JP2500527B2 - Defrost control method for air conditioner - Google Patents

Defrost control method for air conditioner

Info

Publication number
JP2500527B2
JP2500527B2 JP41522190A JP41522190A JP2500527B2 JP 2500527 B2 JP2500527 B2 JP 2500527B2 JP 41522190 A JP41522190 A JP 41522190A JP 41522190 A JP41522190 A JP 41522190A JP 2500527 B2 JP2500527 B2 JP 2500527B2
Authority
JP
Japan
Prior art keywords
slip
signal
speed
induction motor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP41522190A
Other languages
Japanese (ja)
Other versions
JPH04225767A (en
Inventor
賢至 川岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP41522190A priority Critical patent/JP2500527B2/en
Publication of JPH04225767A publication Critical patent/JPH04225767A/en
Application granted granted Critical
Publication of JP2500527B2 publication Critical patent/JP2500527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、暖房運転時に室外側
熱交換器に付着した霜を、この室外側熱交換器中を流れ
る熱冷媒により除去するようにした空気調和機の除霜制
御方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting control system for an air conditioner in which frost adhering to an outdoor heat exchanger during heating operation is removed by a heat refrigerant flowing through the outdoor heat exchanger. It is about.

【0002】[0002]

【従来の技術】図7は例えば特公平1-20709号公報に記
載された従来の空気調和機を示す冷媒回路図である。図
において、(1)は圧縮機、(2)はアキュムレータ、(3)は
四方弁、(4)は室外側熱交換器、(5)は膨張装置、(6)は
室内側熱交換器、(7)は室外機用送風ファン、(8)は室内
機用送風ファンである。これらは圧縮機(1)−四方弁(3)
−室外側熱交換器(4)−膨張装置(5)−室内側熱交換器
(6)−四方弁(3)−アキュムレータ(2)と冷媒管により順
次環状に接続され、冷房運転時には、実線矢印で示すよ
うに圧縮機(1)からの高温高圧の冷媒ガスが、室外側熱
交換器(4)に送られ、ここで放熱して凝縮した後膨張装
置(5)を介して室内側熱交換器(6)で蒸発し吸熱して冷房
が行なわれ、暖房運転時には、破線矢印で示すように圧
縮機(1)からの高温高圧の冷媒ガスが、逆循環して室内
側熱交換器(6)に送られここで放熱しで暖房が行なわれ
る。
2. Description of the Related Art FIG. 7 is a refrigerant circuit diagram showing a conventional air conditioner described in, for example, Japanese Patent Publication No. 1-20709. In the figure, (1) is a compressor, (2) is an accumulator, (3) is a four-way valve, (4) is an outdoor heat exchanger, (5) is an expansion device, (6) is an indoor heat exchanger, (7) is an outdoor unit blower fan, and (8) is an indoor unit blower fan. These are compressor (1) -four-way valve (3)
-Outdoor heat exchanger (4) -Expansion device (5) -Indoor heat exchanger
(6) -Four-way valve (3) -The accumulator (2) and the refrigerant pipe are sequentially connected in an annular shape, and during the cooling operation, the high temperature and high pressure refrigerant gas from the compressor (1) is exposed to the outside as shown by the solid arrow. It is sent to the heat exchanger (4), where it radiates heat and condenses, and then evaporates and absorbs heat in the indoor heat exchanger (6) through the expansion device (5) to cool the room, and during heating operation, the broken line As shown by the arrow, the high-temperature and high-pressure refrigerant gas from the compressor (1) is reversely circulated and is sent to the indoor heat exchanger (6), where heat is dissipated for heating.

【0003】一般にこの種の冷凍サイクルを有する空気
調和機においては、暖房運転時除霜を行なう場合、四方
弁(3)を切換え暖房サイクルを冷房サイクルに切換え送
風ファン(7)(8)を停止することにより高温高圧の冷媒ガ
スを室外側熱交換器(4)に流し、それに付着した霜を除
去している。また、除霜時に室内側熱交換器(6)への冷
媒回路をバイパスして圧縮機(1)から直接冷媒ガスを室
外側熱交換器(4)に流す方式も提案されていた。
Generally, in an air conditioner having a refrigeration cycle of this kind, when defrosting is performed during heating operation, the four-way valve (3) is switched to switch the heating cycle to a cooling cycle and the blower fans (7) (8) are stopped. By doing so, the high-temperature and high-pressure refrigerant gas is caused to flow to the outdoor heat exchanger (4) to remove the frost adhering to it. Further, a method has also been proposed in which the refrigerant circuit to the indoor heat exchanger (6) is bypassed during defrosting, and the refrigerant gas is directly supplied from the compressor (1) to the outdoor heat exchanger (4).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
空気調和機の除霜方式では、除霜に多大の時間を必要と
し、その間暖房運転できないことにより室温の低下をま
ねき、快適性をそこねるという問題点があった。
However, in the conventional defrosting method for an air conditioner, a great amount of time is required for defrosting, and the heating operation cannot be performed during that time, which causes a decrease in room temperature and impairs comfort. There was a point.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、短時間で除霜が可能な空気調和
機の除霜方式を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a defrosting method for an air conditioner capable of defrosting in a short time.

