JP2507597Y2 - Dissolved oxygen removal device - Google Patents

Dissolved oxygen removal device

Info

Publication number
JP2507597Y2
JP2507597Y2 JP1989149284U JP14928489U JP2507597Y2 JP 2507597 Y2 JP2507597 Y2 JP 2507597Y2 JP 1989149284 U JP1989149284 U JP 1989149284U JP 14928489 U JP14928489 U JP 14928489U JP 2507597 Y2 JP2507597 Y2 JP 2507597Y2
Authority
JP
Japan
Prior art keywords
water
membrane
degassing
dissolved oxygen
deoxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989149284U
Other languages
Japanese (ja)
Other versions
JPH0390685U (en
Inventor
志げみ 遠藤
真理 国分
隆 堀中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP1989149284U priority Critical patent/JP2507597Y2/en
Publication of JPH0390685U publication Critical patent/JPH0390685U/ja
Application granted granted Critical
Publication of JP2507597Y2 publication Critical patent/JP2507597Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、例えば電子工業における半導体ウエハーの
洗浄用水、医薬用水、高度分析機器用水等各種用水の製
造に用いられる装置に係わり、詳しくは膜脱気装置と脱
酸素樹脂を用いた脱酸素装置との組合せにより溶存酸素
濃度の極めて低い脱酸素水を効率よく得るようにした溶
存酸素除去装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an apparatus used for producing various kinds of water such as water for cleaning semiconductor wafers, medical water, and water for advanced analytical instruments in the electronic industry, for example, a membrane. The present invention relates to a dissolved oxygen removing device that efficiently obtains deoxygenated water having an extremely low dissolved oxygen concentration by combining a degassing device and a deoxidizing device using a deoxidizing resin.

〈従来の技術〉 電子工業における半導体ウエハーの洗浄用水、医薬用
水、高度分析機器用水等の用水としては、酸化皮膜や微
生物の発生をもたらす虞れのある溶存酸素をできうる限
り除去した水が使用されている。当該溶存酸素の除去方
法としては、例えば弱塩基性アニオン交換樹脂に還元性
の銅を保持させてなる脱酸素樹脂を使って除去する方法
や酸素等の気体は通すが液体は透過させない性質を有す
る脱気膜を装着した膜脱気装置による方法が用いられて
いる。また近年に至って当該膜脱気装置と、窒素を水中
にパージして水中の酸素分圧を下げることにより溶存酸
素を除去する装置とを組み合わせた装置も研究され、一
部実用化されている。
<Prior art> Water for cleaning semiconductor wafers in the electronics industry, pharmaceutical water, water for advanced analytical instruments, etc., is water that has removed dissolved oxygen as much as possible that may cause generation of oxide films and microorganisms. Has been done. As a method of removing the dissolved oxygen, for example, there is a method of removing it using a deoxidizing resin in which a reducing copper is held in a weakly basic anion exchange resin, or a property of passing a gas such as oxygen but not allowing a liquid to pass therethrough. A method using a membrane deaerator equipped with a deaerator is used. Further, in recent years, an apparatus in which the membrane degassing apparatus and an apparatus for removing dissolved oxygen by purging nitrogen into water to reduce the oxygen partial pressure in water have been studied and partially put into practical use.

