JP2677001B2 - Siebrel phase compound superconductor - Google Patents
Siebrel phase compound superconductorInfo
- Publication number
- JP2677001B2 JP2677001B2 JP2272664A JP27266490A JP2677001B2 JP 2677001 B2 JP2677001 B2 JP 2677001B2 JP 2272664 A JP2272664 A JP 2272664A JP 27266490 A JP27266490 A JP 27266490A JP 2677001 B2 JP2677001 B2 JP 2677001B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- phase compound
- compound
- strain
- pbmo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明はシェブレル相化合物超電導体に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a Chevrel phase compound superconductor.
[従来の技術] 第4図は従来のPbMo6S8系化合物超電導線材の断面縮
小加工後の横断面図であり、第4図において(1)はMo
材、Mo硫化物材、Pb材、Pb硫化物材およびイオウ材の中
から最終的に、PbMo6S8系化合物は生成するような割合
で配合された混合材、(2)はこの混合材(1)の外周
を囲む障壁材で、例えばNbからなる。(3)はこの障壁
材(2)の外周を囲む安定化材で、例えば無酸素銅から
なる。(4)はこの安定化材(3)の外周を囲むシース
材で、例えばCu−30%Niからなる。(5)はこれらによ
って形成された複合体である。[Prior Art] FIG. 4 is a cross-sectional view of a conventional PbMo 6 S 8 compound superconducting wire after cross-section reduction processing. In FIG. 4, (1) indicates Mo.
Material, Mo sulphide material, Pb material, Pb sulphide material, and sulfur material, a mixture material that is finally compounded in such a ratio that a PbMo 6 S 8 compound is produced. (2) is this mixture material A barrier material surrounding the outer periphery of (1), which is made of Nb, for example. (3) is a stabilizing material that surrounds the outer periphery of the barrier material (2), and is made of, for example, oxygen-free copper. (4) is a sheath material which surrounds the outer periphery of the stabilizing material (3) and is made of, for example, Cu-30% Ni. (5) is a complex formed by these.
従来のPbMo6S8系化合物超電導線材の製造方法は、混
合材(1)を障壁材(2)と安定化材(3)とシース材
(4)との管材に充填した複合体(5)を断面縮小加工
を行ったのち熱処理し、内部的に、PbMo6S8系化合物を
生成させている。A conventional method for manufacturing a PbMo 6 S 8 compound superconducting wire is a composite (5) in which a mixed material (1) is filled in a tube material of a barrier material (2), a stabilizing material (3) and a sheath material (4). After being subjected to cross-section reduction processing, it was heat-treated to internally generate a PbMo 6 S 8 based compound.
障壁材(2)の役割は、混合材(1)の中に含まれて
いる硫黄成分が熱処理中に安定化材(3)と反応するの
を防ぐことであり、Nb、Taなどの高融点金属が主として
用いられる。また、安定化材(3)の役割は、超電導体
が何らかの原因で常電導状態に転移した時に、電気的、
熱的なバイパス経路として超電導体の安定化に寄与する
ことであり、無酸素銅などが用いられる。The role of the barrier material (2) is to prevent the sulfur component contained in the mixture material (1) from reacting with the stabilizing material (3) during the heat treatment, and has a high melting point such as Nb or Ta. Metals are mainly used. In addition, the role of the stabilizing material (3) is that when the superconductor changes to the normal conducting state for some reason,
It contributes to the stabilization of the superconductor as a thermal bypass path, and oxygen-free copper or the like is used.
シース材(4)の役割は、シェブレル相化合物と障壁
材(2)との間の熱膨張係数の差(シェブレル相化合
物:9〜10×10-6、Nb:7×106)から生ずる、冷却時の引
っ張りの残留歪を軽減することであり、Cu−30%Ni、SU
S304などが主として用いられる。The role of the sheath material (4) arises from the difference in the coefficient of thermal expansion between the chevrel phase compound and the barrier material (2) (chevrel phase compound: 9 to 10 × 10 −6 , Nb: 7 × 10 6 ). It is to reduce the residual strain of pulling during cooling. Cu-30% Ni, SU
S304 etc. are mainly used.