【0006】[0006]

【課題を解決するための手段】この発明の第1の発明に
係る空気調和機の制御方式は、圧縮機駆動用の誘導電動
機の速度を検出する速度検出手段、この速度検出手段か
らの検出速度信号と、速度指令信号と、上記空気調和機
の除霜タイミング検出信号とから上記誘導電動機の所要
すベリを演算しすべり指令信号を出力するすべり演算手
段及びこのすべり演算手段からのすべり指令信号に応じ
たすべりになるよう上記誘導電動機の速度を制御する速
度制御手段を設け、上記すべり演算手段を、上記除霜タ
イミング検出信号の印加によりこの信号の無印加時に比
べ大きいすべりを指令する信号を出力するよう構成した
ものである。
A control system for an air conditioner according to a first aspect of the present invention is a speed detecting means for detecting the speed of an induction motor for driving a compressor, and a detected speed from the speed detecting means. Signal, the speed command signal, the defrosting timing detection signal of the air conditioner to calculate the required slip of the induction motor to output a slip command signal to the slip calculation means and the slip command signal from the slip calculation means Providing a speed control means for controlling the speed of the induction motor so as to make the slip corresponding to the slip calculation means, by applying the defrosting timing detection signal, outputs a signal instructing a larger slip than when the signal is not applied. It is configured to do.

【0007】この発明の第2の発明に係る空気調和機の
制御方式は、上記第1の発明における速度検出手段の代
りに、圧縮機駆動用の誘導電動機の力率を検出する力率
検出手段を設け、すべり演算手段により、この力率検出
手段からの力率信号と、速度指令信号と、上記空気調和
機の除霜タイミング検出信号とから上記誘導電動機の所
要すベリを演算するようにしたものである。
A control system for an air conditioner according to a second aspect of the present invention is a power factor detecting means for detecting the power factor of an induction motor for driving a compressor, instead of the speed detecting means in the first aspect. The slip calculation means is adapted to calculate the required verification of the induction motor from the power factor signal from the power factor detection means, the speed command signal, and the defrosting timing detection signal of the air conditioner. It is a thing.

【0008】[0008]

【作用】この発明の第1及び第2の発明における空気調
和機の制御方式は、除霜運転時に圧縮機駆動用の誘導電
動機が通常運転時より大きいすべリで運転されるので、
この電動機は高回転数、高力率、低動率、高入力電力で
運転され、圧縮機からの吐出冷媒ガスはスーパヒートが
つきより高温となって室外側熱交換器に送られ、除霜時
間が大幅に短縮される。
In the control system of the air conditioner according to the first and second aspects of the present invention, since the induction motor for driving the compressor is operated more smoothly than during normal operation during defrosting operation,
This motor is operated at high rotation speed, high power factor, low dynamic rate and high input power, and the refrigerant gas discharged from the compressor becomes superheated and becomes hotter and is sent to the outdoor heat exchanger for defrosting time. Is greatly shortened.

【0009】[0009]

