule heat. On the other hand, in the magnetic shield part, at least the outer cylinder is made of a ferromagnetic material having a high relative magnetic permeability, so that the magnetic flux repelled by the Meissner effect of the superconducting material passes through the metal having a high relative magnetic permeability. , The magnetic shield effect is enhanced.

【0007】[0007]

【実施例】次に、本発明の実施例を図面を参照しながら
説明する。図1は、本発明の第1実施例の全体的な構成
を示した断面図である。図1に示すように、液体ヘリウ
ム1を満たした機器収納容器2には、超電導応用機器と
しての超電導マグネット3が収納されている。また、機
器収納容器2には、超電導マグネット3のコイルに接続
されたリ−ド線4,5と超電導マグネット3に対して外
部から所要電力を供給する図示していない電源装置から
の給電線とを電気的に接続するための同一構造の二つの
ブッシング6,6が取り付けられている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view showing the overall structure of the first embodiment of the present invention. As shown in FIG. 1, a device storage container 2 filled with liquid helium 1 contains a superconducting magnet 3 as a superconducting applied device. Further, in the equipment container 2, lead wires 4 and 5 connected to the coil of the superconducting magnet 3 and a power supply line from a power supply device (not shown) for supplying required power to the superconducting magnet 3 from the outside. Two bushings 6 and 6 of the same structure for electrically connecting the two are attached.

【0008】各ブッシング6の中央部に配設された電流
リ−ド部6Aは、超電導マグネット3のコイルに接続さ
れたリ−ド線4,5が下端部に接続されるもので、超電
導マグネット3に通電される電流経路を形成している。
電流リ−ド部6Aは、導電率の高い金属、例えば銅で形
成された容器12に、超電導物質となる後述のセラミッ
ク融液固化物13が挿入されたものであり、そのセラミ
ック融液固化物13は、後述の熱処理によって超電導体
に変換可能なセラミック組成物が、加熱による溶融状態
で注入され冷却固化されたあと、更に、再加熱されるこ
とによって超電導物質に変換されたものである。
The current lead portion 6A arranged in the central portion of each bushing 6 is one in which the lead wires 4 and 5 connected to the coil of the superconducting magnet 3 are connected to the lower end portion. 3 forms a current path to be passed through.
The current lead portion 6A is a container 12 formed of a metal having a high conductivity, for example, copper, into which a ceramic melt solidified material 13 to be described later, which is a superconducting substance, is inserted. In No. 13, a ceramic composition that can be converted into a superconductor by a heat treatment described later is injected in a molten state by heating, cooled and solidified, and then reheated to be converted into a superconducting substance.

【0009】上記電流リ−ド部6Aを囲むように配置さ
れた円筒型の磁気シ−ルド部6Bは一体的に形成された
外筒14と内筒15の間の空隙部に、上記セラミック融
液固化物13と同様にして超電導物質に変換されたセラ
ミック融液固化物16が挿入されている。尚、上記外筒
14は比透磁率の高い鉄で形成され、内筒15は銅など
の導電率の高い金属で形成されている。あるいは外筒1
4及び内筒15の両方を比透磁率の高い鉄で形成しても
良い。以上のように構成された電流リ−ド部6Aと磁気
シ−ルド部6Bの間には、両者の間が一定の間隔になる
ように絶縁物17が介在されている。また、磁気シ−ル
ド部6Bの上端部には鉄製で円板状の蓋18が被せられ
ており、その蓋18の中心部には銅で形成された棒状の
端子19が図示していない絶縁体を介して取り付けられ
ている。この端子19には、超電導マグネット3に対し
て外部から所要電力を供給する図示していない電源装置
からの給電線が接続される。
A cylindrical magnetic shield portion 6B arranged so as to surround the current lead portion 6A is provided in the space between the outer cylinder 14 and the inner cylinder 15 formed integrally with each other, and the ceramic melt is formed. A ceramic melt solidified material 16 converted into a superconducting substance in the same manner as the liquid solidified material 13 is inserted. The outer cylinder 14 is made of iron having a high relative magnetic permeability, and the inner cylinder 15 is made of a metal having a high electric conductivity such as copper. Or outer cylinder 1
Both 4 and the inner cylinder 15 may be formed of iron having a high relative magnetic permeability. An insulator 17 is interposed between the current lead portion 6A and the magnetic shield portion 6B configured as described above so that a constant gap is provided therebetween. An upper end of the magnetic shield portion 6B is covered with a disk-shaped lid 18 made of iron, and a rod-shaped terminal 19 made of copper is provided at the center of the lid 18 for insulation. It is attached through the body. A power supply line from a power supply device (not shown) that supplies the superconducting magnet 3 with required power from the outside is connected to the terminal 19.