当該装置のフローを第2図を用いて説明すると、給水
管51を介して純水等の原水を脱気膜53を装着した膜脱気
装置52に供給し、原水を脱気膜53で仕切られた一方の室
に通流させるとともに、脱気膜53で仕切られた他方の室
を真空装置54を用いて減圧することにより、脱気膜53を
通して酸素や遊離炭酸等の気体のみを系外に排出させる
第一段の脱気処理を行わせ、次いでその処理水である脱
気水中に残留する溶存酸素を更に下げるため第一段の処
理水を窒素パージ装置55に供給する。当該パージ装置55
は通常複数の曝気槽56(但し、図では一槽しか示してい
ない)と、窒素供給装置57と、その両者を連結する窒素
供給管58からなり、第一段の処理水を曝気槽56の上部か
ら供給するとともに曝気槽56の下部より窒素供給管58を
介して窒素ガスを供給して曝気し、曝気槽56内で第一段
の処理水と窒素ガスを接触させることにより第一段の処
理水中の酸素分圧を下げて溶存酸素を大気中に排出させ
る第二段の曝気処理を行う。
The flow of the apparatus will be described with reference to FIG. 2. Raw water such as pure water is supplied to a membrane degassing apparatus 52 equipped with a degassing membrane 53 via a water supply pipe 51, and the raw water is separated by the degassing membrane 53. Flow through one of the chambers, while decompressing the other chamber partitioned by the degassing membrane 53 using a vacuum device 54, so that only gases such as oxygen and free carbon dioxide pass through the degassing membrane 53 outside the system. The first-stage treated water is supplied to the nitrogen purge device 55 in order to further reduce the dissolved oxygen remaining in the treated water, which is the deaerated water. The purging device 55
Is usually composed of a plurality of aeration tanks 56 (however, only one tank is shown in the figure), a nitrogen supply device 57, and a nitrogen supply pipe 58 connecting both of them, and the treated water in the first stage is stored in the aeration tank 56. The nitrogen gas is supplied from the upper portion of the aeration tank 56 through the nitrogen supply pipe 58 from the lower portion of the aeration tank 56 for aeration, and the treated water of the first stage is brought into contact with the nitrogen gas in the aeration tank 56 so that the first stage A second stage aeration process is performed to lower the oxygen partial pressure in the treated water and discharge dissolved oxygen into the atmosphere.

しかし以上述べた方法にも種々問題がある。すなわ
ち、脱酸素樹脂を用いて処理する場合には溶存酸素濃度
が8〜9mg/lというような通常の水を直接処理しようと
すると、脱酸素樹脂のライフが極めて短くなり、脱酸素
樹脂の交換あるいは再生を頻繁に行わねばならないか、
またはこれらの頻度を少なくするために樹脂量を多くす
る必要があり、その結果脱酸素装置を大きくしなければ
ならない欠点がある。また、膜脱気装置のみを使用した
場合には、例えばメガビット級の半導体ウエハー洗浄用
水で要求されるような溶存酸素濃度が10ppb程度の処理
水を得ようとすると高真空、高排気量の真空装置が必要
であり、その結果真空装置が大型になってしまうと同時
に価格も高くなる。
However, the above-mentioned method also has various problems. That is, in the case of treating with a deoxidizing resin, if you try to directly treat ordinary water with a dissolved oxygen concentration of 8 to 9 mg / l, the life of the deoxidizing resin becomes extremely short and the replacement of the deoxidizing resin Or you have to play it often,
Alternatively, it is necessary to increase the amount of resin in order to reduce the frequency of these, and as a result, there is a drawback that the deoxidizer must be enlarged. Further, when only the membrane degassing device is used, for example, when trying to obtain treated water having a dissolved oxygen concentration of about 10 ppb, which is required for megabit-class semiconductor wafer cleaning water, a high vacuum and a high displacement vacuum are obtained. Equipment is required, which results in bulky vacuum equipment and high cost.