【実施例】実施例1.以下この発明の一実施例を図につ
いて説明する。図1はこの発明の一実施例を示す構成図
で、図において、(1)は圧縮機、(2)はアキュムレータ、
(3)は四方弁、(4)は室外側熱交換器、(5)は膨張装置、
(6)は室内側熱交換器、(7)は室外機用送風ファン、(8)
は室内機用送風ファンで、以上は図7で示す従来例と同
様のものである。(9)は圧縮機(1)を駆動する誘導電動
機、(10)は誘導電動機(9)に可変周波数の三相交流電力
を供給するインバータ、(11)はインバータ(10)、送風フ
ァン(7)(8)及び四方弁(3)等を制御する制御回路、(12)
は室外側熱交換器(4)の配管温度を検出する室外機配管
温度センサでそれからの検出温度信号を除霜タイミング
検出信号として制御回路(11)に入力する。(13)は誘導電
動機(9)の速度を検出し速度信号を制御回路(11)に入力
する速度センサである。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, in which (1) is a compressor, (2) is an accumulator,
(3) is a four-way valve, (4) is an outdoor heat exchanger, (5) is an expansion device,
(6) is an indoor heat exchanger, (7) is a blower fan for outdoor units, (8)
Is an indoor unit blower fan, and the above is the same as the conventional example shown in FIG. (9) is an induction motor that drives the compressor (1), (10) is an inverter that supplies three-phase AC power of variable frequency to the induction motor (9), (11) is an inverter (10), a blower fan (7 ) (8) and a control circuit for controlling the four-way valve (3), etc., (12)
Is an outdoor unit pipe temperature sensor that detects the pipe temperature of the outdoor heat exchanger (4) and inputs the detected temperature signal from the outdoor unit pipe temperature sensor to the control circuit (11) as a defrosting timing detection signal. Reference numeral (13) is a speed sensor for detecting the speed of the induction motor (9) and inputting a speed signal to the control circuit (11).

【0010】図2は図1におけるインバータ(10)及び制
御回路(11)の詳細を示すブロック線図で、図において、
(10a)はコンバータ回路、(10b)は平滑コンデンサ、(10
c)はインバータ回路、(10d)は直流電流検出器、(14)は
交流電源、(15)は速度センサー(13)からの信号を波形整
形する波形整形回路、(16)は波形整形回路(15)から出力
される誘導電動機(9)の瞬時回転数を示す速度信号fr
と、基準周波数指令fo*と室外機配管温度センサ(12)か
らの除霜タイミング検出信号とからすべり周波数指令信
号fs*を演算するすべり制御回路、(17)はすべり周波数
指令fs*からそれに応じた電圧指令信号V*を演算し出
力する速度−電圧変換回路、(18)は速度−電圧変換回路
(17)から出力される電圧指令信号V*を増幅してインバ
ータ回路(10c)に供給するベースアンプ回路である。
FIG. 2 is a block diagram showing the details of the inverter (10) and the control circuit (11) in FIG.
(10a) is a converter circuit, (10b) is a smoothing capacitor, (10a)
c) is an inverter circuit, (10d) is a DC current detector, (14) is an AC power supply, (15) is a waveform shaping circuit that shapes the signal from the speed sensor (13), and (16) is a waveform shaping circuit ( Speed signal fr indicating the instantaneous rotation speed of the induction motor (9) output from 15)
And a slip control circuit that calculates the slip frequency command signal fs * from the reference frequency command fo * and the defrosting timing detection signal from the outdoor unit piping temperature sensor (12), and (17) responds to the slip frequency command fs * accordingly. Speed-voltage conversion circuit that calculates and outputs the voltage command signal V *, (18) is a speed-voltage conversion circuit
It is a base amplifier circuit that amplifies the voltage command signal V * output from (17) and supplies it to the inverter circuit (10c).

【0011】上記速度センサ(13)及び波形整形回路(15)
とにより速度検出手段を、すべり制御回路(16)によりす
べり演算手段を、そして、速度−電圧変換回路(17)、ベ
ースアンプ回路(18)及びインバータ回路(10c)とにより
速度制御手段をそれぞれ構成している。
The speed sensor (13) and the waveform shaping circuit (15)
And the speed control means, the slip control circuit (16) constitutes the slip calculation means, and the speed-voltage conversion circuit (17), the base amplifier circuit (18) and the inverter circuit (10c) constitute the speed control means, respectively. are doing.