[発明が解決しようとする課題] 従来のPbMo6S8系化合物超電導線材では、障壁材であ
るNb管の外側に安定化材である無酸素銅管をかぶせてお
り、更にその外側にシース材であるCu−30%Ni管をかぶ
せているため、電気的・熱的な安定性は良いが、安定化
材である無酸素銅の降伏点が小さいためイールド起こし
てしまい、最外周層のシース材から障壁材へ加わる圧縮
歪(これは化合物層に働く冷却時の引っ張りの残留歪を
相殺或は軽減する効果がある。)を効果的に障壁材に作
用させることができず、そのため、綿材の歪特性に劣っ
ているという問題点があった。更に従来の線材では第4
図に見られるように四層構造を持つため、線材に対する
化合物層の割合が小さくなり、長尺線材をマグネット化
する時、線材の実効的な臨界電流密度であるλJcの値が
小さくなり、コンパクトで発生磁界が高いシェブレル相
化合物超電導マグネットが製作できないという問題点が
あった。[Problems to be Solved by the Invention] In a conventional PbMo 6 S 8 compound superconducting wire, an oxygen-free copper tube as a stabilizing material is covered on the outside of a Nb tube as a barrier material, and a sheath material is further provided on the outside thereof. Since it is covered with a Cu-30% Ni tube, which has good electrical and thermal stability, the oxygen-free copper, which is a stabilizing material, has a small yield point and causes a yield. The compressive strain applied from the material to the barrier material (which has the effect of canceling or reducing the residual strain of pulling acting on the compound layer during cooling) cannot be effectively applied to the barrier material, and therefore the cotton There was a problem that the strain characteristics of the material were inferior. Furthermore, it is the fourth in the conventional wire rod.
As shown in the figure, since it has a four-layer structure, the ratio of the compound layer to the wire is small, and when magnetizing a long wire, the value of λJc, which is the effective critical current density of the wire, is small, making it compact. However, there was a problem that a Chevrel phase compound superconducting magnet with a high magnetic field could not be manufactured.
本発明はかかる問題点を解決するためになされたもの
で、電気的・熱的に安定で、なおかつ線材の歪特性に優
れたシェブレル相化合物超電導体を得ることを目的とす
る。更に、線材に対する化合物層の割合が高くて線材の
実効的な臨界電流密度であるλJcの値が大きく、その結
果、線材をマグネット化する時コンパクトで発生磁界が
高いシェブレル相化合物超電導マグネットを得ることを
目的とする。The present invention has been made to solve the above problems, and an object thereof is to obtain a Chevrel phase compound superconductor which is electrically and thermally stable and has excellent strain characteristics of a wire. Furthermore, the ratio of the compound layer to the wire is high and the value of λJc, which is the effective critical current density of the wire, is large, and as a result, it is possible to obtain a Chevrel phase compound superconducting magnet that is compact and generates a high magnetic field when magnetizing the wire. With the goal.
[課題を解決するための手段] この発明に係るシェブレル相化合物超電導線材は、シ
ェブレル相化合物を生成する割合で配合した混合材、障
壁材、安定化材及びシース材から構成される複合体を断
面減少加工および熱処理したシェブレル相化合物超電導
体において、安定化材とシース材が共に障壁材に少なく
とも一部分が接したものである。[Means for Solving the Problem] The Chevrel phase compound superconducting wire according to the present invention has a cross section of a composite composed of a mixture material, a barrier material, a stabilizing material, and a sheath material mixed in a ratio that produces a Chevrel phase compound. In the reduced and heat-treated Chevrel phase compound superconductor, both the stabilizing material and the sheath material are in contact with at least a part of the barrier material.
