JPS6151220B2 - - Google Patents
Info
- Publication number
- JPS6151220B2 JPS6151220B2 JP56210792A JP21079281A JPS6151220B2 JP S6151220 B2 JPS6151220 B2 JP S6151220B2 JP 56210792 A JP56210792 A JP 56210792A JP 21079281 A JP21079281 A JP 21079281A JP S6151220 B2 JPS6151220 B2 JP S6151220B2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- signal
- rotation speed
- blower
- stop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 41
- 238000001816 cooling Methods 0.000 claims description 28
- 239000003507 refrigerant Substances 0.000 claims description 26
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
- F24F11/67—Switching between heating and cooling modes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/87—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
- F24F11/871—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/88—Electrical aspects, e.g. circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2221/00—Details or features not otherwise provided for
- F24F2221/54—Heating and cooling, simultaneously or alternatively
Landscapes
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Fluid Mechanics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明は、冷媒圧縮サイクルを有する空気調和
機の制御回路、特にインバータ制御による能力可
変形の空気調和機の制御回路に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a control circuit for an air conditioner having a refrigerant compression cycle, and particularly to a control circuit for a variable capacity air conditioner controlled by an inverter.
<従来技術>
電動圧縮機、冷媒流路切換弁、室外熱交換器、
減圧器、室内熱交換器を順次接続した冷媒圧縮サ
イクルを備えると共に、その室外熱交換器及び室
内熱交換器に送風機を夫々備え、切換弁の切換え
により冷房運動及び暖房運転を行う空気調和機に
おいて、その電動圧縮機への電源の周波数及び電
圧を制御するインバータ制御方式があり、これは
回転数を無段階に制御でき、室温の変動幅を小さ
く抑える上で非常に効果的である。<Prior art> Electric compressor, refrigerant flow switching valve, outdoor heat exchanger,
In an air conditioner that is equipped with a refrigerant compression cycle in which a pressure reducer and an indoor heat exchanger are connected in sequence, and that the outdoor heat exchanger and the indoor heat exchanger are each equipped with a blower, and that performs cooling and heating operations by switching a switching valve. There is an inverter control method that controls the frequency and voltage of the power supply to the electric compressor, and this method allows stepless control of the rotation speed and is very effective in keeping room temperature fluctuations small.
<発明が解決しようとする問題点>
処で、この種のものでは、空気調和機の運転
(暖房、冷房)を停止する場合、通電オフ時に圧
縮機に逆起電圧が発生してインバータ部に亜影響
を及ぼすことがある。<Problems to be Solved by the Invention> However, in this type of device, when the operation (heating, cooling) of the air conditioner is stopped, a back electromotive voltage is generated in the compressor when the power is turned off, and the inverter section is May have side effects.
即ち、通電オフ時の圧縮機に発生する逆起電圧
の大きさは、ほぼ通電周波数、即ちオフ時の回転
数に比例することになり、高い周波数でいきなり
オフすることは、インバータ部のトランジスタに
悪影響を及ぼすことになり、あまり好ましいこと
ではない。 In other words, the magnitude of the back electromotive force generated in the compressor when the energization is off is approximately proportional to the energization frequency, that is, the rotational speed when the energization is off, and suddenly turning off at a high frequency causes damage to the transistors in the inverter. This will have a negative impact and is not very desirable.
そこで、運転停止時点から徐々に通電周波数を
下げて、最低周波数になつてから圧縮機モータへ
の通電を停止する方法を採らなければならない。 Therefore, a method must be adopted in which the energization frequency is gradually lowered from the point of operation stop, and the energization to the compressor motor is stopped after reaching the lowest frequency.
しかし、この場合、例えば使用者が運転/停止
スイツチを押してから数十秒後でなければ、運転
を停止しないため、使用者に不安感を抱かせると
云う欠点がある。 However, in this case, the operation does not stop until, for example, several tens of seconds after the user presses the run/stop switch, which has the disadvantage of making the user feel uneasy.
本発明は、上記問題点を解決して、特に暖房運
転停止時、使用者の不安感を抱かせることの少な
い空気調和機の制御回路の提供を目的としたもの
である。 The present invention aims to solve the above-mentioned problems and provide a control circuit for an air conditioner that does not cause the user to feel uneasy, especially when the heating operation is stopped.