【0012】次に、この実施例の動作を図3、図4を参
照して説明する。図3は誘導電動機(9)の動作特性図、
図4は除霜運転動作の流れを示すフローチャートであ
る。図3において、横軸は誘導電動機(9)のすべり(%)
を示し、(19)は誘導電動機(9)への入力電力(W)の、(20)
は入力電流(A)の、(21)は誘導電動機(9)の効率(%)の、
(22)は誘導電動機(9)のトルク(N・m)の、(23)は誘導電動
機(9)の力率(%)のそれぞれすべりに対する変化特性を
示す。なお、第1図における冷媒回路の冷房、暖房運転
動作については図7の場合と全く同じであるので説明は
省略する。
Next, the operation of this embodiment will be described with reference to FIGS. Figure 3 shows the operating characteristics of the induction motor (9).
FIG. 4 is a flowchart showing the flow of the defrosting operation operation. In Fig. 3, the horizontal axis is the slip (%) of the induction motor (9).
(19) is the input power (W) to the induction motor (9), (20)
Is the input current (A), (21) is the efficiency (%) of the induction motor (9),
(22) shows the change characteristics of the torque (N · m) of the induction motor (9) and (23) shows the change characteristics of the power factor (%) of the induction motor (9) with respect to slip. Note that the cooling and heating operation of the refrigerant circuit in FIG. 1 is exactly the same as that in the case of FIG. 7, so description thereof will be omitted.

【0013】まず、空気調和機の暖房運転時に、図4の
ステップ(24)において圧縮機運転積算時間50分経過後、
ステップ(25)で室外機配管温度センサ(12)が−5℃以下
の温度を検出すると、除霜タイミング検出信号が制御回
路(11)に入力されてステップ(26)に進み、四方弁(3)が
冷房運転側(図1実線矢印)に切換えられ、ステップ(27)
で室外機用送風ファン(7)が停止する。次にステップ(2
8)において圧縮機(1)即ち誘導電動機(9)が最高運転周波
数になるとステップ(29)に進み、制御回路(11)のすべり
制御回路(16)において、速度センサ(13)で検出され波形
整形回路(15)により整形された速度信号frと、上記除
霜タイミング検出信号及び基準周波数指令fo*とから、
誘導電動機(9)が高力率で低効率で運転されるような大
きなすべりのすべり周波数指令信号fs*が演算出力さ
れ、それに応じた電圧指令信号V*が速度−電圧変換回
路(17)から出力され、この電圧指令に応じてベースアン
プ回路(18)、インバータ回路(10c)を介して誘導電動機
(9)が制御される。
First, during the heating operation of the air conditioner, after the compressor operating cumulative time of 50 minutes has elapsed in step (24) of FIG. 4,
When the outdoor unit piping temperature sensor (12) detects a temperature of −5 ° C. or lower in step (25), the defrosting timing detection signal is input to the control circuit (11) and the process proceeds to step (26), where the four-way valve (3 ) Is switched to the cooling operation side (solid line arrow in Fig. 1), and step (27)
The outdoor unit blower fan (7) stops. Next step (2
When the compressor (1), that is, the induction motor (9) reaches the maximum operating frequency in 8), the process proceeds to step (29), and the waveform detected by the speed sensor (13) in the slip control circuit (16) of the control circuit (11) is detected. From the speed signal fr shaped by the shaping circuit (15), the defrosting timing detection signal and the reference frequency command fo *,
A slip frequency command signal fs * of a large slip that causes the induction motor (9) to operate at high power factor and low efficiency is arithmetically output, and a voltage command signal V * corresponding thereto is output from the speed-voltage conversion circuit (17). It is output, and the induction motor is output via the base amplifier circuit (18) and the inverter circuit (10c) according to this voltage command.
(9) is controlled.

【0014】すると誘導電動機(9)のすべりは増え、図
3に示すようにそれの動作点はAからBに移行し入力が
増大する。これにより圧縮機(1)は仕事率はあまり増や
さないで入力電力が注ぎ込まれ、吐出冷媒の圧力があま
り上がらずに温度が上昇する。そうすれば圧縮機(1)は
ヒータとして働き、それへの入力増加分はほぼ冷媒の加
熱分となり、室外側熱交換器(4)に付着した霜は急速に
除去される。除霜が開始されてから10分以上経過する
か(ステップ(30))、室外機配管温度が8℃以上に上昇す
ると(ステップ(31))、ステップ(32)(33)にて室外機用送
風ファン(7)の運転が再開され、四方弁(3)が暖房運転側
(図1破線矢印)に切換えられ、除霜運転が終了し暖房運
転が再開される。
Then, the slip of the induction motor (9) increases, the operating point of the induction motor (9) shifts from A to B, and the input increases. As a result, the input power is poured into the compressor (1) without increasing the work rate, and the temperature of the compressor (1) rises without increasing the pressure of the discharged refrigerant. Then, the compressor (1) functions as a heater, the increased input to it becomes almost the heating amount of the refrigerant, and the frost adhering to the outdoor heat exchanger (4) is rapidly removed. If 10 minutes or more have passed since the defrosting started (step (30)) or the outdoor unit piping temperature rises to 8 ° C or higher (step (31)), the outdoor unit is used in steps (32) and (33). The blower fan (7) is restarted and the four-way valve (3) is on the heating side.
(Fig. 1 dashed arrow), the defrosting operation ends and the heating operation is restarted.