[作用] 本発明におけるシェブレル相化合物超電導線材は、シ
ェブレル相化合物を生成する割合で配合した混合材、障
壁材、安定化材及びシース材から構成される複合体を断
面減少加工および熱処理してシェブレル相化合物超電導
体を製造する方法において、安定化材とシース材が共に
障壁材に少なくとも一部分が接したものであるため、電
気的・熱的に安定で、なおかつ、外周層のシース材から
障壁材へ直接圧縮歪を作用させることができるため、化
合物層に働く冷却時の引っ張りの残留歪を相殺或は軽減
することができ、歪特性に優れたシェブレル相化合物超
電導体を得ることができる。更に、線材断面に対する化
合物層の面積の割合を高くすることができるので、線材
の実効的な臨界電流密度であるλJcの値を大きくする事
ができ、線材をマグネット化する時コンパクトで発生磁
界が高いシェブレル相化合物超電導マグネットを得るこ
とができる。[Operation] The Chevrel phase compound superconducting wire according to the present invention is a composite material composed of a mixture material, a barrier material, a stabilizing material, and a sheath material mixed at a ratio that produces a Chevrel phase compound, and is subjected to cross-section reduction processing and heat treatment to obtain a Chevrel In the method for producing a phase compound superconductor, both the stabilizing material and the sheath material are in contact with the barrier material at least in part, so that they are electrically and thermally stable, and the sheath material from the outer peripheral layer is changed to the barrier material. Since the compressive strain can be directly applied to the compound layer, the residual strain of pulling acting on the compound layer during cooling can be offset or reduced, and a Chevrel phase compound superconductor having excellent strain characteristics can be obtained. Furthermore, since the ratio of the area of the compound layer to the cross section of the wire can be increased, the value of λJc, which is the effective critical current density of the wire, can be increased, and when the wire is magnetized, it is compact and the generated magnetic field is small. A high Chevrel phase compound superconducting magnet can be obtained.
[実施例] 以下、この発明のシェブレル相化合物超電導マグネッ
トの製造方法を実施例により具体的に説明する。[Examples] Hereinafter, a method for producing the Chevrel phase compound superconducting magnet of the present invention will be specifically described with reference to Examples.
実施例1 先ず、PbMo6S8系化合物の構成成分として、Mo、Pb、M
o2S3粉末(粒度はそれぞれ3μm、44μm以下、2μ
m、純度はいずれも99.9%)をPb:Mo2S3=1.2:0.8:2.6
のモル比でできるだけ均一に混合し、プレスにより成形
して混合材とした。この混合材を障壁材であるNb管に挿
入し、安定化材である無酸素銅の角材と共にシース材で
ある、Cu−30%Ni製のビレットに入れて複合体を得た。
第1図はこの複合体の横断面図であり、(1)は上記の
ようにして得られた混合材、(2)はこの混合材(1)
の外周を囲む障壁材で、例えばNbからなる。(3)はこ
の障壁材(2)の外周に少なくとも一部分が接している
安定化材で、例えば無酸素銅からなる。(4)は障壁材
(2)の外周に少なくとも一部分が接しているシース材
で、例えばCu−30%Niからなる。(5)はこれらによっ
て形成された複合体である。Example 1 First, Mo, Pb, and M were used as constituent components of a PbMo 6 S 8 compound.
o 2 S 3 powder (particle size is 3μm, 44μm or less, 2μ
m, purity 99.9%) Pb: Mo 2 S 3 = 1.2: 0.8: 2.6
The mixed material was mixed as uniformly as possible in a molar ratio of, and molded by pressing to obtain a mixed material. This mixed material was inserted into a Nb tube as a barrier material, and put into a billet made of Cu-30% Ni, which is a sheath material, together with a square material of oxygen-free copper, which is a stabilizing material, to obtain a composite.
FIG. 1 is a cross-sectional view of this composite body. (1) is the mixed material obtained as described above, (2) is this mixed material (1)
Is a barrier material that surrounds the outer periphery of, for example, Nb. Reference numeral (3) is a stabilizing material, at least a portion of which is in contact with the outer periphery of the barrier material (2), and is made of, for example, oxygen-free copper. (4) is a sheath material, at least a portion of which is in contact with the outer periphery of the barrier material (2), and is made of, for example, Cu-30% Ni. (5) is a complex formed by these.
この複合体(5)のビレットを電子ビーム溶接器によ
り真空封じを行ったのち、静水圧押出し加工、及び冷間
引抜き加工により断面縮小加工し、直径0.92mmまで伸線
して長さ約100mのPbMo6S8系化合物超電導線材を得た。The billet of this composite (5) was vacuum-sealed with an electron beam welder, and then subjected to hydrostatic extrusion and cold drawing to reduce the cross-section, and wire-draw it to a diameter of 0.92 mm to a length of about 100 m. A PbMo 6 S 8 compound superconducting wire was obtained.