更に、膜脱気装置と窒素パージ装置とを組み合わせた
装置においては第二段目の曝気処理において外部より窒
素を供給しなければならず、そのため例えば窒素ボンベ
等の窒素供給装置を設置しなければならない。しかし、
窒素パージによる溶存酸素の除去は比較的効率が悪く大
量の窒素を必要とするため、頻繁に窒素ボンベを交換し
なくてはならずメンテナンスに手間がかかるとともにラ
ンニングコストが大幅に増大するという欠点がある。ま
た、曝気槽一段では充分に溶存酸素を除去することが難
しいため、通常は複数段の脱気槽を設置する必要があ
り、このため設置スペースが大きくならざるをえない欠
点も持っている。
Further, in a device in which a membrane degassing device and a nitrogen purging device are combined, nitrogen must be supplied from the outside in the second stage aeration process, and therefore, for example, a nitrogen supply device such as a nitrogen cylinder must be installed. I won't. But,
Removal of dissolved oxygen by nitrogen purging is relatively inefficient and requires a large amount of nitrogen.Therefore, it is necessary to change the nitrogen cylinder frequently, which requires maintenance, and the running cost increases significantly. is there. Further, since it is difficult to sufficiently remove dissolved oxygen in one stage of the aeration tank, it is usually necessary to install a plurality of stages of deaeration tanks, which has a drawback that the installation space must be increased.

〈考案が解決しようとする問題点〉 本考案は以上のような現状に鑑みてなされたもので、
その目的とするところは外部からの窒素等のパージ用気
体の供給を必要とせず、かつ装置全体をコンパクトに納
めることが出来、しかも高度に溶存酸素を除去すること
ができる溶存酸素除去装置を提供するところにある。
<Problems to be solved by the invention> The present invention has been made in view of the above-mentioned current situation.
The purpose is to provide a dissolved oxygen removal device that does not require external supply of purging gas such as nitrogen, can be compactly housed in the entire device, and can highly remove dissolved oxygen. There is a place to do it.

〈問題点を解決するための手段〉 上記の目的を達成するためになされた本考案は、原水
中に溶存している酸素等の溶存気体を除去するための脱
気膜を装着した膜脱気装置と、当該膜脱気装置の処理水
である脱気水中に残留する微量の溶存酸素を更に除去す
るための脱酸素樹脂を充填した脱酸素装置とからなる溶
存酸素除去装置であって、前記膜脱気装置の脱気膜で仕
切られた一方の室に給水管を介して原水を供給するため
のポンプと、脱気膜で仕切られた他方の室を減圧するた
めのエゼクタとを有し、当該エゼクタの駆動水側を前記
給水管から分岐した駆動水管と連通させたことを特徴と
するものである。
<Means for Solving Problems> The present invention made to achieve the above-mentioned object is a membrane degasser equipped with a degassing membrane for removing dissolved gas such as oxygen dissolved in raw water. A device and a dissolved oxygen removing device comprising a deoxygenating device filled with a deoxidizing resin for further removing a trace amount of dissolved oxygen remaining in degassed water that is treated water of the membrane deaerating device, wherein: It has a pump for supplying raw water to one chamber partitioned by the degassing membrane of the membrane degassing device via a water supply pipe, and an ejector for depressurizing the other chamber partitioned by the degassing membrane. The drive water side of the ejector is connected to a drive water pipe branched from the water supply pipe.

以下に本考案を図面に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本考案の実施態様の一例を示すフローの説明
図であり、図中1は酸素等の気体は通すが液体は透過さ
せない性質を有する脱気膜2を装着した膜脱気装置、3
は当該膜脱気装置1の後段に配置した脱酸素装置であ
り、当該脱酸素装置3の内部には例えば弱塩基性アニオ
ン交換樹脂に還元性の銅を保持させた脱酸素樹脂4が充
填されている。また、5は膜脱気装置1の脱気膜2で仕
切られた一方の室に原水を供給するためのポンプであ
り、6は膜脱気装置1の脱気膜2で仕切られた他方の室
を減圧するためのエゼクタであり、当該エゼクタ6の吸
引側は吸引管7によって前記他方の室に接続されてお
り、また当該エゼクタ6の駆動水側は駆動水管8によっ
て、前記ポンプ5と膜脱気装置1とを接続する給水管9
の途中に分岐して接続されている。なお、10は原水を貯
留するための原水槽、11は膜脱気装置1の処理水である
脱気水を取り出して後段の脱酸素装置3に導くための脱
気水管、12は脱酸素装置3の処理水を取り出すための処
理水管であり、また13、14はそれぞれ弁を示している。
FIG. 1 is an explanatory view of a flow showing an example of an embodiment of the present invention, in which 1 is a membrane degassing apparatus equipped with a degassing membrane 2 having a property of passing a gas such as oxygen but not a liquid, Three
Is a deoxidizing device arranged in the latter stage of the membrane degassing device 1, and the deoxidizing device 3 is filled with, for example, a deoxidizing resin 4 in which reducing copper is held in a weakly basic anion exchange resin. ing. Further, 5 is a pump for supplying raw water to one chamber partitioned by the degassing membrane 2 of the membrane degassing device 1, and 6 is the other pumped by the degassing membrane 2 of the membrane degassing device 1. An ejector for decompressing the chamber, the suction side of the ejector 6 is connected to the other chamber by a suction pipe 7, and the driving water side of the ejector 6 is a driving water pipe 8 for connecting the pump 5 and the membrane. Water supply pipe 9 for connecting with the deaerator 1
Is branched and connected in the middle of. In addition, 10 is a raw water tank for storing raw water, 11 is a degassing water pipe for taking out degassed water which is the treated water of the membrane degassing device 1 and guiding it to the deoxidizing device 3 in the subsequent stage, and 12 is a deoxidizing device. 3 is a treated water pipe for taking out treated water, and 13 and 14 are valves.

〈作用〉 本考案は以上の構成からなり、脱酸素水である処理水
を得る場合はポンプ5を駆動し、当該ポンプ5によって
吐出された原水の一部を給水管9および弁14を介して膜
脱気装置1に供給し脱気膜2で仕切られた一方の室に通
流させるとともに、ポンプ5によって吐出された原水の
他部を駆動水管8および弁13を介してエゼクタ6の駆動
水側に供給して当該エゼクタ6を駆動し、脱気膜2で仕
切られた他方の室を吸引管7を介して減圧する。なお、
膜脱気装置1に供給する原水の流量は弁14によって調節
し、またエゼクタ6に供給する原水の流量は、例えば吸
引管7に付設した負圧計(図示せず)の指示が目的とす
る真空度となるように弁13によって調節する。
<Operation> The present invention is configured as described above. When the treated water that is deoxidized water is obtained, the pump 5 is driven and a part of the raw water discharged by the pump 5 is supplied through the water supply pipe 9 and the valve 14. The water supplied to the membrane degassing device 1 is made to flow through one chamber partitioned by the degassing membrane 2, and the other part of the raw water discharged by the pump 5 is driven by the ejector 6 through the drive water pipe 8 and the valve 13. To the side to drive the ejector 6 to depressurize the other chamber partitioned by the degassing membrane 2 via the suction pipe 7. In addition,
The flow rate of the raw water supplied to the membrane deaerator 1 is adjusted by the valve 14, and the flow rate of the raw water supplied to the ejector 6 is controlled by a vacuum gauge (not shown) attached to the suction pipe 7, for example. Adjust with valve 13 to the desired degree.

このような操作によって脱気膜2で仕切られた他方の
室は減圧状態となり、当該脱気膜2を介して一方の室に
通流する原水中の気体のみが他方の室に吸引され、酸素
あるいは遊離炭酸等の溶存気体の大部分が除去された脱
気水が脱気水管11から得られる。なお、このようにして
除去した気体が混入している気液混合水はブローする
が、場合によっては原水槽10内に回収しても差し支えな
い。なお、当該ブロー水を原水槽10に回収する場合はブ
ロー水中に過剰に溶解している溶存ガスが大気中に放出
できるような容量を有する比較的大きな原水槽10を用い
ることが望ましい。
By such an operation, the other chamber partitioned by the degassing membrane 2 is in a depressurized state, and only the gas in the raw water flowing through the degassing membrane 2 into the one chamber is sucked into the other chamber and oxygen Alternatively, deaerated water from which most of dissolved gas such as free carbonic acid is removed is obtained from the deaerated water pipe 11. The gas-liquid mixed water mixed with the gas thus removed is blown, but it may be recovered in the raw water tank 10 in some cases. When the blow water is collected in the raw water tank 10, it is preferable to use a relatively large raw water tank 10 having a capacity capable of releasing dissolved gas excessively dissolved in the blow water into the atmosphere.

次いで、脱気水管11から得られる、溶存酸素等の気体
の大部分が除去された脱気水を後段の脱酸素装置3に通
流させる。当該脱酸素装置3においては、内部に充填さ
れている、還元性の銅を保持させた弱塩基性アニオン交
換樹脂からなる脱酸素樹脂4に脱気水が接触することに
より、その強力な還元作用によって脱気水中に残留して
いる微量の溶存酸素が除去され、溶存酸素濃度が例えば
10ppb以下というような処理水が、処理水管11を介して
容易に得られる。
Next, the degassed water obtained from the degassed water pipe 11 from which most of the gas such as dissolved oxygen has been removed is passed through the deoxidizing device 3 in the subsequent stage. In the deoxidizing apparatus 3, deaerated water comes into contact with the deoxygenating resin 4 which is filled inside and made of a weakly basic anion exchange resin holding reducible copper, so that its strong reducing action is achieved. The trace amount of dissolved oxygen remaining in the degassed water is removed by the
Treated water of 10 ppb or less can be easily obtained through the treated water pipe 11.

本考案における膜脱気装置に用いる脱気膜は、気体は
通すが液体は透過させない性質を有する膜であればいか
なるものでもよく、例えば四フッ化エチレン製、ポリエ
チレン製、ポリプロピレン製等の膜に孔径として0.01μ
m〜10μm程度の孔を多数有したいわゆる撥水性多孔質
膜、あるいは孔を有しないが気体のみを浸透させる性質
を有する、例えばシリコンゴム製の膜等公知のものを使
用することができ、またその形状も中空糸状、スパイラ
ル状、管膜状、平膜状等を用いることができる。
The degassing membrane used in the membrane degassing apparatus of the present invention may be any membrane as long as it has a property of allowing gas to pass but not liquid, such as a membrane made of tetrafluoroethylene, polyethylene, polypropylene or the like. 0.01μ as pore size
It is possible to use a so-called water-repellent porous membrane having a large number of pores of about m to 10 μm, or a known membrane having no pore but having a property of allowing only gas to permeate, such as a silicone rubber membrane. The shape may be hollow fiber, spiral, tubular film, flat film, or the like.

なお、通常は中空糸状または管膜状の脱気膜を用い、
これらのチューブの内側を前述した一方の室としてその
一端からチューブの内側に水を通過させ、当該チューブ
の外側を前述した他方の室としてエゼクタによって減圧
することによりチューブ内の内側から外側に気体を排除
し、脱気水を当該チューブの他端から取り出すように構
成する。
In addition, usually, using a hollow fiber-shaped or tubular membrane-shaped degassing membrane,
Water is passed from one end to the inside of the tube as one of the chambers described above on the inside of these tubes, and gas is discharged from the inside to the outside of the tubes by decompressing the outside of the tubes as the other chamber described above by an ejector. It is configured to be removed and the deaerated water is taken out from the other end of the tube.

また、本考案における脱酸素装置に用いる脱酸素樹脂
としては、例えば前述した弱塩基性アニオン交換樹脂に
還元性の銅(1価の銅または金属銅)を保持させたも
の、あるいは強塩基性アニオン交換樹脂を亜硫酸形また
は酸性亜硫酸形としたもの、更には強塩基性アニオン交
換樹脂の表面にパラジウムを担持させたもの(例えば、
バイエル社製レバチットOC1045)等の公知のものを使用
することができる。
The deoxidizing resin used in the deoxidizing apparatus of the present invention is, for example, a weakly basic anion exchange resin having reducible copper (monovalent copper or metallic copper) retained thereon, or a strongly basic anion. Sulfite type or acidic sulfite type of the exchange resin, and further a strongly basic anion exchange resin having palladium supported on the surface (for example,
Known materials such as Bayer Corporation's Revachit OC1045) can be used.

上記例の脱酸素樹脂のうち、還元性の銅を保持させた
弱塩基性アニオン交換樹脂と、亜硫酸形あるいは酸性亜
硫酸形の強塩基性アニオン交換樹脂は、還元性の銅ある
いは亜硫酸、酸性亜硫酸の還元作用によって水中の溶存
酸素を除去するものであり、被処理水をこれらの樹脂に
単に接触させるだけで溶存酸素を除去することができ
る。しかし、強塩基性アニオン交換樹脂の表面にパラジ
ウムを担持させた脱酸素樹脂の場合は、水中の溶存酸素
と当該水中に外部より溶解させた水素とを、前記パラジ
ウムを触媒として反応させて水となすことによって溶存
酸素を除去するものであり、したがってこの場合は反応
させるべき水素を外部より添加、溶解させた後に脱酸素
樹脂と接触させなければならない。
Among the deoxygenating resins of the above examples, a weakly basic anion exchange resin that retains reducing copper and a strong basic anion exchange resin of a sulfite type or an acidic sulfite type are reducing copper or sulfurous acid, and an acidic sulfite of It is intended to remove dissolved oxygen in water by the reducing action, and the dissolved oxygen can be removed by simply bringing the water to be treated into contact with these resins. However, in the case of a deoxygenation resin in which palladium is supported on the surface of a strongly basic anion exchange resin, dissolved oxygen in water and hydrogen dissolved from the outside in the water are reacted with water by reacting the palladium as a catalyst. By doing so, dissolved oxygen is removed. Therefore, in this case, hydrogen to be reacted must be added and dissolved from the outside and then contacted with the deoxidizing resin.

なお、通常は脱酸素樹脂として還元性の銅を保持させ
た弱塩基性アニオン交換樹脂を用いるとよく、亜硫酸形
または酸性亜硫酸形の強塩基性アニオン交換樹脂の場合
は、還元性の銅を保持させた前記樹脂に比べてその脱酸
素能力がやや劣り、またパラジウムを担持させた強塩基
性アニオン交換樹脂の場合は、危険な水素を取り扱わね
ばならないとともに処理水中に未反応の水素が残留した
場合にその後処理が問題となるという若干の難点を有し
ている。
In addition, it is usually good to use a weakly basic anion exchange resin that retains reducing copper as a deoxidizing resin.In the case of a sulfite type or acidic sulfite type strongly basic anion exchange resin, it retains reducing copper. The deoxygenating capacity is slightly inferior to the above-mentioned resin, and in the case of a strongly basic anion exchange resin supporting palladium, when dangerous hydrogen must be handled and unreacted hydrogen remains in the treated water. In addition, there is a slight drawback that the treatment becomes a problem.

また脱酸素樹脂を充填した脱酸素装置の後段に混床式
ポリシャー等のイオン交換装置を設置して、水中のイオ
ン性不純物をさらに除去するようにすることもできる。
It is also possible to install an ion exchange device such as a mixed bed polisher in the subsequent stage of the deoxidizing device filled with the deoxidizing resin to further remove the ionic impurities in the water.

〈効果〉 本考案装置は以上のような構成および作用からなり、
当該装置により溶存酸素濃度を例えば10ppb以下とした
処理水を容易に得ることができ、よって酸化皮膜や微生
物の発生を嫌う半導体ウエハーの洗浄用水、医薬用水、
高度分析用水等の各種用水の製造に好適に用いることが
できる。
<Effect> The device of the present invention has the above-mentioned configuration and operation,
Treated water with a dissolved oxygen concentration of, for example, 10 ppb or less can be easily obtained by the device, and therefore, cleaning water for semiconductor wafers that dislike the generation of oxide films and microorganisms, medical water,
It can be suitably used for producing various types of water such as water for advanced analysis.