【0015】実施例2.図5、図6はこの発明の他の実
施例を示し、図5はインバータ(10)及び制御回路(11)の
詳細を示すブロック線図、図6は除霜運転動作の流れを
示すフローチャートで、図において、(9)〜(12)、(14)
及び(18)は図2と同様のものであり、(34)は誘導電動機
(9)の力率検出用の3相変流器、(35)は変流器(34)から
の電流信号により誘導電動機(9)の瞬時力率に応じた力
率信号Prを求め出力する瞬時力率検知回路、(36)は瞬
時力率検知回路(35)からの力率信号Prから図3に示す
ようなこれに対応するすべり周波数(同期周波数からす
べり分低下した周波数)を演算しすべり周波数信号frを
出力するすべり周波数演算回路、(37)はすべり周波数演
算回路(36)から出力されるすべり周波数信号frと、基
準周波数指令fo*と室外機配管温度センサ(12)からの除
霜タイミング検出信号とからすべり周波数指令信号fs*
を演算する周波数制御回路、(38)はすべり周波数指令f
s*からそれに応じた電圧指令信号V*を演算し出力する
周波数−電圧変換回路である。なお、図6の図4と同じ
ステップは同一符号で示している。
Example 2. 5 and 6 show another embodiment of the present invention, FIG. 5 is a block diagram showing the details of the inverter (10) and the control circuit (11), and FIG. 6 is a flow chart showing the flow of the defrosting operation. , In the figure, (9) ~ (12), (14)
And (18) are the same as in Fig. 2, and (34) is an induction motor.
(9) Three-phase current transformer for power factor detection, (35) obtains and outputs a power factor signal Pr corresponding to the instantaneous power factor of the induction motor (9) by the current signal from the current transformer (34) An instantaneous power factor detection circuit (36) calculates a slip frequency (frequency slipped from the synchronous frequency) corresponding to this as shown in FIG. 3 from the power factor signal Pr from the instantaneous power factor detection circuit (35). The slip frequency calculation circuit that outputs the slip frequency signal fr, (37) is the slip frequency signal fr output from the slip frequency calculation circuit (36), the reference frequency command fo *, and the removal from the outdoor unit piping temperature sensor (12). Slip frequency command signal fs * from frost timing detection signal
The frequency control circuit for calculating (38) is the slip frequency command f
It is a frequency-voltage conversion circuit that calculates and outputs a voltage command signal V * according to it from s *. The same steps as those in FIG. 4 of FIG. 6 are designated by the same reference numerals.

【0016】上記3相変流器(34)及び瞬時力率検知回路
(35)とにより力率検出手段を、すべり周波数演算回路(3
6)及び周波数制御回路(37)とによりすべり演算手段を、
そして、周波数−電圧変換回路(38)、ベースアンプ回路
(18)及びインバータ回路(10c)とにより速度制御手段を
それぞれ構成している。
The three-phase current transformer (34) and the instantaneous power factor detection circuit
(35) and the power factor detection means by slip frequency calculation circuit (3
6) and the frequency control circuit (37), the slip calculation means,
And frequency-voltage conversion circuit (38), base amplifier circuit
The speed control means is constituted by the (18) and the inverter circuit (10c).