次にこの線材を直径36mm、高さが50mmのセラミックス
ボビンにソレノイド状に12ターン巻線して、この線材の
両端を端封じ加工を行ったのち、温度1000℃で2時間ア
ルゴン雰囲気中で熱処理を行い、PbMo6S8系化合物を生
成した。このようにして得られた線材の一部を採取し、
両端を電流リードにハンダ付けし、必要な電圧タップを
取り出して、液体ヘリウム中で外部磁界15Tのもとで臨
海電流(Ic)の測定を行った。Next, this wire is wound on a ceramic bobbin with a diameter of 36 mm and a height of 50 mm for 12 turns in a solenoid shape, and both ends of this wire are end-sealed, then heat treated at a temperature of 1000 ° C for 2 hours in an argon atmosphere. Then, a PbMo 6 S 8 based compound was produced. A part of the wire rod obtained in this way is collected,
Both ends were soldered to a current lead, the required voltage tap was taken out, and the critical current (Ic) was measured in liquid helium under an external magnetic field of 15T.
その結果、Icは67.2A、化合物層当りの臨界電流密度
(Jc)、及び全断面積当りのJcはそれぞれ328A/mm2及び
101.0A/mm2となり、従来の線材のIc、化合物層当りのJc
及び全断面積当りのJcがそれぞれ52.3A、325A/mm2及び7
8.7A/mm2であったのに比べて化合物層当りのJcはほとん
ど変わりないが、全断面積当りのJc、即ち線材のIcが28
%も向上していることを確認した。また本線材のIc近傍
での電圧発生の様子は、従来の線材と同様にクエンチを
発生しておらず、電気的・熱的に安定であることを確認
した。As a result, Ic was 67.2A, critical current density (Jc) per compound layer, and Jc per total cross-sectional area were 328A / mm 2 and
101.0A / mm 2 next, Ic conventional wire, Jc per compound layer
And Jc per total cross-sectional area of 52.3A, 325A / mm 2 and 7 respectively
Compared with 8.7 A / mm 2 , Jc per compound layer is almost the same, but Jc per total cross-sectional area, that is, Ic of the wire is 28
It has been confirmed that the percentage has also improved. In addition, it was confirmed that the state of voltage generation in the vicinity of Ic of this wire rod was electrically and thermally stable without quenching as in the conventional wire rod.
次にこの線材の歪−Ic特性を調べるため、液体ヘリウ
ム中で外部磁界9TのもとでIcの歪依存性の測定を行っ
た。第2図は歪−Ic特性図であり、縦軸はIcの最大値で
規格化した値、横軸は歪を示す。図において曲線
(A)、及び(B)はそれぞれ本発明による線材及び従
来の線材の特性を示している。第2図から判かるよう
に、本発明による線材の特性は不可逆歪が0.42%と、歪
が0.3%を超えても歪ゼロの時に比べてIcが90%以上あ
るのに比べて、従来の線材の特性は不可逆歪が0.14%
と、歪が0.2%を越えるとIcはほぼゼロとなり、本発明
による線材の歪−Ic特性は、従来の線材の特性に比べて
大幅に改善されているのを確認した。Next, in order to investigate the strain-Ic characteristic of this wire, the strain dependence of Ic was measured in liquid helium under an external magnetic field of 9T. FIG. 2 is a distortion-Ic characteristic diagram, in which the vertical axis shows the value normalized by the maximum value of Ic, and the horizontal axis shows the distortion. In the figure, curves (A) and (B) show the characteristics of the wire rod according to the present invention and the conventional wire rod, respectively. As can be seen from FIG. 2, the characteristic of the wire rod according to the present invention is that the irreversible strain is 0.42%, and even if the strain exceeds 0.3%, the Ic is 90% or more as compared with the time when the strain is zero. The irreversible strain of the wire is 0.14%
Then, when the strain exceeds 0.2%, Ic becomes almost zero, and it is confirmed that the strain-Ic characteristic of the wire according to the present invention is significantly improved as compared with the characteristic of the conventional wire.