本考案装置における膜脱気装置は溶存酸素の荒取り用
としての役目を果たすものであり、当該膜脱気装置によ
って水中の溶存酸素濃度を数百ppb程度にまで低下させ
ればよいのであって溶存酸素を極限まで低下させる必要
はなく、したがって膜脱気装置のみによって低溶存酸素
濃度の処理水を得る場合に比べて、使用する真空装置を
小型かつ安価とすることができ、更に後段の脱酸素装置
においては前段の膜脱気装置によって溶存酸素濃度が低
下した脱気水を処理すればよいので、脱酸素装置のみで
原水を直接処理する場合に比べて脱酸素樹脂にかかる負
荷が著しく少なくなり、よって脱酸素樹脂のライフが大
幅に長くなる。
The membrane degassing device in the device of the present invention serves as a device for rough-dissolving dissolved oxygen, and it suffices to reduce the dissolved oxygen concentration in water to about several hundred ppb by the membrane degassing device. It is not necessary to lower the dissolved oxygen to the limit, and therefore the vacuum device used can be smaller and less expensive than the case where treated water with a low dissolved oxygen concentration is obtained only by a membrane degassing device, and further degassing in the latter stage is possible. In the oxygen device, the degassed water with the dissolved oxygen concentration reduced by the membrane degassing device at the previous stage can be treated, so the load on the deoxygenating resin is significantly less than when treating the raw water directly with the deoxidizing device alone. Therefore, the life of the deoxidizing resin is significantly extended.

また、膜脱気装置と窒素パージ装置との組み合わせに
よる従来方法と比べた場合、本考案装置の場合は窒素パ
ージ装置に要するような広い曝気スペースを必要としな
いし、曝気に必要な窒素の供給装置も必要ないため装置
全体をコンパクトにでき、かつ窒素供給装置として窒素
ボンベを使用する場合における、定期的な窒素ボンベの
交換という、メンテナンス上の煩雑さからも解放され
る。
Further, when compared with the conventional method using a combination of a membrane degassing device and a nitrogen purging device, the device of the present invention does not require a wide aeration space required for the nitrogen purging device, and the supply of nitrogen required for aeration is required. Since the apparatus is not required, the entire apparatus can be made compact, and when the nitrogen cylinder is used as the nitrogen supply apparatus, the maintenance trouble such as the periodic replacement of the nitrogen cylinder is released.

更に、本考案における膜脱気装置は真空装置としてエ
ゼクタを用いるとともに、当該エゼクタを、膜脱気装置
に原水を供給するためのポンプを利用して駆動させる構
成としたので、エゼクタ駆動用のポンプを別途設ける必
要がないとともに、高価な真空ポンプも必要とせず、経
済的にも有利である。
Further, since the membrane degassing apparatus of the present invention uses the ejector as the vacuum device and the ejector is driven by using the pump for supplying the raw water to the membrane degassing apparatus, the pump for driving the ejector is used. It is economically advantageous because there is no need to separately provide it and an expensive vacuum pump is not required.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案装置の実施態様の一例を示すフローの説
明図であり、第2図は従来装置の一例を示すフローの説
明図である。 1……膜脱気装置、2……脱気膜 3……脱酸素装置、4……脱酸素樹脂 5……ポンプ、6……エゼクタ 7……吸引管、8……駆動水管 9……給水管、10……原水槽 11……脱気水管、12……処理水管 13、14……弁
FIG. 1 is a flow chart showing an example of an embodiment of the device of the present invention, and FIG. 2 is a flow chart showing an example of a conventional device. 1 ... Membrane degassing device, 2 ... Degassing film 3 ... Deoxidizing device, 4 ... Deoxidizing resin, 5 ... Pump, 6 ... Ejector, 7 ... Suction pipe, 8 ... Driving water pipe, 9 ... Water supply pipe, 10 …… Raw water tank 11 …… Degassing water pipe, 12 …… Treated water pipe 13, 14 …… Valve

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】原水中に溶存している酸素等の溶存気体を
除去するための脱気膜を装着した膜脱気装置と、当該膜
脱気装置の処理水である脱気水中に残留する微量の溶存
酸素を更に除去するための脱酸素樹脂を充填した脱酸素
装置とからなる溶存酸素除去装置であって、前記膜脱気
装置の脱気膜で仕切られた一方の室に給水管を介して原
水を供給するためのポンプと、脱気膜で仕切られた他方
の室を減圧するためのエゼクタとを有し、当該エゼクタ
の駆動水側を前記給水管から分岐した駆動水管と連通さ
せたことを特徴とする溶存酸素除去装置。
1. A membrane degassing apparatus equipped with a degassing membrane for removing dissolved gas such as oxygen dissolved in raw water, and remains in degassed water which is treated water of the membrane degassing apparatus. A dissolved oxygen removing device comprising a deoxidizing device filled with a deoxidizing resin for further removing a trace amount of dissolved oxygen, wherein a water supply pipe is provided in one chamber partitioned by the degassing membrane of the membrane deaerating device. It has a pump for supplying raw water through it and an ejector for decompressing the other chamber partitioned by a degassing membrane, and connects the drive water side of the ejector with the drive water pipe branched from the water supply pipe. Dissolved oxygen removal device characterized in that
JP1989149284U 1989-12-27 1989-12-27 Dissolved oxygen removal device Expired - Lifetime JP2507597Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989149284U JP2507597Y2 (en) 1989-12-27 1989-12-27 Dissolved oxygen removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989149284U JP2507597Y2 (en) 1989-12-27 1989-12-27 Dissolved oxygen removal device

Publications (2)

Publication Number Publication Date
JPH0390685U JPH0390685U (en) 1991-09-17
JP2507597Y2 true JP2507597Y2 (en) 1996-08-14

Family

ID=31695693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989149284U Expired - Lifetime JP2507597Y2 (en) 1989-12-27 1989-12-27 Dissolved oxygen removal device

Country Status (1)

Country Link
JP (1) JP2507597Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879517B (en) * 2017-12-14 2023-12-12 浙江启尔机电技术有限公司 Ultrapure water degasser for immersion lithography

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02265604A (en) * 1989-04-06 1990-10-30 Kurita Water Ind Ltd Removing equipment for dissolved oxygen in water

Also Published As

Publication number Publication date
JPH0390685U (en) 1991-09-17

Similar Documents

Publication Publication Date Title
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
JP3662111B2 (en) Cleaning liquid manufacturing method and apparatus therefor
EP1254698B1 (en) Ozone treating apparatus
JP2557346B2 (en) Water treatment equipment
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP2507597Y2 (en) Dissolved oxygen removal device
JPH0768103A (en) Membrane deaerating method
JP2007319843A (en) Gas dissolving module
JP2611183B2 (en) Fluid circulation deaerator
JP2865452B2 (en) Removal device for dissolved gas in raw water
JPH09253638A (en) Ultrapure water making apparatus
JP4090361B2 (en) Method and apparatus for producing ozone-containing ultrapure water
JPH05269306A (en) Deoxygenation device
JP2772362B2 (en) Removal device for dissolved carbon dioxide in liquid
JPS6143088B2 (en)
JP2743419B2 (en) Diaphragm deaerator and deaeration method
JP3534155B2 (en) Pure water production equipment
JP3662337B2 (en) Method for removing dissolved carbon dioxide
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
JP3087914B2 (en) Aeration treatment equipment
JPH01315301A (en) Device for removing dissolved gas in pure water
JPH06134446A (en) Method for manufacturing deaerated water and module for manufacture of deaerated water
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JP2002307080A (en) Apparatus for producing ultrapure water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term