<問題点を解決するための手段>
本発明は、上記問題点を解消するために、第1
図に示す制御回路図のごとく、電動圧縮機、室外
熱交換器3、減圧器4、室内熱交換器5を順次接
続した冷媒圧縮サイクルを備えると共に、該冷媒
圧縮サイクルに冷媒の流路を暖房側および冷房側
のうちの一方へ切換える冷媒流路切換弁1aが設
けられ、前記室外熱交換器3及び室内熱交換器5
に送風機6,7を夫々備え、電動圧縮機への電源
の周波数及び電圧を制御するインバータ部14
と、停止スイツチ16及び切換弁切換スイツチ1
7の信号を入力する入力端子を有しかつ前記イン
バータ部14、切換弁1a、室内送風機7および
室外送風機6を制御するマイクロコンピユータ8
とからインバータ制御部が構成される。<Means for Solving the Problems> In order to solve the above problems, the present invention has the following features:
As shown in the control circuit diagram shown in the figure, a refrigerant compression cycle is provided in which an electric compressor, an outdoor heat exchanger 3, a pressure reducer 4, and an indoor heat exchanger 5 are sequentially connected, and a refrigerant flow path is connected to the refrigerant compression cycle for heating. A refrigerant flow switching valve 1a is provided to switch the refrigerant flow path to one of the side and the cooling side, and the outdoor heat exchanger 3 and the indoor heat exchanger 5
and an inverter section 14 that controls the frequency and voltage of the power supply to the electric compressor.
, stop switch 16 and changeover valve changeover switch 1
A microcomputer 8 has an input terminal for inputting the signals of 7 and controls the inverter section 14, the switching valve 1a, the indoor blower 7, and the outdoor blower 6.
An inverter control section is constructed from these.
そして、前記マイクロコンピユータ8は、第5
図に示す機能ブロツク図のごとく、暖房運転時に
停止スイツチ16の停止信号により切換弁1aを
暖房側から冷房側へ切換える信号を出力する弁切
換手段8Bと、暖房運転時に停止スイツチの停止
信号により前記室内送風機7を停止させる室内送
風機停止手段8Cと、前記停止スイツチ16の停
止信号により前記インバータ部14に圧縮機回転
数低下信号を出力する圧縮機回転数低下手段8D
と、圧縮機回転数低下手段8Dの低下信号が所定
値に達したか否かを判断する回転数判定手段8F
と、該判定手段8Fの所定値到達信号により前記
インバータ部14に圧縮機停止信号を出力する圧
縮機停止手段8Gと、前記判定手段8Fの所定値
到達信号により前記室外送風機6を停止する室外
送風機停止手段8Hとが有せしめられている。 Then, the microcomputer 8
As shown in the functional block diagram shown in the figure, there is a valve switching means 8B that outputs a signal for switching the switching valve 1a from the heating side to the cooling side in response to a stop signal from the stop switch 16 during heating operation, and a valve switching means 8B that outputs a signal to switch the switching valve 1a from the heating side to the cooling side in response to a stop signal from the stop switch 16 during heating operation. indoor blower stopping means 8C for stopping the indoor blower 7; and compressor rotation speed reducing means 8D for outputting a compressor rotation speed reduction signal to the inverter section 14 in response to a stop signal from the stop switch 16.
and rotation speed determination means 8F for determining whether the reduction signal of the compressor rotation speed reduction means 8D has reached a predetermined value.
and a compressor stop means 8G that outputs a compressor stop signal to the inverter section 14 in response to a predetermined value attainment signal from the determination means 8F, and an outdoor blower that stops the outdoor blower 6 in response to a predetermined value attainment signal from the determination means 8F. A stop means 8H is provided.
<作用>
上記構成において、暖房運転の停止操作に応動
して室内送風機停止手段8Cが室内送風機7を停
止させる。そのため、停止操作と同時に室内送風
機7が止まり、使用者の不安感も解消する。<Function> In the above configuration, the indoor blower stopping means 8C stops the indoor blower 7 in response to an operation to stop the heating operation. Therefore, the indoor fan 7 is stopped at the same time as the stop operation, and the user's anxiety is alleviated.
弁切換手段8Bは、暖房運転時に停止スイツチ
16の停止信号により切換弁1aを暖房側から冷
房側へ切換作動させる。このとき、切換弁1aを
切換えずに暖房運転のままで室内送風機7を停止
すると、室内熱交換器5には高温の冷媒が流れて
いるのでその冷媒が冷却されなくなり、冷媒圧力
が異常に上昇して危険となるが、上述のごとく制
御するので、冷媒圧力が異常に上昇することもな
く良好に停止する。 The valve switching means 8B switches the switching valve 1a from the heating side to the cooling side in response to a stop signal from the stop switch 16 during heating operation. At this time, if the indoor fan 7 is stopped while the heating operation is continued without switching the switching valve 1a, the high temperature refrigerant is flowing through the indoor heat exchanger 5, so the refrigerant will not be cooled and the refrigerant pressure will rise abnormally. However, since it is controlled as described above, the refrigerant pressure does not rise abnormally and the refrigerant stops smoothly.