【0010】尚、上記電流リ−ド部6Aと磁気シ−ルド
部6Bの間には、液体窒素20が満たされており、超電
導物質に変換された前記セラミック融液固化物13,1
6が超電導体として機能するように電流リ−ド部6Aと
磁気シ−ルド部6Bを冷却する。その結果、磁気シ−ル
ド部6Bはマイスナ−効果により外部からの磁界をシ−
ルドするとともに、電流リ−ド部6Aは電気抵抗がほぼ
ゼロの状態で電流が通電される。
Liquid nitrogen 20 is filled between the current lead portion 6A and the magnetic shield portion 6B, and the ceramic melt solidified material 13, 1 converted into a superconducting substance.
The current lead portion 6A and the magnetic shield portion 6B are cooled so that 6 functions as a superconductor. As a result, the magnetic shield section 6B shields the magnetic field from the outside by the Meissner effect.
At the same time, the current is supplied to the current lead portion 6A with the electric resistance being substantially zero.

【0011】次に、電流リ−ド部6Aと磁気シ−ルド部
6Bの製作法の一例について説明する。 1.電流リ−ド部6A (1)導電率の高い金属、例えば銅で容器12を作製す
る。 (2)Bi2 3 ,SrCO3 ,CaCO3 ,CuO,
Ag2 Oの粉末をBi/Sr/Ca/Cu/Ag=2/
2/1/2/0.3のモル比になるように秤量して混合
したセラミック組成物をアルミナ製のるつぼに入れ、1
150℃に保持した電気炉で15分間加熱して融液化し
た状態で容器12に流し込み、室温まで冷却することに
より容器12とセラミック融液固化物13とを一体化さ
せ、そのあと、その一体化した複合体を810℃で50
時間、加熱することにより超電導特性を有する銅/セラ
ミック複合超電導体を形成し、これを電流リ−ド部6A
とした。尚、超電導特性測定の結果、上記のようにして
得られた電流リ−ド部6Aの電気抵抗ゼロを示す臨界温
度は約79K(ケルビン)、外部磁界ゼロにおける臨界
電流密度は約20A/cm2 であった。 2.磁気シ−ルド部6B (1)外筒14と内筒15を作製し、両者を一体化す
る。 (2)Bi2 3 ,SrCO3 ,CaCO3 ,CuO,
Ag2 Oの粉末をBi/Sr/Ca/Cu/Ag=2/
2/1/2/0.3のモル比になるように秤量して混合
したセラミック組成物をアルミナ製のるつぼに入れ、1
150℃に保持した電気炉で15分間加熱して融液化し
た状態で外筒14と内筒15とで形成された空隙部に流
し込み、室温まで冷却することにより外筒14と内筒1
5とセラミック融液固化物16とを一体化させ、そのあ
と、一体化した複合体を810℃で50時間、加熱する
ことにより超電導特性を有する金属/セラミック複合超
電導体を形成し、これを磁気シ−ルド部6Bとした。そ
して、超電導特性測定の結果、電気抵抗ゼロを示す臨界
温度及び外部磁界ゼロにおける臨界電流密度は、電流リ
−ド部6Aとほぼ同様の値を示した。尚、上記電流リ−
ド部6A、磁気シ−ルド部6Bを作製するためのセラミ
ック組成物は、ビスマス(Bi)−ストロンチウム(S
r)−カルシウム(Ca)−銅(Cu)−酸素(O)系
セラミックに限らず、希土類−バリウム(Ba)−銅
(Cu)−酸素(O)系セラミックでも、あるいは、熱
処理によって超電導体に変換可能なセラミック組成物で
あれば特に限定は無い。また、電流リ−ド部6Aは、容
器12の中空部にセラミック融液固化物13を充填した
単一構造にしたが、図7に示すように容器12の中空部
に線状の複合超電導体13Aを複数、並列に配設した構
成にしても良い。更に、それぞれの線状複合超電導体1
3Aをツイストしても良い。
Next, an example of a method of manufacturing the current lead portion 6A and the magnetic shield portion 6B will be described. 1. Current lead portion 6A (1) The container 12 is made of a metal having a high conductivity, such as copper. (2) Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO,
The powder of Ag 2 O was Bi / Sr / Ca / Cu / Ag = 2 /
The ceramic composition, which was weighed and mixed so as to have a molar ratio of 2/1/2 / 0.3, was placed in an alumina crucible, and 1
It is heated in an electric furnace maintained at 150 ° C. for 15 minutes and poured into the container 12 in a melted state, and cooled to room temperature to integrate the container 12 and the ceramic melt solidified product 13, and then the integration. 50 at 810 ° C
By heating for a long time, a copper / ceramic composite superconductor having superconducting properties is formed, and this is connected to the current lead portion 6A.
And As a result of the superconducting characteristic measurement, the critical temperature at which the electric resistance of the current lead portion 6A obtained as described above is zero is about 79 K (Kelvin), and the critical current density at zero external magnetic field is about 20 A / cm 2. Met. 2. Magnetic shield part 6B (1) The outer cylinder 14 and the inner cylinder 15 are produced, and both are integrated. (2) Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO,
The powder of Ag 2 O was Bi / Sr / Ca / Cu / Ag = 2 /
The ceramic composition, which was weighed and mixed so as to have a molar ratio of 2/1/2 / 0.3, was placed in an alumina crucible, and 1
It is heated in an electric furnace maintained at 150 ° C. for 15 minutes to be melted and poured into the void formed by the outer cylinder 14 and the inner cylinder 15 and cooled to room temperature to cool the outer cylinder 14 and the inner cylinder 1.
5 and the ceramic melt solidified product 16 are integrated, and then the integrated composite is heated at 810 ° C. for 50 hours to form a metal / ceramic composite superconductor having superconducting properties. The shield portion 6B is used. As a result of superconducting property measurement, the critical temperature showing zero electric resistance and the critical current density at zero external magnetic field showed almost the same values as those of the current lead portion 6A. The above current
The ceramic composition for forming the magnetic shield portion 6A and the magnetic shield portion 6B is bismuth (Bi) -strontium (S
r) -calcium (Ca) -copper (Cu) -oxygen (O) -based ceramics as well as rare earth-barium (Ba) -copper (Cu) -oxygen (O) -based ceramics, or heat treatment to form a superconductor. There is no particular limitation as long as it is a convertible ceramic composition. The current lead portion 6A has a single structure in which the hollow portion of the container 12 is filled with the ceramic melt solidified material 13. However, as shown in FIG. 7, the hollow portion of the container 12 has a linear composite superconductor. A plurality of 13A may be arranged in parallel. Furthermore, each linear composite superconductor 1
You may twist 3A.