【0017】次に、この実施例の動作を図6を参照して
説明する。ステップ(24)から(28)迄は図4と同様なので
説明を省略する。ステップ(28)において圧縮機(1)が最
高運転周波数になるとステップ(39)に進み、瞬時力率検
知回路(35)において変流器(34)からの電流信号より誘導
電動機(9)の瞬時力率に応じた力率信号Prが求められて
ステップ(29)に進み、すべり周波数演算回路(36)におい
て、瞬時力率検知回路(35)からの力率信号Prから図3
に示すこれに対応するすべり周波数信号frが演算さ
れ、周波数制御回路(37)において、すべり周波数演算回
路(36)からのすべり周波数信号frと、上記除霜タイミ
ング検出信号及び基準周波数指令fo*とから、誘導電動
機(9)が高力率で低効率で運転されるような大きなすべ
りのすべり周波数指令信号fs*が演算出力され、それに
応じた電圧指令信号V*が周波数−電圧変換回路(38)か
ら出力され、この電圧指令に応じてベースアンプ回路(1
8)、インバータ回路(10c)を介して誘導電動機(9)が制御
される。以後の動作は図3の実施例と同様である。
Next, the operation of this embodiment will be described with reference to FIG. Since steps (24) to (28) are the same as those in FIG. 4, their description will be omitted. When the compressor (1) reaches the maximum operating frequency in step (28), the process proceeds to step (39), where the instantaneous power factor detection circuit (35) detects the instantaneous current of the induction motor (9) from the current signal from the current transformer (34). The power factor signal Pr corresponding to the power factor is obtained, and the process proceeds to step (29). In the slip frequency calculation circuit (36), the power factor signal Pr from the instantaneous power factor detection circuit (35) is used as shown in FIG.
The slip frequency signal fr corresponding to this is calculated, and the frequency control circuit (37) calculates the slip frequency signal fr from the slip frequency calculation circuit (36) and the defrosting timing detection signal and the reference frequency command fo *. From the above, a slip frequency command signal fs * of a large slip such that the induction motor (9) is operated at high power factor and low efficiency is arithmetically output, and the voltage command signal V * corresponding thereto is output from the frequency-voltage conversion circuit (38 ), And the base amplifier circuit (1
8), the induction motor (9) is controlled via the inverter circuit (10c). The subsequent operation is similar to that of the embodiment shown in FIG.

【0018】なお、上記実施例では除霜時に冷媒回路を
暖房運転から冷房運転に切換える、いわゆるリバース方
式についてのみ説明を行ったが、他の除霜方式、例えば
除霜時に室内側熱交換器への冷媒回路をバイパスして圧
縮機から直接冷媒ガスを室外側熱交換器に流す、いわゆ
るホットガスバイパス方式でもよく、上記の実施例とま
ったく同様の効果を奏する。
In the above embodiment, only the so-called reverse system in which the refrigerant circuit is switched from the heating operation to the cooling operation at the time of defrosting has been described, but another defrosting method, for example, to the indoor heat exchanger at the time of defrosting is performed. A so-called hot gas bypass system in which the refrigerant gas is bypassed and the refrigerant gas is allowed to flow directly from the compressor to the outdoor heat exchanger, and the same effect as that of the above-described embodiment is obtained.

【0019】[0019]

【発明の効果】以上のように、この発明の第1の発明に
よれば、圧縮機駆動用の誘導電動機の速度を検出する速
度検出手段、この速度検出手段からの検出速度信号と、
速度指令信号と、上記空気調和機の除霜タイミング検出
信号とから上記誘導電動機の所要すベリを演算しすべり
指令信号を出力するすべり演算手段及びこのすべり演算
手段からのすべり指令信号に応じたすべりになるよう上
記誘導電動機の速度を制御する速度制御手段を設け、上
記すべり演算手段を、上記除霜タイミング検出信号の印
加によりこの信号の無印加時に比べ大きいすべりを指令
する信号を出力するよう構成したので、除霜時に冷媒流
量が確保されかつ冷媒温度が上昇し、除霜時間の短縮化
が計られ、快適性が損なわれることのない空気調和機の
除霜制御方式が得られる効果がある。
As described above, according to the first aspect of the present invention, the speed detecting means for detecting the speed of the induction motor for driving the compressor, the detected speed signal from the speed detecting means,
A slip calculation means for calculating the required slip of the induction motor from the speed command signal and the defrosting timing detection signal of the air conditioner and outputting a slip command signal, and a slip corresponding to the slip command signal from the slip calculation means. A speed control means for controlling the speed of the induction motor is provided so that the slip computing means outputs a signal for instructing a larger slip by applying the defrosting timing detection signal than when the signal is not applied. Therefore, the refrigerant flow rate is secured and the refrigerant temperature rises during defrosting, the defrosting time is shortened, and there is an effect that a defrosting control method for an air conditioner that does not impair comfort is obtained. .