そして、停止スイツチ16の停止信号により圧
縮機回転数低下手段8Dは、電動圧縮機の回転数
を所定値まで低下させた後、該回転数判定手段8
Fの最小回転数到達信号により圧縮機停止手段8
Gおよび室外送風機停止手段8Hが電動圧縮機及
び室外送風機8Hを停止させる。そのため、イン
バータ部14のトランジスタに悪影響を及ぼすこ
とを防止する。 Then, in response to the stop signal from the stop switch 16, the compressor rotation speed reducing means 8D lowers the rotation speed of the electric compressor to a predetermined value, and then the rotation speed determining means 8D lowers the rotation speed of the electric compressor to a predetermined value.
The compressor stopping means 8 is activated by the minimum rotational speed reaching signal of F.
G and the outdoor blower stopping means 8H stop the electric compressor and the outdoor blower 8H. Therefore, an adverse effect on the transistors of the inverter section 14 is prevented.
<実施例>
以下、図示の実施例について本発明を詳述する
と、第1図において、1は圧縮機、2はこの圧縮
機1を駆動する圧縮機モータで、これらにより電
動圧縮機が構成される。3は室外熱交換器、4は
キヤピラリチユーブ等の減圧器、5は室内熱交換
器、1aは冷媒の流れを切換える切換弁の一例と
しての四方弁であり、これらは圧縮機1と閉回路
状に接続されて冷媒圧縮サイクルを構成する。こ
の冷媒圧縮サイクルは、前記四方弁1aのオン状
態で暖房運転を、オフ状態で冷房運転を行なうよ
うにされたものである。6は室外熱交換器3に対
応して設けられた室外送風機、7は室内熱交換器
5に対応して設けられた室内送風機である。<Embodiment> The present invention will be described in detail below with reference to the illustrated embodiment. In FIG. 1, 1 is a compressor, 2 is a compressor motor that drives this compressor 1, and these constitute an electric compressor. Ru. 3 is an outdoor heat exchanger, 4 is a pressure reducer such as a capillary tube, 5 is an indoor heat exchanger, 1a is a four-way valve as an example of a switching valve for switching the flow of refrigerant, and these are connected to the compressor 1 and a closed circuit. are connected to form a refrigerant compression cycle. In this refrigerant compression cycle, heating operation is performed when the four-way valve 1a is on, and cooling operation is performed when it is off. 6 is an outdoor blower provided corresponding to the outdoor heat exchanger 3, and 7 is an indoor blower provided corresponding to the indoor heat exchanger 5.
8は一般的なワンチツプマイクロコンピユータ
(以下マイコンと称する)で、入力端子IN1〜IN
4及び出力端子OUT1〜OUT6を有すると共
に、内部にプログラムROM、データRAM、ALU
を有し、基準クロツク発振部9により駆動されて
いる。10は室温検出用のサーミスタ、11は
A/D変換器で、サーミスタ10で検出された室
温をデジタル値に変換してマイコン8の入力端子
IN1へ入力する。12は室温設定用の可変抵
抗、13はA/D変換器で、可変抵抗12で設定
された室温をデジタル値に変換してマイコン8の
入力端子IN2に入力する。14はインバータ部
で、電源端子15,15′から入力された交流電
源をダイオードD1〜D4で整流し、コンデンサC10
で平滑した後、トランジスタTr1,Tr1′でW
相、トランジスタTr2,Tr2′でV相、トランジ
スタTr3,Tr3′でU相の三相を夫々位相制御し
て三相交流を発生し、三相の圧縮機モータ2を運
転する。16は運転/停止スイツチで、マイコン
8の入力端子IN4に接続される。17は前記四
方弁1aを切換えるための冷房・暖房切換スイツ
チで、マイコン8の入力端子IN3に接続され
る。マイコン8は入力端子IN1から室温、入力
端子IN2から室温設定値を夫々読込み、その値
によりインバータ部14を介して圧縮機モータ2
に通電する三相電圧U、V、Wの周波数及び電圧
を制御する信号を出力端子OUT1〜OUT3から
出力し、これによつてトランジスタ駆動回路18
を介して圧縮機モータ2の回転数を制御し冷房
(暖房)能力を可変とするものである。マイコン
8及びインバータ部14により、いわゆるパルス
幅変調方式のインバータ制御部が構成されてい
る。なお、インバータ部14のコンデンサC,
C1′〜C3,C3′は、トランジスタTr1,Tr1′〜
Tr3,Tr3′がノイズにより誤動作するのを防止
するためのものである。また抵抗R1とコンデン
サC4,R4とC7,R2とC5,R5とC8,R3とC6,R6と
C9とから成る各RC直列回路は、圧縮機モータ2
への通電オフ後の逆起電圧によるトランジスタ
Tr1,Tr1′〜Tr3,Tr3′の損傷を防ぐための
放電回路である。マイコンの出力端子OUT4,
OUT5,OUT6には夫々室外送風機6、室内送
風機7、四方弁1aの制御出力が発生する。 8 is a general one-chip microcomputer (hereinafter referred to as microcomputer), which has input terminals IN1 to IN.
4 and output terminals OUT1 to OUT6, as well as internal program ROM, data RAM, and ALU.
, and is driven by a reference clock oscillator 9. 10 is a thermistor for detecting room temperature, and 11 is an A/D converter that converts the room temperature detected by the thermistor 10 into a digital value and sends it to the input terminal of the microcomputer 8.
Input to IN1. 12 is a variable resistor for setting the room temperature, and 13 is an A/D converter, which converts the room temperature set by the variable resistor 12 into a digital value and inputs it to the input terminal IN2 of the microcomputer 8. 14 is an inverter section, which rectifies the AC power input from power supply terminals 15, 15' with diodes D 1 to D 4 and connects a capacitor C 10
After smoothing with W, transistors Tr1 and Tr1'
The three phases, V phase by transistors Tr2 and Tr2', and U phase by transistors Tr3 and Tr3', are controlled respectively to generate three-phase alternating current, thereby operating the three-phase compressor motor 2. 16 is a run/stop switch, which is connected to the input terminal IN4 of the microcomputer 8. Reference numeral 17 denotes a cooling/heating selector switch for switching the four-way valve 1a, and is connected to an input terminal IN3 of the microcomputer 8. The microcomputer 8 reads the room temperature from the input terminal IN1 and the room temperature set value from the input terminal IN2.
The transistor drive circuit 18
The rotation speed of the compressor motor 2 is controlled through the compressor motor 2, thereby making the cooling (heating) capacity variable. The microcomputer 8 and the inverter section 14 constitute a so-called pulse width modulation type inverter control section. Note that the capacitor C of the inverter section 14,
C 1 '~C 3 , C 3 ' are transistors Tr1, Tr1'~
This is to prevent Tr3 and Tr3' from malfunctioning due to noise. Also, resistor R 1 and capacitor C 4 , R 4 and C 7 , R 2 and C 5 , R 5 and C 8 , R 3 and C 6 , R 6
Each RC series circuit consisting of C 9 connects compressor motor 2
Transistor due to back electromotive force after energization is turned off
This is a discharge circuit to prevent damage to Tr1, Tr1' to Tr3, Tr3'. Microcomputer output terminal OUT4,
Control outputs of the outdoor blower 6, indoor blower 7, and four-way valve 1a are generated at OUT5 and OUT6, respectively.
前記マイコン8は、第5図のごとく、前記切換
スイツチ17の切換信号により暖房運転指示か冷
房運転指示かを判断する暖房冷房判定手段8A
と、該暖房冷房判定手段8Aの信号により前記切
換弁1aを暖房側または冷房側に切換えかつ暖房
運転時に停止スイツチ16の停止信号により切換
弁1aを暖房側から冷房側へ切換える信号を出力
し冷房運転時に停止スイツチ16の停止信号によ
り切換弁を冷房側に維持する信号を出力する弁切
換手段8Bと、暖房運転時に停止スイツチの停止
信号により前記室内送風機7を停止させる室内送
風機停止手段8Cと、前記停止スイツチ16の停
止信号により前記インバータ部14に圧縮機回転
数低下信号を出力する圧縮機回転数低下手段8D
と、圧縮機回転数低下手段8Dの低下信号が所定
回転数設定手段8Eにより設定された所定値(最
小回転数)に達したか否かを判断する回転数判定
手段8Fと、該判定手段8Fの所定値(最小回転
数)到達信号により前記インバータ部14に圧縮
機停止信号を出力する圧縮機停止手段8Gと、前
記判定手段8Fの所定値(最小回転数)到達信号
により前記室外送風機6を停止する室外送風機停
止手段8Hとが有せしめられている。 As shown in FIG. 5, the microcomputer 8 has a heating/cooling determining means 8A that determines whether a heating operation instruction or a cooling operation instruction is given based on the switching signal of the changeover switch 17.
Then, the switching valve 1a is switched to the heating side or the cooling side by the signal from the heating/cooling determining means 8A, and a signal is output to switch the switching valve 1a from the heating side to the cooling side by the stop signal from the stop switch 16 during heating operation. Valve switching means 8B outputs a signal to maintain the switching valve on the cooling side in response to a stop signal from the stop switch 16 during operation, and indoor blower stopping means 8C causes the indoor blower 7 to be stopped by a stop signal from the stop switch during heating operation. Compressor rotation speed reducing means 8D for outputting a compressor rotation speed reduction signal to the inverter section 14 in response to a stop signal from the stop switch 16;
and a rotation speed determining means 8F for determining whether the reduction signal of the compressor rotation speed reducing means 8D has reached a predetermined value (minimum rotation speed) set by the predetermined rotation speed setting means 8E, and the determining means 8F. A compressor stop means 8G outputs a compressor stop signal to the inverter unit 14 in response to a signal that a predetermined value (minimum rotation speed) has been reached, and a compressor stop means 8G outputs a compressor stop signal to the inverter section 14 in response to a signal that the determination means 8F has reached a predetermined value (minimum rotation speed). An outdoor blower stopping means 8H is provided to stop the outdoor blower.
上記構成において、冷房運転時には、圧縮機モ
ータ2で圧縮機1を駆動すると、圧縮機1で圧縮
された冷媒は、室外熱交換器3で室外送風機6の
送風で冷却されて凝縮した後、減圧器4で減圧さ
れ、室内熱交換器5で蒸発し冷却作用を行ない、
室内送風機7が送風して室内を冷房する。一方、
暖房運転時には、四方弁1aが第2図の如くオン
状態に切換わり、冷媒がその流れを反転して圧縮
機1→四方弁1a→室内熱交換器5→減圧器4→
室外熱交換器3と流れ、室内送風機7による送風
で暖房運転が行なわれる。この運転中は、マイコ
ン8、インバータ部14を介して圧縮機モータ2
の回転数を室温等に応じて制御し、暖房(冷房)
能力を可変する。例えば暖房運転中では、室温が
下がれば、マイコン8がそれを判断し、インバー
タ部14からの出力によつて圧縮機モータ2に通
電する三相電圧の周波数、電圧を大にする。従つ
て、圧縮機モータ2の回転数が大となり、暖房能
力が上昇して室温を設定温度まで上げる。また室
温が上昇しすぎれば逆に圧縮機モータ2の回転数
が低下する。 In the above configuration, when the compressor 1 is driven by the compressor motor 2 during cooling operation, the refrigerant compressed by the compressor 1 is cooled and condensed by the air from the outdoor blower 6 in the outdoor heat exchanger 3, and then decompressed. It is depressurized in the chamber 4, evaporated in the indoor heat exchanger 5, and performs a cooling action.
The indoor blower 7 blows air to cool the room. on the other hand,
During heating operation, the four-way valve 1a is switched to the on state as shown in Fig. 2, and the refrigerant reverses its flow to the compressor 1 -> the four-way valve 1a -> the indoor heat exchanger 5 -> the pressure reducer 4 ->
The air flows through the outdoor heat exchanger 3 and air is blown by the indoor blower 7 to perform heating operation. During this operation, the compressor motor 2 is
Controls the rotation speed according to the room temperature, etc., for heating (cooling)
Change ability. For example, during heating operation, if the room temperature drops, the microcomputer 8 determines this and increases the frequency and voltage of the three-phase voltage energized to the compressor motor 2 by the output from the inverter section 14. Therefore, the rotation speed of the compressor motor 2 increases, the heating capacity increases, and the room temperature rises to the set temperature. Moreover, if the room temperature rises too much, the rotation speed of the compressor motor 2 will decrease.
暖房(冷房)運転を停止する際には、運転/停
止スイツチ16をオフに操作すれば良い。処で、
例えば容量可変幅=周波数可変幅をMAX100Hz、
MIN30Hzとした場合、運転停止時に圧縮機モータ
2から発生する逆起電圧の大きさは、冒頭に述べ
たようにほぼ通電周波数、すなわちオフ時の回転
数に比例することになり、従つてあまり高い周波
数でいきなりオフすることは、インバータ部14
のトランジスタTr1,Tr1′〜Tr3,Tr3′に悪
影響を及ぼすことになり、好ましいものではな
い。 To stop the heating (cooling) operation, the operation/stop switch 16 may be turned off. Where,
For example, capacitance variable width = frequency variable width is MAX100Hz,
If MIN30Hz is used, the magnitude of the back electromotive force generated from the compressor motor 2 when the operation is stopped will be approximately proportional to the energization frequency, that is, the rotation speed when off, as stated at the beginning, and therefore it will not be too high. If the frequency suddenly turns off, the inverter section 14
This is not preferable since it will have an adverse effect on the transistors Tr1, Tr1' to Tr3, Tr3'.
そこで暖房運転停止の際には、第3図のタイム
チヤートの如く、A点で運転/停止スイツチ16
を操作し停止したとすると、マイコン8が働き、
切換手段8Bにより四方弁1aをオフ(冷房側)
に切換えると共に室内送風機停止手段8Cにより
室内送風機7を停止させ、同時に圧縮機回転数低
下手段8Dの信号によりインバータ部14の働
き、圧縮機モータ2の周波数を徐々に低下させ
る。そして、この停止操作からT時間後に圧縮機
モータ2の周波数が最小周波数に達すれば、圧縮
機停止手段8Gおよび室外送風機停止手段8Hに
より、圧縮機モータ2と室外送風機6とを停止
し、これによつてB点で完全に暖房運転を停止さ
せる。 Therefore, when stopping heating operation, turn on/off switch 16 at point A as shown in the time chart in Figure 3.
If you operate and stop it, microcomputer 8 will work,
Switching means 8B turns off the four-way valve 1a (cooling side)
At the same time, the indoor blower 7 is stopped by the indoor blower stopping means 8C, and at the same time, the frequency of the compressor motor 2 is gradually lowered by the operation of the inverter section 14 in response to a signal from the compressor rotation speed lowering means 8D. Then, when the frequency of the compressor motor 2 reaches the minimum frequency after T hours from this stop operation, the compressor motor 2 and the outdoor blower 6 are stopped by the compressor stop means 8G and the outdoor blower stop means 8H. Therefore, heating operation is completely stopped at point B.
このマイコン8の制御動作を第4図のフローチ
ヤートで説明すると、まず「運転/停止スイツチ
がオフか」どうか判定し、オフでなければ運転ル
ープへ、またオフならば室内送風機を停止しかつ
四方弁を冷房側へ切換える。そして圧縮機の回転
数を1ステツプ下げた後、「圧縮機が最小回転数
か」どうか判定する。そしてその判定がNOであ
る間、圧縮機の回転数を1ステツプ下げて再びそ
の回転数が最小かどうかの判定を繰返す。圧縮機
が最小回転数になつたならば、室外送風機及び圧
縮機を停止するよう指令する。そして運転/停止
スイツチがオンになるまで待機する。 To explain the control operation of the microcomputer 8 using the flowchart shown in Fig. 4, it first determines whether the run/stop switch is off, and if it is not off, it goes into the operation loop, and if it is off, it stops the indoor fan and Switch the valve to the cooling side. After lowering the rotation speed of the compressor by one step, it is determined whether "the compressor rotation speed is at the minimum rotation speed." While the determination is NO, the rotation speed of the compressor is lowered by one step and the determination as to whether the rotation speed is the minimum is repeated. When the compressor reaches the minimum rotation speed, a command is given to stop the outdoor blower and compressor. Then wait until the run/stop switch is turned on.
ここで四方弁1aを停止操作と同時にオフにし
て冷媒圧縮サイクルを冷房側に切換える理由につ
いて述べると、これは、四方弁1aを切換えずに
暖房運転のままで室内送風機7を停止すると、室
内熱交換器5には高温の冷媒が流れているのでそ
の冷媒が冷却されなくなり、冷媒圧力が異常に上
昇して危険となるためである。 Here, we will discuss the reason why the four-way valve 1a is turned off at the same time as the stop operation and the refrigerant compression cycle is switched to the cooling side. This is because high-temperature refrigerant is flowing through the exchanger 5, so the refrigerant is no longer cooled, and the refrigerant pressure increases abnormally, which is dangerous.
なお、冷房運転停止に際には、運転/停止スイ
ツチ16の操作に応動して室内送風機7を停止さ
せると共に、圧縮機モータ2の回転数を所定値ま
で低下させた後、圧縮機モータ2及び室外送風機
6を停止させる。この際、暖房運転停止の際の如
く四方弁1aを切換える必要はない。 Note that when stopping the cooling operation, the indoor blower 7 is stopped in response to the operation of the run/stop switch 16, and after the rotation speed of the compressor motor 2 is reduced to a predetermined value, the compressor motor 2 and The outdoor blower 6 is stopped. At this time, there is no need to switch the four-way valve 1a as when stopping the heating operation.
このようにすることにより、分離形の空気調和
機であれば、運転/停止スイツチ16を操作して
停止した場合、すぐ室内送風機7が停止するの
で、使用者は室外の圧縮機1、室外送風機6が動
作していても判らないため、前述のように不安感
を持つことがない。 By doing so, if the air conditioner is a separate type, when the operation/stop switch 16 is operated to stop the indoor blower 7, the indoor blower 7 will immediately stop, so the user can operate the outdoor compressor 1, the outdoor blower 6 is operating, so you don't have to feel anxious as mentioned above.
<発明の効果>
以上の説明からも明らかな通り、本発明による
と、暖房運転の停止操作に応動して室内送風機停
止手段が室内送風機を停止させるため、停止操作
と同時に室内送風機が止まり、使用者の不安感も
解消でき、また暖房冷房判定手段および弁切換手
段により、暖房運転時に停止スイツチの停止信号
により切換弁を暖房側から冷房側へ切換作動させ
るため、冷媒圧力が異常に上昇することもなく良
好に停止でき、さらに停止スイツチの停止信号に
より圧縮機回転数低下手段で電動圧縮機の回転数
を所定値まで低下させた後、回転数判定手段の最
小回転数到達信号により圧縮機停止手段および室
外送風機停止手段で電動圧縮機及び室外送風機を
停止させるため、インバータ部のトランジスタに
悪影響を及ぼすことを防止できる。<Effects of the Invention> As is clear from the above description, according to the present invention, the indoor blower stopping means stops the indoor blower in response to the heating operation stop operation, so the indoor blower stops at the same time as the stop operation, and the indoor blower is stopped when the heating operation is stopped. Furthermore, since the heating/cooling determining means and the valve switching means switch the switching valve from the heating side to the cooling side in response to a stop signal from the stop switch during heating operation, the refrigerant pressure does not rise abnormally. Furthermore, after the compressor rotation speed reducing means lowers the rotation speed of the electric compressor to a predetermined value based on the stop signal from the stop switch, the compressor is stopped by the minimum rotation speed reaching signal from the rotation speed determination means. Since the electric compressor and the outdoor blower are stopped by the means and the outdoor blower stopping means, it is possible to prevent an adverse effect on the transistors of the inverter section.
第1図は本発明の一実施例を示す制御回路図、
第2図は同じく四方弁の切換え状態を示す図、第
3図は同じく制御回路のタイムチヤート、第4図
は同じくそのフローチヤート、第5図はマイクロ
コンピユータの機能ブロツク図である。
1:圧縮機、1a:四方弁、2:圧縮機モー
タ、3:室外熱交換器、4:減圧器、5:室内熱
交換器、6:室外送風機、7:室内送風機、8:
マイクロコンピユータ、14:インバータ部、1
6:運転/停止スイツチ、17:冷房・暖房切換
スイツチ。
FIG. 1 is a control circuit diagram showing one embodiment of the present invention;
FIG. 2 is a diagram showing the switching state of the four-way valve, FIG. 3 is a time chart of the control circuit, FIG. 4 is a flowchart thereof, and FIG. 5 is a functional block diagram of the microcomputer. 1: Compressor, 1a: Four-way valve, 2: Compressor motor, 3: Outdoor heat exchanger, 4: Pressure reducer, 5: Indoor heat exchanger, 6: Outdoor blower, 7: Indoor blower, 8:
Microcomputer, 14: Inverter section, 1
6: Run/stop switch, 17: Cooling/heating switch.
Claims (1)
交換器を順次接続した冷媒圧縮サイクルを備える
と共に、該冷媒圧縮サイクルに冷媒の流路を暖房
側および冷房側のうちの一方へ切換える冷媒流路
切換弁が設けられ、前記室外熱交換器及び室内熱
交換器に送風機を夫々備え、電動圧縮機への電源
の周波数及び電圧を制御するインバータ部と、停
止スイツチ及び切換弁切換スイツチの信号を入力
する入力端子を有しかつ前記インバータ部、切換
弁、室内送風機および室外送風機を制御するマイ
クロコンピユータとからインバータ制御部が構成
され、前記マイクロコンピユータは、暖房運転時
に停止スイツチの停止信号により切換弁を暖房側
から冷房側へ切換える信号を出力する弁切換手段
と、暖房運転時に停止スイツチの停止信号により
前記室内送風機を停止させる室内送風機停止手段
と、前記停止スイツチの停止信号により前記イン
バータ部に圧縮機回転数低下信号を出力する圧縮
機回転数低下手段と、圧縮機回転数低下手段の低
下信号が所定値に達したか否かを判断する回転数
判定手段と、該判定手段の所定値到達信号により
前記インバータ部に圧縮機停止信号を出力する圧
縮機停止手段と、前記判定手段の所定値到達信号
により前記室外送風機を停止する室外送風機停止
手段とが有せしめられていることを特徴とする空
気調和機の制御回路。1. A refrigerant comprising a refrigerant compression cycle in which an electric compressor, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are sequentially connected, and in which the refrigerant flow path is switched to one of the heating side and the cooling side. A flow path switching valve is provided, each of the outdoor heat exchanger and the indoor heat exchanger is provided with a blower, an inverter section that controls the frequency and voltage of the power supply to the electric compressor, and a stop switch and a switching valve selector switch. The inverter control section is composed of a microcomputer that has an input terminal for inputting the information and controls the inverter section, the switching valve, the indoor blower, and the outdoor blower, and the microcomputer is switched by a stop signal from a stop switch during heating operation. a valve switching means for outputting a signal to switch the valve from the heating side to the cooling side; an indoor blower stopping means for stopping the indoor blower in response to a stop signal from a stop switch during heating operation; Compressor rotation speed reduction means for outputting a compressor rotation speed reduction signal, rotation speed determination means for determining whether the reduction signal of the compressor rotation speed reduction means has reached a predetermined value, and a predetermined value for the determination means. Compressor stopping means outputs a compressor stop signal to the inverter section in response to an arrival signal, and outdoor blower stopping means stops the outdoor blower in response to a predetermined value arrival signal from the determining means. air conditioner control circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56210792A JPS58115234A (en) | 1981-12-29 | 1981-12-29 | Control circuit of air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56210792A JPS58115234A (en) | 1981-12-29 | 1981-12-29 | Control circuit of air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58115234A JPS58115234A (en) | 1983-07-08 |
JPS6151220B2 true JPS6151220B2 (en) | 1986-11-07 |
Family
ID=16595203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56210792A Granted JPS58115234A (en) | 1981-12-29 | 1981-12-29 | Control circuit of air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58115234A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533166B2 (en) * | 1985-08-09 | 1993-05-18 | Nissan Motor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104633847B (en) * | 2014-12-30 | 2017-06-27 | 广东美的制冷设备有限公司 | The implementation method and device of air conditioner protection circuit |
-
1981
- 1981-12-29 JP JP56210792A patent/JPS58115234A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533166B2 (en) * | 1985-08-09 | 1993-05-18 | Nissan Motor |
Also Published As
Publication number | Publication date |
---|---|
JPS58115234A (en) | 1983-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4736595A (en) | Circuit for controlling inventer in air conditioner | |
KR0122095B1 (en) | Inverter and air-conditioner driven by the same | |
JP3285527B2 (en) | Compressor dead time compensation method for air conditioner | |
JPS58101281A (en) | Control circuit for refrigerator | |
JPS624618B2 (en) | ||
JPS6151220B2 (en) | ||
JPS621496B2 (en) | ||
JPS59221546A (en) | Air conditioner | |
JPS58140571A (en) | Control circuit for air conditioner | |
JPS6130176B2 (en) | ||
JP3332012B2 (en) | Air conditioner | |
JPS6044683B2 (en) | temperature control device | |
JPH06265244A (en) | Air conditioner | |
JPH02106647A (en) | Air conditioner | |
JPS6121343B2 (en) | ||
JPS5899634A (en) | Control circuit for air conditioner | |
JP3079152B2 (en) | Air conditioner | |
JPH05240493A (en) | Air conditioner | |
JPS58115237A (en) | Control circuit of air conditioner | |
JPH05346257A (en) | Air conditioner | |
JPH0351980B2 (en) | ||
JPS6144255A (en) | Air conditioner | |
JPS6213952A (en) | Air conditioner | |
JPH04295A (en) | Air-conditioner | |
JP2500527B2 (en) | Defrost control method for air conditioner |