【0012】以上のように構成されたブッシング6にお
いて、 (1)電流リ−ド部6Aの機械的強度を強くして、回路
が短絡したようなときの大電流による電磁力でも破壊し
ないようにできる。 (2)電流リ−ド部6Aの超電導物質(セラミック融液
固化物13)にクエンチ現象が起きた場合でも、超電導
マグネット3に対する電流の通電を銅などの導電率の高
い金属の容器12を通してバイパスさせることにより、
発熱による破壊を防ぐ。 (3)電流リ−ド部6Aに対するリ−ド線4,5等の電
気的接続を容易にすることができる。 (4)電流リ−ド部6Aの形状を任意に形成することが
できる。 (5)電流リ−ド部6Aの形状に合わせて磁気シ−ルド
部6Bの形状を任意に形成することが可能になり、電流
リ−ド部6Aの輸送電流の向上を図るとともに、磁気シ
−ルド部6Bの超電導物質(セラミック融液固化物1
6)のマイスナ−効果によりはじき出された磁束を比透
磁率の高い金属(外筒14)を通すことにより、磁気シ
−ルド効果を高めることができる。
In the bushing 6 constructed as described above, (1) the mechanical strength of the current lead portion 6A is strengthened so as not to be destroyed even by an electromagnetic force due to a large current when the circuit is short-circuited. it can. (2) Even if the superconducting substance (ceramic melt solidified material 13) of the current lead portion 6A is quenched, the current passing through the superconducting magnet 3 is bypassed through the metal container 12 having a high conductivity such as copper. By letting
Prevents destruction due to heat generation. (3) Electrical connection of the lead wires 4 and 5 to the current lead portion 6A can be facilitated. (4) The shape of the current lead portion 6A can be arbitrarily formed. (5) The shape of the magnetic shield portion 6B can be arbitrarily formed according to the shape of the current lead portion 6A, the transport current of the current lead portion 6A can be improved, and the magnetic shield portion can be formed. -The superconducting material of the field portion 6B (ceramic melt solidified material 1
The magnetic shield effect can be enhanced by passing the magnetic flux repelled by the Meissner effect of 6) through the metal (outer cylinder 14) having a high relative magnetic permeability.

【0013】図2は、本発明の第2実施例のブッシング
21の構成を示した斜視図であり、図3は第1実施例と
同様に超電導マグネット3を収納し、その超電導マグネ
ット3を液体ヘリウム1で冷却するように構成された機
器収納容器2に、第2実施例のブッシング21を取り付
けた状態の断面図である。
FIG. 2 is a perspective view showing the structure of the bushing 21 of the second embodiment of the present invention, and FIG. 3 stores the superconducting magnet 3 as in the first embodiment, and the superconducting magnet 3 is a liquid. It is sectional drawing of the state which attached the bushing 21 of 2nd Example to the equipment storage container 2 comprised so that it may cool with helium 1.