【0020】また、この発明の第2の発明によれば、上
記第1の発明における速度検出手段の代りに、圧縮機駆
動用の誘導電動機の力率を検出する力率検出手段を設
け、すべり演算手段により、この力率検出手段からの力
率信号と、速度指令信号と、上記空気調和機の除霜タイ
ミング検出信号とから上記誘導電動機の所要すベリを演
算するようにしたので、上記第1の発明と同様の効果を
有するものである。
According to a second aspect of the present invention, instead of the speed detecting means in the first aspect, a power factor detecting means for detecting the power factor of the induction motor for driving the compressor is provided, and the slip Since the calculation means calculates the required verification of the induction motor from the power factor signal from the power factor detection means, the speed command signal, and the defrost timing detection signal of the air conditioner, It has the same effect as that of the first aspect of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の発明の一実施例を示す構成
図。
FIG. 1 is a configuration diagram showing an embodiment of a first invention of the present invention.

【図2】図1におけるインバータ及び制御回路の詳細を
示すブロック線図。
FIG. 2 is a block diagram showing details of an inverter and a control circuit in FIG.

【図3】この実施例の誘導電動機の動作特性図。FIG. 3 is an operation characteristic diagram of the induction motor of this embodiment.

【図4】この実施例の除霜運転動作の流れを示すフロー
チャート。
FIG. 4 is a flowchart showing the flow of defrosting operation of this embodiment.

【図5】この発明の第2の発明の一実施例におけるイン
バータ及び制御回路の詳細を示すブロック線図。
FIG. 5 is a block diagram showing details of an inverter and a control circuit in an embodiment of the second invention of the present invention.

【図6】この実施例の除霜運転動作の流れを示すフロー
チャート。
FIG. 6 is a flowchart showing the flow of a defrosting operation operation of this embodiment.

【図7】従来の空気調和機を示す冷媒回路図。FIG. 7 is a refrigerant circuit diagram showing a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 4 室外側熱交換器 6 室内側熱交換器 9 誘導電動機 10c 速度制御手段(インバータ回路) 13 速度検出手段(速度センサ) 15 速度検出手段(波形整形回路) 16 すべり演算手段(すべり制御回路) 17 速度制御手段(速度−電圧変換回路) 18 速度制御手段(ベースアンプ回路) 34 力率検出手段(3相変流器) 35 力率検出手段(瞬時力率検知回路) 36 すべり演算手段(すべり周波数演算回路) 37 すべり演算手段(周波数制御回路) 38 速度制御手段(周波数−電圧変換回路) DESCRIPTION OF SYMBOLS 1 Compressor 4 Outdoor heat exchanger 6 Indoor heat exchanger 9 Induction motor 10c Speed control means (inverter circuit) 13 Speed detection means (speed sensor) 15 Speed detection means (waveform shaping circuit) 16 Slip calculation means (slip control) Circuit 17 Speed control means (speed-voltage conversion circuit) 18 Speed control means (base amplifier circuit) 34 Power factor detection means (three-phase current transformer) 35 Power factor detection means (instantaneous power factor detection circuit) 36 Slip calculation means (Slip frequency calculation circuit) 37 Slip calculation means (frequency control circuit) 38 Speed control means (frequency-voltage conversion circuit)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 交流電力により付勢される誘導電動機で
駆動される圧縮機、室内側熱交換器及び室外側熱交換器
を備えた空気調和機の暖房運転時に、上記室外側熱交換
器に付着した霜をこの室外側熱交換器中を流れる熱冷媒
により除去するようにした空気調和機の除霜制御方式に
おいて、上記誘導電動機の速度を検出する速度検出手
段、この速度検出手段からの検出速度信号と、速度指令
信号と、上記空気調和機の除霜タイミング検出信号とか
ら上記誘導電動機の所要すベリを演算しすべり指令信号
を出力するすべり演算手段及びこのすべり演算手段から
のすべり指令信号に応じたすべりになるよう上記誘導電
動機の速度を制御する速度制御手段を設け、上記すべり
演算手段を、上記除霜タイミング検出信号の印加により
この信号の無印加時に比べ大きいすべりを指令する信号
を出力するよう構成したことを特徴とする空気調和機の
除霜制御方式。
1. When the air conditioner equipped with a compressor driven by an induction motor driven by AC power, an indoor heat exchanger, and an outdoor heat exchanger is in heating operation, the outdoor heat exchanger is used. In the defrosting control system of the air conditioner configured to remove the adhered frost by the heat refrigerant flowing through the outdoor heat exchanger, the speed detection means for detecting the speed of the induction motor, and the detection from the speed detection means. A slip command signal for calculating a required slip of the induction motor from the speed signal, the speed command signal, and the defrosting timing detection signal of the air conditioner, and outputting a slip command signal, and a slip command signal from the slip calculator. A speed control means for controlling the speed of the induction motor is provided so that the slip corresponds to, and the slip calculating means is provided by applying the defrosting timing detection signal when the signal is not applied. A defrosting control method for an air conditioner, which is configured to output a signal instructing a larger slip.
【請求項2】 交流電力により付勢される誘導電動機で
駆動される圧縮機、室内側熱交換器及び室外側熱交換器
を備えた空気調和機の暖房運転時に、上記室外側熱交換
器に付着した霜をこの室外側熱交換器中を流れる熱冷媒
により除去するようにした空気調和機の除霜制御方式に
おいて、上記誘導電動機の力率を検出する力率検出手
段、この力率検出手段からの検出力率信号と、速度指令
信号と、上記空気調和機の除霜タイミング検出信号とか
ら上記誘導電動機の所要すベリを演算しすべり指令信号
を出力するすべり演算手段及びこのすべり演算手段から
のすべり指令信号に応じたすべりになるよう上記誘導電
動機の速度を制御する速度制御手段を設け、上記すべり
演算手段を、上記除霜タイミング検出信号の印加により
この信号の無印加時に比べ大きいすべりを指令する信号
を出力するよう構成したことを特徴とする空気調和機の
除霜制御方式。
2. The outdoor heat exchanger is operated during heating operation of an air conditioner including a compressor driven by an induction motor energized by AC power, an indoor heat exchanger and an outdoor heat exchanger. In a defrosting control system for an air conditioner, which removes adhered frost by a heat refrigerant flowing through the outdoor heat exchanger, a power factor detecting means for detecting the power factor of the induction motor, and the power factor detecting means. From the detected power factor signal from, the speed command signal, and the defrosting timing detection signal of the air conditioner from the slip calculation means and the slip calculation means for calculating the required slip of the induction motor and outputting the slip command signal Is provided with speed control means for controlling the speed of the induction motor so that the slip will be in accordance with the slip command signal, and the slip calculating means is provided when the defrosting timing detection signal is applied and the signal is not applied. A defrosting control method for an air conditioner, which is configured to output a signal instructing a larger slip.
JP41522190A 1990-12-27 1990-12-27 Defrost control method for air conditioner Expired - Fee Related JP2500527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41522190A JP2500527B2 (en) 1990-12-27 1990-12-27 Defrost control method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41522190A JP2500527B2 (en) 1990-12-27 1990-12-27 Defrost control method for air conditioner