実施例2 PbMo6S8系化合物の構成成分として、Mo、Pb、Mo2S3粉
末(粒度はそれぞれ3μm、44μm以下、2μm、純度
はいずれも99.9%)をPb:Mo:Mo2S3=1.2:0.8:2.6のモル
比でできるだけ均一に混合し、プレスにより成形した混
合材とした。この混合材を障壁材であるNb管に挿入し、
単芯の素線を製作した。次に第4図の(4)に示すよう
な断面形状をしたCu−30%Ni製のビレット(外径47mm、
長さ250mm)を製作し、この中に上記の単芯素線を7
本、安定化材である無酸素銅の角材と共に入れて複合体
を形成した。第3図はこの複合体の横断面図であり、
(1)は混合材、(2)は障壁材で、例えばNbからな
る。(3)は安定化材で、例えば無酸素銅からなる。
(4)はシース材で、例えばCu−30%Niからなる。
(5)はこれらによって形成された複合体である。この
複合体のビレットを電子ビーム溶接器により真空封じを
行ったのち、静水圧押出し加工及び冷間引抜き加工によ
り断面縮小加工し、直径0.92mmまで伸線して長さ約400m
のPbMo6S8系化合物超電導線材を得た。As a constituent of Example 2 PbMo 6 S 8 type compound, Mo, Pb, Mo 2 S 3 powder (each particle size 3 [mu] m, 44 .mu.m or less, 2 [mu] m, even 99.9% both purity) of Pb: Mo: Mo 2 S 3 = 1.2: 0.8: 2.6 with a molar ratio of as uniform as possible, and pressed to obtain a mixed material. Insert this mixed material into the Nb pipe that is the barrier material,
I made a single core wire. Next, a billet (outer diameter 47 mm, made of Cu-30% Ni, having a cross-sectional shape as shown in FIG.
250mm in length, and the above single core wire
This was put together with a stabilizer and oxygen-free copper square pieces to form a composite. FIG. 3 is a cross-sectional view of this composite,
(1) is a mixed material, (2) is a barrier material, which is made of Nb, for example. (3) is a stabilizer, which is made of oxygen-free copper, for example.
(4) is a sheath material, which is made of Cu-30% Ni, for example.
(5) is a complex formed by these. After vacuum sealing the billet of this composite with an electron beam welder, the cross-section was reduced by hydrostatic extrusion and cold drawing, and the wire was drawn to a diameter of 0.92 mm and a length of approximately 400 m.
A PbMo 6 S 8 compound superconducting wire was obtained.
次にこの線材を直径36mm、高さが50mmのセラミックス
ボビンにソレノイド状に12ターン巻線して、この線材の
両端を端封じ加工を行ったのち、温度1000℃で2時間ア
ルゴン雰囲気中で熱処理を行い、PbMo6S8系化合物を生
成した。このようにして得られた線材の一部を採取し、
両端を電流リードにハンダ付けし、必要な電圧タップを
取り出して、液体ヘリウム中で外部磁界15Tのもとで臨
界電流(Ic)の測定を行った。Next, this wire is wound on a ceramic bobbin with a diameter of 36 mm and a height of 50 mm for 12 turns in a solenoid shape, and both ends of this wire are end-sealed, then heat treated at a temperature of 1000 ° C for 2 hours in an argon atmosphere. Then, a PbMo 6 S 8 based compound was produced. A part of the wire rod obtained in this way is collected,
Both ends were soldered to a current lead, the required voltage tap was taken out, and the critical current (Ic) was measured in liquid helium under an external magnetic field of 15T.
その結果Icは67.6A、化合物層当りのJc及び全断面積
当りのJcは、それぞれ321A/mm2及び101.8A/mm2となり、
実施例1の線材とほぼ同じ特性が得られた。これを従来
の線材と比べると、化合物層当りのJcはほとんど変わり
ないが、全断面積当りのJc、即ち線材のIcは実施例1の
線材の時と同様に28%も向上していることを確認した。
また、電圧発生の様子は、従来の線材と同様にクエンチ
は発生せず、電気的・熱的に安定であることを確認し
た。As a result, Ic was 67.6 A, Jc per compound layer and Jc per total cross-sectional area were 321 A / mm 2 and 101.8 A / mm 2 , respectively,
Almost the same characteristics as the wire rod of Example 1 were obtained. Compared with the conventional wire rod, the Jc per compound layer was almost unchanged, but the Jc per total cross-sectional area, that is, the Ic of the wire rod was improved by 28% as in the wire rod of Example 1. It was confirmed.
In addition, it was confirmed that the state of voltage generation was electrically and thermally stable without quenching as in the case of conventional wire rods.
次にこの線材の歪−Ic特性を調べるため、液体ヘリウ
ム中で外部磁界9TのもとでIcの歪依存性の測定を行っ
た。その結果、本発明による線材の特性は不可逆歪が0.
40%と、実施例1の線材とほぼ同じ特性を持ち、従来の
線材の不可逆歪が0.14%に比べて大幅に改善されている
のを確認した。Next, in order to investigate the strain-Ic characteristic of this wire, the strain dependence of Ic was measured in liquid helium under an external magnetic field of 9T. As a result, the characteristics of the wire according to the present invention are irreversible strain of 0.
It was 40%, which was almost the same as that of the wire of Example 1, and it was confirmed that the irreversible strain of the conventional wire was significantly improved as compared with 0.14%.
本発明において用いられるシェブレル相化合物超電導
線材としては、代表的にはPbMo6S8系化合物が特性が高
いため実用化の研究がされているが、本発明はシェブレ
ル相化合物線材の組成や構成を問わず有効であることは
言うまでもない。即ちPbMo6S8系化合物として、例えば
実施例で行ったPb1.2Mo6S7.8、PbMo6S7、PbMo6S7、PbMo
5.1S6などMoやSの値が変化したものもあるが、これら
を総称してPbMo6S8系化合物として説明している。更
に、M′として例えばGa、Bi、Sn、La、Ho、Eu、Gd、L
u、Y、Nd、Inなどを小量添加したPbM′xMo6S8化合物も
PbMo6S8系化合物に含まれている。また、線材を構成す
るバリヤ材およびシース材がNbおよびCu−30%Ni以外
に、例えばTaおよびSUS304或はMoおよびSUS304などの組
合せもあるが、何れの組合せについても本発明が有効で
あることは言うまでもない。As the Chevrel phase compound superconducting wire used in the present invention, a PbMo 6 S 8 based compound is typically studied for practical use because of its high characteristics, but the present invention is directed to the composition and constitution of the Chevrel phase compound wire. It goes without saying that it is effective in any case. That is, as a PbMo 6 S 8 type compound, for example, Pb 1.2 Mo 6 S 7.8 , PbMo 6 S 7 , PbMo 6 S 7 , PbMo performed in the examples.
There are some compounds such as 5.1 S 6 that have different values of Mo and S, but these are collectively described as PbMo 6 S 8 series compounds. Further, as M ′, for example, Ga, Bi, Sn, La, Ho, Eu, Gd, L
PbM ′ x Mo 6 S 8 compounds with small additions of u, Y, Nd, In, etc.
Included in PbMo 6 S 8 series compounds. In addition to the Nb and Cu-30% Ni barrier materials and sheath materials constituting the wire, there are combinations such as Ta and SUS304 or Mo and SUS304, but the present invention is effective for any combination. Needless to say.
[発明の効果] 本発明は以上説明した通り、安定化材とシース材を共
に障壁材に少なくとも一部分が接するように構成したの
で、電気的・熱的に安定で、なおかつ線材の歪特性に優
れたシェブレル相化合物超電導体が得られる効果があ
る。更に、線材断面に対する化合物層の面積の割合を高
くすることができるので、線材の実効的な臨界電流密度
であるλJcの値を大きくすることができ、線材をマグネ
ット化する時コパクトで発生磁界が高いシェブレル相化
合物超電導マグネットが得られる効果がある。[Advantages of the Invention] As described above, the present invention is configured such that both the stabilizing material and the sheath material are in contact with at least a part of the barrier material, so that it is electrically and thermally stable, and the strain characteristic of the wire is excellent. It also has the effect of obtaining a Chevrel phase compound superconductor. Furthermore, since the ratio of the area of the compound layer to the cross section of the wire can be increased, the value of λJc, which is the effective critical current density of the wire, can be increased, and when the wire is magnetized, the generated magnetic field is compact. There is an effect that a high Chevrel phase compound superconducting magnet can be obtained.
第1図はこの発明の一実施例により製造されたシェブレ
ル相化合物超電導線材の横断面図、第2図は本発明の実
施例により製造された線材の歪−Ic特性図、第3図はこ
の発明の他の実施例により製造された線材の横断面図、
第4図は従来のシェブレル相化合物超電導線材の横断面
図である。 図において、(1)は混合材、(2)は障壁材で、例え
ばNbからなる。(3)は安定化材で、例えば無酸素銅か
らなる。(4)はシース材で、例えばCu−30%Niからな
る。(5)はこれらによって形成された複合体である。 なお、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a cross-sectional view of a Chevrel phase compound superconducting wire manufactured according to an embodiment of the present invention, FIG. 2 is a strain-Ic characteristic diagram of the wire manufactured according to the embodiment of the present invention, and FIG. A cross-sectional view of a wire produced according to another embodiment of the invention,
FIG. 4 is a cross-sectional view of a conventional Chevrel phase compound superconducting wire. In the figure, (1) is a mixed material, and (2) is a barrier material, which is made of Nb, for example. (3) is a stabilizer, which is made of oxygen-free copper, for example. (4) is a sheath material, which is made of Cu-30% Ni, for example. (5) is a complex formed by these. In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (1)
した混合材、障壁材、安定化合材及びシース材から構成
される複合体を断面減少加工および熱処理してシェブレ
ル相化合物超電導体を製造する方法において、上記安定
化材と上記シース材が共に障壁材に少なくとも一部分が
接していることを特徴とするシェブレル相化合物超電導
体。1. A method for producing a Chevrel phase compound superconductor by subjecting a composite composed of a mixture material, a barrier material, a stabilizing compound material and a sheath material mixed in a proportion that produces a Chevrel phase compound, to cross-section reduction processing and heat treatment. In the Chebrel phase compound superconductor, the stabilizing material and the sheath material both contact at least a part of the barrier material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2272664A JP2677001B2 (en) | 1990-10-09 | 1990-10-09 | Siebrel phase compound superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2272664A JP2677001B2 (en) | 1990-10-09 | 1990-10-09 | Siebrel phase compound superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04147520A JPH04147520A (en) | 1992-05-21 |
JP2677001B2 true JP2677001B2 (en) | 1997-11-17 |
Family
ID=17517068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2272664A Expired - Lifetime JP2677001B2 (en) | 1990-10-09 | 1990-10-09 | Siebrel phase compound superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2677001B2 (en) |
-
1990
- 1990-10-09 JP JP2272664A patent/JP2677001B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04147520A (en) | 1992-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1903620B1 (en) | Nb3Sn superconducting wire and precursor therefor | |
US5116810A (en) | Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby | |
US3523361A (en) | Method of splicing superconductive wires | |
DE1932086A1 (en) | Waveguide made of superconductor material and a metal that is normally electrically conductive at the operating temperature of the superconductor material | |
JP2002525790A (en) | Protected superconducting component and its manufacturing method | |
EP0171918B1 (en) | A process for producing a pbmo6s8 type compound superconductor | |
DE3905424C2 (en) | Process for producing a superconducting connection between oxide superconductors | |
JP2677001B2 (en) | Siebrel phase compound superconductor | |
WO2006035065A2 (en) | Composite wire for winding a magnet coil, method for the production thereof and magnet coil | |
JP3866926B2 (en) | Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire | |
US5628835A (en) | Nb3 Al Group superconductor containing ultrafine Nb2 Al particles | |
JPS6122511A (en) | Method of producing pbmo6s8 compound superconductive wire blank | |
US5084439A (en) | Meltable high temperature Tb-R-Ba-Cu-O superconductor | |
JPH0737443A (en) | Bismuth-containing oxide superconductive wire and preparation of wire thereof | |
JP3333276B2 (en) | Method of manufacturing flux jump type current limiting member | |
US5482917A (en) | T1-M-Cu-O-F superconductors | |
Tachikawa et al. | Studies on the multifilamentary V 3 Ga wire | |
JP3013253B2 (en) | Oxide superconductor wire and method of making | |
JPH05101723A (en) | Manufacture of oxide superconductive wire | |
JPH01123405A (en) | Manufacture of superconducting power lead | |
JPH0349114A (en) | Manufacture of chevrel phase compound superconductor | |
JP2006107843A (en) | Tape-shaped superconductive wire | |
JPH06309967A (en) | Manufacture of oxide type superconducting wire | |
JPS61231143A (en) | Manufacture of stabilizing material for composite superconductor | |
JPH04296408A (en) | Oxide superconducting wire rod and manufacture thereof |