【0014】図2、図3に示すように、ブッシング21
の中央部に配設された電流リ−ド部21Aは、外側導体
22と内側導体23から成る同軸状に形成されている。
そして超電導マグネット3のコイルに接続されたリ−ド
線4は外側導体22に接続される一方、内側導体23に
はリ−ド線5が接続されている。電流リ−ド部21Aを
構成する外側導体22と内側導体23は、導電率の高い
金属、例えば銅で形成された2重管24と単管25それ
ぞれの中空部に、前記第1実施例と同様にして作製され
たセラミック融液固化物26,27が挿入されたもので
あり、第1実施例と同様の超電導特性を有するものであ
る。また、外側導体22と内側導体23の間には両者を
電気的に絶縁する絶縁物28が介在されている。
As shown in FIGS. 2 and 3, the bushing 21
The current lead portion 21A disposed in the central portion of the is formed coaxially with an outer conductor 22 and an inner conductor 23.
The lead wire 4 connected to the coil of the superconducting magnet 3 is connected to the outer conductor 22, while the lead wire 5 is connected to the inner conductor 23. The outer conductor 22 and the inner conductor 23 constituting the current lead portion 21A are formed in the hollow portions of the double pipe 24 and the single pipe 25, respectively, which are made of a metal having a high conductivity, such as copper, in the first embodiment. Ceramic melt solidified products 26 and 27 produced in the same manner are inserted, and have the same superconducting characteristics as those of the first embodiment. Further, an insulator 28 that electrically insulates the outer conductor 22 and the inner conductor 23 is interposed between the outer conductor 22 and the inner conductor 23.

【0015】上記電流リ−ド部21Aを囲むように配置
された円筒型の磁気シ−ルド部21Bは一体的に形成さ
れた外筒29と内筒30の間の空隙部に、上記セラミッ
ク融液固化物26,27と同様にして超電導物質に変換
されたセラミック融液固化物31が挿入されている。
尚、第1実施例と同様に、外筒29は比透磁率の高い鉄
で形成され、内筒30は銅で形成されているが、内筒3
0は鉄でも良い。以上のように構成された電流リ−ド部
21Aと磁気シ−ルド部21Bの間には、両者の間が一
定の間隔になるように絶縁物32が介在されている。ま
た、磁気シ−ルド部21Bの上端部には鉄製で円板状の
蓋33が被せられており、その蓋33には銅で形成され
た棒状の端子34,35が図示していない絶縁体を介し
て取り付けられている。この端子34,35の上端に
は、超電導マグネット3に対して外部から所要電力を供
給する図示していない電源装置からの給電線が接続され
る一方、下端には前記外側導体22と内側導体23の上
端部に接続されたリ−ド線36,37が接続されてい
る。
The cylindrical magnetic shield portion 21B arranged so as to surround the current lead portion 21A is provided in the space between the outer cylinder 29 and the inner cylinder 30 formed integrally with each other, and the ceramic melt is formed. A ceramic melt solidified material 31 converted into a superconducting material is inserted in the same manner as the liquid solidified materials 26 and 27.
As in the first embodiment, the outer cylinder 29 is made of iron having a high relative magnetic permeability, and the inner cylinder 30 is made of copper.
0 may be iron. An insulator 32 is interposed between the current lead portion 21A and the magnetic shield portion 21B configured as described above so that a constant gap is provided therebetween. Further, a disk-shaped lid 33 made of iron is put on the upper end of the magnetic shield portion 21B, and the lid 33 is made of copper and has rod-shaped terminals 34 and 35 which are not shown in the figure. Is attached through. The upper ends of the terminals 34 and 35 are connected to a power supply line from a power supply device (not shown) for supplying required power to the superconducting magnet 3 from the outside, while the lower ends thereof are connected to the outer conductor 22 and the inner conductor 23. Lead wires 36 and 37 connected to the upper end of the are connected.

【0016】上記構成のブッシング21の内部には液体
窒素38が満たされており、磁気シ−ルド部21Bはマ
イスナ−効果により外部からの磁界をシ−ルドするとと
もに、電流リ−ド部21Aは電気抵抗がほぼゼロの状態
で電流が通電される。
The bushing 21 having the above-described structure is filled with liquid nitrogen 38, the magnetic shield portion 21B shields a magnetic field from the outside due to the Meissner effect, and the current lead portion 21A has a magnetic field. current Ru is energized by electrical resistance substantially zero state.

【0017】以上のように構成されたブッシング21に
おいて、 (1)電流リ−ド部21Aの機械的強度を強くして、回
路が短絡したようなときの大電流による電磁力でも破壊
しないようにできる。 (2)電流リ−ド部21Aの超電導物質(セラミック融
液固化物26,27)にクエンチ現象が起きた場合で
も、超電導マグネット3に対する電流の通電を銅などの
導電率の高い金属で形成された2重管24、単管25を
通してバイパスさせることにより、発熱による破壊を防
ぐ。 (3)電流リ−ド部21Aに対するリ−ド線4,5等の
電気的接続を容易にすることができる。 (4)電流リ−ド部21Aの形状を任意に形成すること
ができる。 (5)磁気シ−ルド部21Bの超電導物質(セラミック
融液固化物31)のマイスナ−効果によりはじき出され
た磁束を比透磁率の高い金属(外筒29)を通すことに
より、磁気シ−ルド効果を高めることができる。
In the bushing 21 configured as described above, (1) the mechanical strength of the current lead portion 21A is increased so as not to be destroyed even by an electromagnetic force due to a large current when the circuit is short-circuited. it can. (2) Even when the superconducting material (ceramic melt solidified material 26, 27) of the current lead portion 21A is quenched, the superconducting magnet 3 is formed of a metal having a high conductivity such as copper. By bypassing the double pipe 24 and the single pipe 25, destruction due to heat generation is prevented. (3) The electrical connection of the lead wires 4, 5 and the like to the current lead portion 21A can be facilitated. (4) The shape of the current lead portion 21A can be arbitrarily formed. (5) The magnetic shield is generated by passing the magnetic flux repelled by the Meissner effect of the superconducting substance (ceramic melt solidified material 31) of the magnetic shield portion 21B through the metal (outer cylinder 29) having a high relative permeability. The effect can be enhanced.

【0018】次に、第3実施例について説明する。図4
は、第1実施例、第2実施例と同様に超電導マグネット
3を収納し、その超電導マグネット3を液体ヘリウム1
で冷却するように構成された機器収納容器2に、第3実
施例のブッシング41を取り付けた状態の断面図であ
る。この第3実施例のブッシング41は、前記第2実施
例におけるブッシング21の磁気シ−ルド部21Bと同
様に形成された磁気シ−ルド部41Bの中央部に、図5
に示すような外側コイル状導体42と、図6に示すよう
な内側コイル状導体43とから成る電流リ−ド部41A
を配設したものである。そして超電導マグネット3のコ
イルに接続されたリ−ド線4は外側コイル状導体42に
接続される一方、内側コイル状導体43にはリ−ド線5
が接続されている。
Next, a third embodiment will be described. FIG.
In the same manner as in the first and second embodiments, the superconducting magnet 3 is housed, and the superconducting magnet 3 is replaced with liquid helium 1.
It is sectional drawing in the state which attached the bushing 41 of 3rd Example to the apparatus storage container 2 comprised so that it might cool. The bushing 41 according to the third embodiment has a magnetic shield portion 41B formed in the same manner as the magnetic shield portion 21B of the bushing 21 according to the second embodiment.
A current lead portion 41A including an outer coil-shaped conductor 42 as shown in FIG. 6 and an inner coil-shaped conductor 43 as shown in FIG.
Is arranged. The lead wire 4 connected to the coil of the superconducting magnet 3 is connected to the outer coil-shaped conductor 42, while the lead wire 5 is connected to the inner coil-shaped conductor 43.
Is connected.

【0019】電流リ−ド部41Aを構成する外側コイル
状導体42と内側コイル状導体43は、導電率の高い金
属、例えば銅管でコイル状に形成されたあと、次のよう
にして複合超電導体に変換される。Bi2 3 ,SrC
3 ,CaCO3 ,CuO,Ag2 Oの粉末をBi/S
r/Ca/Cu/Ag=2/2/1/2/0.3のモル
比になるように秤量して混合したセラミック組成物をア
ルミナ製のるつぼに入れ、1150℃に保持した電気炉
で15分間加熱し、融液化したあと、それぞれの銅管の
一端を融液中に挿入し、反対側の端末から減圧して融液
を銅管内に吸引したあと室温まで冷却し、セラミック融
液固化物51,52を形成する。そのあと、各銅管とセ
ラミック融液固化物51,52とが一体化された複合体
を810℃で50時間、アルゴンガス中、あるいは空気
中で加熱することにより図5、図6に示すようなコイル
状の銅/セラミック複合超電導体が得られた。このよう
にして得られた外側コイル状導体42と内側コイル状導
体43は、前記第1実施例、及び第2実施例の電流リ−
ド部と同様の超電導特性を示した。
The outer coil-shaped conductor 42 and the inner coil-shaped conductor 43, which constitute the current lead portion 41A, are formed into a coil shape with a metal having a high conductivity, for example, a copper tube, and then the composite superconducting is carried out as follows. Converted to body. Bi 2 O 3 , SrC
The powder of O 3 , CaCO 3 , CuO, Ag 2 O is Bi / S.
The ceramic composition was weighed and mixed so that the molar ratio of r / Ca / Cu / Ag = 2/2/1/2 / 0.3 was put in an alumina crucible and the temperature was maintained at 1150 ° C. in an electric furnace. After heating for 15 minutes to melt, insert one end of each copper tube into the melt, depressurize from the opposite end and suck the melt into the copper tube, then cool to room temperature The solidified materials 51 and 52 are formed. Then, the composite body in which each copper tube and the ceramic melt solidified material 51, 52 are integrated is heated at 810 ° C. for 50 hours in argon gas or in air, as shown in FIGS. 5 and 6. A coil-shaped copper / ceramic composite superconductor was obtained. The outer coil-shaped conductor 42 and the inner coil-shaped conductor 43 obtained in this manner are the same as the current leads of the first and second embodiments.
It showed superconducting properties similar to those of the ridge.

【0020】以上のように構成された電流リ−ド部41
Aと磁気シ−ルド部41Bの間には両者の間が一定の間
隔になるように絶縁物44が介在されている。また、磁
気シ−ルド部41Bの上端部には鉄製で円板状の蓋45
が被せられており、その蓋45には銅で形成された棒状
の端子46,47が取り付けられている。この端子4
6,47の上端には、超電導マグネット3に対して外部
から所要電力を供給する図示していない電源装置からの
給電線が接続される一方、下端には前記外側コイル状導
体42と内側コイル状導体43の上端部に接続されたリ
−ド線48,49が接続される。
The current lead section 41 constructed as described above
An insulator 44 is interposed between A and the magnetic shield portion 41B so as to have a constant distance therebetween. Further, a disk-shaped lid 45 made of iron is provided on the upper end of the magnetic shield portion 41B.
The lid 45 is covered with rod-shaped terminals 46 and 47 made of copper. This terminal 4
A power supply line from a power supply device (not shown) for supplying required power to the superconducting magnet 3 from the outside is connected to the upper ends of the coils 6, 47, while the outer coil-shaped conductor 42 and the inner coil-shaped conductor 42 are connected to the lower ends. Lead wires 48, 49 connected to the upper end of the conductor 43 are connected.

【0021】上記構成のブッシング41は、内部に液体
窒素50が満たされており、磁気シ−ルド部41Bはマ
イスナ−効果により外部からの磁界をシ−ルドするとと
もに電流リ−ド部41Aは電気抵抗がほぼゼロの状態で
電流が通電される。
The bushing 41 having the above construction is filled with liquid nitrogen 50, the magnetic shield portion 41B shields a magnetic field from the outside by the Meissner effect, and the current lead portion 41A is electrically connected. resistance current Ru is energized at almost zero state.

【0022】[0022]

【発明の効果】以上のように本発明によれば、電流リ−
ド部は、導電率の高い金属で形成された筒形容器と、そ
の筒形容器に加熱溶融状態で注入され冷却固化されたあ
と、その筒形容器とともに熱処理されて超電導物質に変
換されたセラミック融液固化物とから成る複合超電導体
で構成する一方、磁気シ−ルド部は、外筒と内筒から成
り、少なくとも外筒が強磁性体で形成された二重筒形金
属容器と、その外筒と内筒の間の空間部に加熱溶融状態
で注入され冷却固化されたあと、その二重筒形金属容器
とともに熱処理されて超電導物質に変換されたセラミッ
ク融液固化物とから成る複合超電導体で構成したため、
以下のような効果がある。 (1)電流リ−ド部の機械的強度を強くして、回路が短
絡したようなときの大電流による電磁力でも破壊しない
ようにすることができる。 (2)電流リ−ド部の超電導物質にクエンチ現象が起き
た場合でも、超電導応用機器に対する電流の通電を導電
率の高い金属の筒形容器を通してバイパスさせることに
より、発熱による電流リ−ド部の破壊を防ぐことができ
る。 (3)電流リ−ド部に対する外部接続リ−ド線の電気的
接続が容易になる。 (4)電流リ−ド部の形状を任意に形成することができ
る。 (5)電流リ−ド部の形状に合わせて磁気シ−ルド部の
形状を任意に形成できるため、外部磁気のシ−ルドが十
分できるようになり、電流リ−ド部の輸送電流の向上を
図ることができるとともに、磁気シ−ルド部の超電導物
質のマイスナ−効果によりはじき出された磁束を比透磁
率の高い金属を通すことにより、磁気シ−ルド効果を高
めることができる。
As described above, according to the present invention, the current leakage is
The cylindrical part is made of a metal with high conductivity, and the ceramic is poured into the cylindrical container in a heating and melting state, cooled and solidified, and then heat-treated together with the cylindrical container to be converted into a superconducting substance. On the other hand, the magnetic shield part is composed of an outer cylinder and an inner cylinder, and a double cylinder metal container in which at least the outer cylinder is made of a ferromagnetic material, A composite superconductor consisting of a ceramic melt solidified product, which is poured into the space between the outer cylinder and the inner cylinder in a heated and molten state, cooled and solidified, and then heat-treated with the double cylindrical metal container and converted into a superconducting substance. Because it consisted of the body,
It has the following effects. (1) The mechanical strength of the current lead portion can be increased so as not to be destroyed even by an electromagnetic force due to a large current when the circuit is short-circuited. (2) Even if a quench phenomenon occurs in the superconducting material of the current lead portion, by passing the electric current to the superconducting applied device through the metal cylindrical container having high conductivity, the current lead portion due to heat generation The destruction of can be prevented. (3) The electrical connection of the external connection lead wire to the current lead portion is facilitated. (4) The shape of the current lead portion can be arbitrarily formed. (5) Since the shape of the magnetic shield portion can be arbitrarily formed according to the shape of the current lead portion, the shield of external magnetism can be sufficiently achieved, and the transport current of the current lead portion can be improved. In addition, the magnetic shield effect can be enhanced by passing the magnetic flux repelled by the Meissner effect of the superconducting material of the magnetic shield part through the metal having high relative permeability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の全体的な構成を示した断
面図である。
FIG. 1 is a sectional view showing an overall configuration of a first embodiment of the present invention.

【図2】本発明の第2実施例の斜視断面図である。FIG. 2 is a perspective sectional view of a second embodiment of the present invention.

【図3】本発明の第2実施例の全体的な構成を示した断
面図である。
FIG. 3 is a sectional view showing the overall configuration of a second embodiment of the present invention.

【図4】本発明の第3実施例の全体的な構成を示した断
面図である。
FIG. 4 is a sectional view showing the overall structure of a third embodiment of the present invention.

【図5】図4の部分詳細斜視図である。5 is a partial detailed perspective view of FIG. 4. FIG.

【図6】図4の部分詳細斜視図である。6 is a partial detailed perspective view of FIG. 4. FIG.

【図7】図1の部分変形例を示した斜視図である。FIG. 7 is a perspective view showing a partially modified example of FIG.

【図8】従来のブッシングの全体的な構成を示した断面
図である。
FIG. 8 is a cross-sectional view showing the overall configuration of a conventional bushing.

【符号の説明】[Explanation of symbols]

1 液体ヘリウム 2 機器収納容器 3 超電導マグネット 4 リ−ド線 5 リ−ド線 6 ブッシング 21 ブッシング 41 ブッシング 6A 電流リ−ド部 21A 電流リ−ド部 41A 電流リ−ド部 6B 磁気シ−ルド部 21B 磁気シ−ルド部 41B 磁気シ−ルド部 13 セラミック融液固化物 16 セラミック融液固化物 26 セラミック融液固化物 27 セラミック融液固化物 31 セラミック融液固化物 51 セラミック融液固化物 52 セラミック融液固化物 1 Liquid Helium 2 Equipment Storage Container 3 Superconducting Magnet 4 Lead Wire 5 Lead Wire 6 Bushing 21 Bushing 41 Bushing 6A Current Lead Part 21A Current Lead Part 41A Current Lead Part 6B Magnetic Shield Part 21B magnetic shield part 41B magnetic shield part 13 ceramic melt solidified material 16 ceramic melt solidified material 26 ceramic melt solidified material 27 ceramic melt solidified material 31 ceramic melt solidified material 51 ceramic melt solidified material 52 ceramic Melt solidified

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導材を用いて製作された超電導応用
機器を収納し、その超電導応用機器を液体ヘリウムで冷
却する機器収納容器に取り付けられて、外部の電源装置
と前記超電導応用機器とを電気的に接続する電流リ−ド
部と、その電流リ−ド部を囲むように配置されて外部か
らの磁気をシ−ルドする磁気シ−ルド部を備えたブッシ
ングにおいて、前記電流リ−ド部を、導電率の高い金属
で形成された筒形容器と、その筒形容器に加熱溶融状態
で注入され冷却固化されたあと、筒形容器とともに熱処
理されて超電導物質に変換されたセラミック融液固化物
とを有する複合超電導体で構成する一方、前記磁気シ−
ルド部を、外筒及び内筒の内、少なくとも外筒が強磁性
体で形成された二重筒形金属容器と、その二重筒形金属
容器の外筒と内筒の間の空隙部に加熱溶融状態で注入さ
れ冷却固化されたあと、二重筒形金属容器とともに熱処
理されて超電導物質に変換されたセラミック融液固化物
とを有する複合超電導体で構成したことを特徴とする複
合超電導体を用いた磁気シ−ルド型ブッシング。
1. A superconducting application device manufactured by using a superconducting material is housed, and the superconducting application device is attached to a device storage container that is cooled by liquid helium so that an external power supply device and the superconducting application device are electrically connected to each other. In a bushing that includes a current lead portion that is electrically connected and a magnetic shield portion that is arranged so as to surround the current lead portion and shields the magnetism from the outside. Is a cylindrical container made of metal with high conductivity, and is poured into the cylindrical container in a molten state in a molten state, cooled and solidified, and then heat-treated together with the cylindrical container to solidify the ceramic melt. And the magnetic shield.
The outer cylinder and the inner cylinder, at least the outer cylinder is a double-cylinder metal container in which at least the outer cylinder is formed of a ferromagnetic material, and the space between the outer cylinder and the inner cylinder of the double-cylinder metal container. A composite superconductor characterized by being composed of a ceramic melt solidified product which is poured into a heating and melting state, cooled and solidified, and then heat-treated together with a double cylindrical metal container and converted into a superconducting substance. Magnetic shield type bushing using.
【請求項2】 前記磁気リ−ド部は、外筒を比透磁率の
高い鉄で形成する一方、内筒を導電率の高い金属で形成
したことを特徴とする請求項1の複合超電導体を用いた
磁気シ−ルド型ブッシング。
2. The composite superconductor according to claim 1, wherein the magnetic lead portion has an outer cylinder made of iron having a high relative magnetic permeability and an inner cylinder made of a metal having a high electrical conductivity. Magnetic shield type bushing using.
【請求項3】 前記磁気リ−ド部は、外筒と内筒とを鉄
で形成したことを特徴とする請求項1の複合超電導体を
用いた磁気シ−ルド型ブッシング。
3. A magnetic shield type bushing using a composite superconductor according to claim 1, wherein the magnetic lead portion has an outer cylinder and an inner cylinder made of iron.
JP4088152A 1992-03-12 1992-03-12 Magnetic shield type bushing using composite superconductor Expired - Lifetime JP2510373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088152A JP2510373B2 (en) 1992-03-12 1992-03-12 Magnetic shield type bushing using composite superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088152A JP2510373B2 (en) 1992-03-12 1992-03-12 Magnetic shield type bushing using composite superconductor

Publications (2)

Publication Number Publication Date
JPH06103846A JPH06103846A (en) 1994-04-15
JP2510373B2 true JP2510373B2 (en) 1996-06-26

Family

ID=13934963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088152A Expired - Lifetime JP2510373B2 (en) 1992-03-12 1992-03-12 Magnetic shield type bushing using composite superconductor

Country Status (1)

Country Link
JP (1) JP2510373B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151159B2 (en) * 1996-12-27 2001-04-03 日本原子力研究所 Superconducting current lead
WO2003044424A2 (en) * 2001-11-21 2003-05-30 Oxford Magnet Technology Limited A cryogenic assembly
KR101011004B1 (en) * 2006-10-11 2011-01-26 현대중공업 주식회사 Current Lead for High Voltage Superconducting Machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292610A (en) * 1987-05-26 1988-11-29 Toshiba Corp Current supply lead for superconducting device
JPH01134998A (en) * 1987-11-20 1989-05-26 Citizen Watch Co Ltd Magnetic shielding device
JPH01251518A (en) * 1988-03-31 1989-10-06 Fujikura Ltd Manufacture of oxide superconductive wire and oxide superconductive multi-core
JPH02161260A (en) * 1988-12-13 1990-06-21 Mitsubishi Electric Corp Cold accumulation type very low temperature refrigerating machine
JPH03166795A (en) * 1989-11-27 1991-07-18 Nippon Telegr & Teleph Corp <Ntt> Magnetic shield material
JPH03242134A (en) * 1990-02-19 1991-10-29 Mitsui Mining & Smelting Co Ltd Magnetic shielding body for measuring living body magnetism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292610A (en) * 1987-05-26 1988-11-29 Toshiba Corp Current supply lead for superconducting device
JPH01134998A (en) * 1987-11-20 1989-05-26 Citizen Watch Co Ltd Magnetic shielding device
JPH01251518A (en) * 1988-03-31 1989-10-06 Fujikura Ltd Manufacture of oxide superconductive wire and oxide superconductive multi-core
JPH02161260A (en) * 1988-12-13 1990-06-21 Mitsubishi Electric Corp Cold accumulation type very low temperature refrigerating machine
JPH03166795A (en) * 1989-11-27 1991-07-18 Nippon Telegr & Teleph Corp <Ntt> Magnetic shield material
JPH03242134A (en) * 1990-02-19 1991-10-29 Mitsui Mining & Smelting Co Ltd Magnetic shielding body for measuring living body magnetism

Also Published As

Publication number Publication date
JPH06103846A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
EP0456927A1 (en) Superconducting wire and method of production thereof
US3710000A (en) Hybrid superconducting material
EP0837478B1 (en) Current lead for a superconducting magnet system free from liquid helium
US5138383A (en) Apparatus for using superconductivity
JP2010161064A (en) Arrangement having superconducting cable
JPH07142237A (en) Superconducting magnet device
US3523361A (en) Method of splicing superconductive wires
KR100666070B1 (en) Protected Superconducting Component and Method for Producing the Same
US6344956B1 (en) Oxide bulk superconducting current limiting element current
JP2510373B2 (en) Magnetic shield type bushing using composite superconductor
JPH1041125A (en) Superconducting coil
US3210610A (en) Apparatus for electrically insulating the turns of superconducting coils
US5308831A (en) Method of making a connection between a high critical temperature superconductive ceramic and a superconductor based on niobium-titanium
JPS63268204A (en) Superconducting magnet
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JP2564757B2 (en) High temperature superconductor
JPS63283003A (en) Superconducting coil device
JP3218649B2 (en) Current leads for superconducting devices
US6610921B1 (en) Method and apparatus for containing and directing a flowable superconducting slurry
KR100581556B1 (en) APPARATUS FOR MANUFACTURING MgB2 PIT SUPERCONDUCTING WIRE/TAPES BY SPS AND ITS METHOD
JPH01161810A (en) Power lead for superconductor device
JP2677001B2 (en) Siebrel phase compound superconductor
JP2598164B2 (en) Non-inductive magnetic shield type bushing using high temperature superconducting material
JPH05114753A (en) Current lead of superconductive magnet device
JPH04255203A (en) Oxide superconducting current lead

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term