Publications (2)

Publication Number Publication Date
JPH04225767A JPH04225767A (en) 1992-08-14
JP2500527B2 true JP2500527B2 (en) 1996-05-29

Family

ID=18523607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41522190A Expired - Fee Related JP2500527B2 (en) 1990-12-27 1990-12-27 Defrost control method for air conditioner

Country Status (1)

Country Link
JP (1) JP2500527B2 (en)

Also Published As

Publication number Publication date
JPH04225767A (en) 1992-08-14

Similar Documents

Publication Publication Date Title
JP2723339B2 (en) Heat pump heating equipment
JP2015087076A (en) Air conditioner
JPH10148377A (en) Air conditioner
JPH0260942B2 (en)
JP2500527B2 (en) Defrost control method for air conditioner
JPS6349640Y2 (en)
WO2017221315A1 (en) Defrost determination equipment, defrost control equipment, and air conditioner
JP2924445B2 (en) Drive unit of compressor for air conditioner
JP6939094B2 (en) Power converter control device and refrigeration device
JPS5899635A (en) Controlling circuit for air conditioner
KR20050074706A (en) Control method of the invert compressor of a multi-type air conditioner
JPH05322324A (en) Inverter air conditioner
JPH06265244A (en) Air conditioner
JPH04284191A (en) Air conditioner
JP3169485B2 (en) Air conditioner
JP2834415B2 (en) Air conditioner
JP6752284B2 (en) Heat pump equipment, air conditioners, and water heaters
JPH09318138A (en) Air conditioner
JPS63140243A (en) Air conditioner
JPS5947221B2 (en) Air conditioner control device
JPH0356089A (en) Controller for compressor of enclosed type
JPS60259869A (en) Defrostation controller for heat pump type air conditioner
JPS61276661A (en) Controller for refrigeration cycle
JPS5878036A (en) Air conditioning machine
JPS6151220B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees