JPS621496B2 - - Google Patents

Info

Publication number
JPS621496B2
JPS621496B2 JP56210793A JP21079381A JPS621496B2 JP S621496 B2 JPS621496 B2 JP S621496B2 JP 56210793 A JP56210793 A JP 56210793A JP 21079381 A JP21079381 A JP 21079381A JP S621496 B2 JPS621496 B2 JP S621496B2
Authority
JP
Japan
Prior art keywords
room temperature
rotation speed
defrosting
heat exchanger
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56210793A
Other languages
Japanese (ja)
Other versions
JPS58115235A (en
Inventor
Yoshuki Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56210793A priority Critical patent/JPS58115235A/en
Publication of JPS58115235A publication Critical patent/JPS58115235A/en
Publication of JPS621496B2 publication Critical patent/JPS621496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は、冷媒圧縮サイクルを有する空気調和
機の制御回路、特にインバータ制御による能力可
変形の空気調和機の制御回路に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for an air conditioner having a refrigerant compression cycle, and particularly to a control circuit for a variable capacity air conditioner controlled by an inverter.

電動圧縮機、冷媒流路切換弁、室外熱交換器、
減圧器、室内熱交換器を順次接続した冷媒圧縮サ
イクルを備えると共に、その室外熱交換器及び室
内熱交換器に送風機を夫々備えた空気調和機にお
いて、その電動圧縮機への電源の周波数及び電圧
を制御するインバータ制御方式があり、これは回
転数を室温、室温設定値、及びその他外気温度等
から演算し、負荷変動によつて自動的に回転数を
制御し、室温の変動幅を小さく抑える上で効果的
である。しかし暖房運転において電動圧縮機を低
い回転数で運転するような負荷状態で運転してい
て、室外熱交換器に霜が付いた場合、除霜運転に
入つてそのままの回転数で除霜運転を行なうと、
回転数が低いため除霜時間が長くなるといつた問
題があつた。
Electric compressors, refrigerant flow switching valves, outdoor heat exchangers,
In an air conditioner equipped with a refrigerant compression cycle in which a pressure reducer and an indoor heat exchanger are sequentially connected, and a blower is provided in the outdoor heat exchanger and the indoor heat exchanger, respectively, the frequency and voltage of the power supply to the electric compressor There is an inverter control method that calculates the rotation speed from the room temperature, room temperature set value, and other outside temperature, etc., and automatically controls the rotation speed according to load fluctuations, keeping the range of room temperature fluctuations small. It is effective on However, if the electric compressor is operated at a low rotational speed during heating operation and frost forms on the outdoor heat exchanger, it may be necessary to enter defrosting operation and continue defrosting at the same rotational speed. When you do it,
There was a problem that the defrosting time was long due to the low rotation speed.

本発明は、上記に鑑み、除霜運転中及びその前
後において電動圧縮機の回転数を制御し、除霜運
転時間を短縮すると共に室温の低下をできるだけ
押え、更に除霜後の室温の立上りを早く行なわせ
るようにした制御回路を提供しようとするもので
ある。
In view of the above, the present invention controls the rotation speed of the electric compressor during and before and after defrosting operation, shortens the defrosting operation time, suppresses the drop in room temperature as much as possible, and further suppresses the rise in room temperature after defrosting. The purpose of this invention is to provide a control circuit that allows the process to be performed quickly.

以下、図示の実施例について本発明を詳述する
と、第1図において、1は圧縮機、2はこの圧縮
機1を駆動する圧縮機モータで、これらにより電
動圧縮機が構成される。3は室外熱交換器、4は
キヤピラリチユーブ等の減圧器、5は室内熱交換
器、1aは冷媒の流れを切換える切換弁の一例と
しての四方弁であり、これらは圧縮機1と閉回路
状に接続されて冷媒圧縮サイクルを構成する。こ
の冷媒圧縮サイクルは、前記四方弁1aのオン状
態で暖房運転を、オフ状態で冷房運転を行なうよ
うにされたものである。6は室外熱交換器3に対
応して設けられた室外送風機、7は室内熱交換器
5に対応して設けられた室内送風機である。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiment. In FIG. 1, 1 is a compressor, 2 is a compressor motor that drives this compressor 1, and these constitute an electric compressor. 3 is an outdoor heat exchanger, 4 is a pressure reducer such as a capillary tube, 5 is an indoor heat exchanger, 1a is a four-way valve as an example of a switching valve for switching the flow of refrigerant, and these are connected to the compressor 1 and a closed circuit. are connected to form a refrigerant compression cycle. In this refrigerant compression cycle, heating operation is performed when the four-way valve 1a is on, and cooling operation is performed when it is off. 6 is an outdoor blower provided corresponding to the outdoor heat exchanger 3, and 7 is an indoor blower provided corresponding to the indoor heat exchanger 5.

8は一般的なワンチツプマイクロコンピユータ
(以下マイコンと称する)で、入力端子IN1〜IN
5及び出力端子OUT1〜OUT6を有すると共
に、内部にプログラムROM、データRAM、ALU
及び除霜タイマー(ソフトウエアタイマー)を有
し、基準クロツク発振部9により駆動されてい
る。10は室温検出用のサーミスタ、11はA/
D変換器で、サーミスタ10で検出された室温を
デジタル値に変換してマイコン8の入力端子IN
1へ入力する。12は室温設定用の可変抵抗、1
3はA/D変換器で、可変抵抗12で設定された
室温をデジタル値に変換してマイコン8の入力端
子IN2に入力する。14はインバータ部で、電
源端子15,15′から入力された交流電源をダ
イオードD1〜D4で整流し、コンデンサC10で平滑
した後、トランジスタTr1,Tr1′でW相、トラ
ンジスタTr2,Tr2′でV相、トランジスタTr
3,Tr3′でU相の三相を夫々位相制御して三相
交流を発生し、三相の圧縮機モータ2を運転す
る。16は運転/停止スイツチで、マイコン8の
入力端子IN4に接続される。17は前記四方弁
1aを切換えるための冷房・暖房切換スイツチ
で、マイコン8の入力端子IN3に接続される。
マイコン8は入力端子IN1から室温、入力端子
IN2から室温設定値を夫々読込み、その値によ
りインバータ部14を介して圧縮機モータ2に通
電する三相電圧U、V、Wの周波数及び電圧を制
御する信号を出力端子OUT1〜OUT3から出力
し、これによつてトランジスタ駆動回路18を介
して圧縮機モータ2の回転数を制御し冷房(暖
房)能力を可変とするものである。19は着霜検
出用のサーミスタ、20はA/D変換器で、サー
ミスタ19で検出された室温をデジタル値に変換
してマイコン8の入力端子IN5へ入力する。マ
イコン8は、その信号に応じて圧縮機モータ2に
通電する三相電圧U、V、Wの周波数、電圧を制
御する信号を出力端子OUT1〜OUT3から出力
すると共に四方弁1aを切換える信号を出力す
る。このようにマイコン8及びインバータ部14
により、いわゆるパルス幅変調方式のインバータ
制御部が構成されている。なお、インバータ部1
4のコンデンサC1,C1′〜C3,C3′は、トランジス
タTr1,Tr1′〜Tr3,Tr3′がノイズにより誤
動作するのを防止するためのものである。また抵
抗R1とコンデンサC4,R4とC7,R2とC5,R5
C8,R3とC6,R6とC9とから成る各RC直列回路
は、圧縮機モータ2への通電オフ後の逆起電圧に
よるトランジスタTr1,Tr1′〜Tr3,Tr3′の
損傷を防ぐための放電回路である。マイコンの出
力端子OUT4,OUT5,OUT6には夫々室外送
風機6、室内送風機7、四方弁1aの制御出力が
発生する。
8 is a general one-chip microcomputer (hereinafter referred to as microcomputer), which has input terminals IN1 to IN.
5 and output terminals OUT1 to OUT6, as well as internal program ROM, data RAM, and ALU.
and a defrosting timer (software timer), which are driven by the reference clock oscillator 9. 10 is a thermistor for detecting room temperature, 11 is A/
The D converter converts the room temperature detected by the thermistor 10 into a digital value and sends it to the input terminal IN of the microcomputer 8.
Enter 1. 12 is a variable resistor for setting the room temperature, 1
3 is an A/D converter which converts the room temperature set by the variable resistor 12 into a digital value and inputs it to the input terminal IN2 of the microcomputer 8. 14 is an inverter section, in which the AC power input from power supply terminals 15 and 15' is rectified by diodes D1 to D4 , smoothed by a capacitor C10 , and then converted to W phase by transistors Tr1 and Tr1', and W phase by transistors Tr2 and Tr2. ′, V phase, transistor Tr
3. Tr 3' controls the three phases of the U phase to generate three-phase alternating current and operate the three-phase compressor motor 2. 16 is a run/stop switch, which is connected to the input terminal IN4 of the microcomputer 8. Reference numeral 17 denotes a cooling/heating selector switch for switching the four-way valve 1a, and is connected to an input terminal IN3 of the microcomputer 8.
Microcontroller 8 connects input terminal IN1 to room temperature, input terminal
The room temperature setting values are read from IN2, and signals for controlling the frequency and voltage of the three-phase voltages U, V, and W that energize the compressor motor 2 via the inverter section 14 are output from the output terminals OUT1 to OUT3 based on the values. , thereby controlling the rotation speed of the compressor motor 2 via the transistor drive circuit 18 and making the cooling (heating) capacity variable. 19 is a thermistor for frost detection, and 20 is an A/D converter, which converts the room temperature detected by the thermistor 19 into a digital value and inputs it to the input terminal IN5 of the microcomputer 8. The microcomputer 8 outputs signals for controlling the frequency and voltage of three-phase voltages U, V, and W that are energized to the compressor motor 2 from the output terminals OUT1 to OUT3 according to the signals, and also outputs a signal for switching the four-way valve 1a. do. In this way, the microcomputer 8 and the inverter section 14
This constitutes a so-called pulse width modulation type inverter control section. In addition, inverter section 1
The capacitors C 1 , C 1 ′ to C 3 , C 3 ′ are for preventing the transistors Tr1, Tr1′ to Tr3, Tr3′ from malfunctioning due to noise. Also, resistor R 1 and capacitor C 4 , R 4 and C 7 , R 2 and C 5 , R 5
Each RC series circuit consisting of C 8 , R 3 and C 6 , and R 6 and C 9 prevents damage to transistors Tr 1 , Tr 1 ′ to Tr 3 , Tr 3 ′ due to back electromotive force after the compressor motor 2 is turned off. This is a discharge circuit to prevent this. Control outputs for the outdoor blower 6, indoor blower 7, and four-way valve 1a are generated at output terminals OUT4, OUT5, and OUT6 of the microcomputer, respectively.

上記構成において、冷房運転時には、圧縮機モ
ータ2で圧縮機1を駆動すると、圧縮機1で圧縮
された冷媒は、室外熱交換器3で室外送風機6の
送風で冷却されて凝縮した後、減圧器4で減圧さ
れ、室内熱交換器5で蒸発して冷却作用を行な
い、室内送風機7が送風して室内を冷房する。一
方、暖房運転時には、四方弁1aが第2図の如く
オン状態に切換わり、冷媒がその流れを反転して
圧縮機1→四方弁1a→室内熱交換器5→減圧器
4→室外熱交換器3と流れ、室内送風機7による
送風で暖房運転が行なわれる。
In the above configuration, when the compressor 1 is driven by the compressor motor 2 during cooling operation, the refrigerant compressed by the compressor 1 is cooled and condensed by the air from the outdoor blower 6 in the outdoor heat exchanger 3, and then decompressed. The pressure is reduced in the chamber 4, evaporated in the indoor heat exchanger 5 to perform a cooling effect, and the indoor blower 7 blows air to cool the room. On the other hand, during heating operation, the four-way valve 1a is switched on as shown in Figure 2, and the flow of refrigerant is reversed so that the compressor 1 → four-way valve 1a → indoor heat exchanger 5 → pressure reducer 4 → outdoor heat exchange Heating operation is performed by air flowing through the indoor air blower 7.

次に暖房時における室外熱交換器の除霜運転を
第3図のタイムチヤートに基いて説明する。第3
図において除霜信号とは、マイコン8に内蔵され
ある時間周期で動作する除霜タイマーからの信号
と、室外熱交換器3の温度を検出する除霜サーモ
スタツト等からの温度データ信号とに基いて出力
する信号である。例えば除霜タイマーが60分周期
として50分間の暖房運転、10分間の除霜運転を行
なわしめるよう動作するものであり、除霜サーモ
スタツトが10℃以上で除霜終了の信号を出力し、
−2.5℃以下で着霜信号を出力するものであると
すると、除霜信号は、除霜タイマーと除霜サーモ
スタツトのAND条件で除霜を開始し、OR条件で
除霜を終了する。即ち除霜時間は、除霜サーモス
タツトが10℃以上になるか、または10分間経過す
れば終了し、暖房運転に戻る。例えば、除霜タイ
マーがA点になると、マイコン8、インバータ部
14が働き、暖房運転を続けながら圧縮機モータ
2の回転数を最大回転数まで上昇させる。そして
A点からT1時間経過後のB点で、四方弁1aを
オフ状態(冷房側)に切換える除霜信号を出力し
て四方弁1aを切換え、除霜運転に入いる。そし
て除霜運転中は圧縮機モータ2を最大回転数で回
転させる。除霜運転終了時には、C点で除霜終了
の信号が入力されると、上記と同様にマイコン8
が働き、四方弁1aを冷房側から暖房側へ切換え
る信号を出力して四方弁1aを切換える。しか
し、圧縮機モータ2はその後T2時間、最大回転
数で運転し、D点で通常の設定回転数に戻つて運
転を続ける。なお第3図ののE点以降では、除霜
タイマーの動作時に除霜サーモスタツトが10℃以
上であるため除霜信号が出力されず、従つてE点
で除霜に入いる予定が除霜に入いることができ
ず、圧縮機はT3時間最大回転数で運転し続け、
その後設定回転数に戻る。
Next, the defrosting operation of the outdoor heat exchanger during heating will be explained based on the time chart of FIG. Third
In the figure, the defrost signal is based on a signal from a defrost timer that is built into the microcomputer 8 and operates at a certain time period, and a temperature data signal from a defrost thermostat, etc. that detects the temperature of the outdoor heat exchanger 3. This is the signal that is output when For example, the defrost timer operates in a 60-minute cycle to perform heating operation for 50 minutes and defrost operation for 10 minutes, and the defrost thermostat outputs a signal indicating the end of defrosting when the temperature exceeds 10°C.
Assuming that a frosting signal is output at -2.5°C or lower, the defrosting signal starts defrosting under the AND condition of the defrosting timer and the defrosting thermostat, and ends defrosting under the OR condition. That is, the defrosting time ends when the defrosting thermostat reaches 10°C or higher, or when 10 minutes have passed, and the heating operation returns. For example, when the defrosting timer reaches point A, the microcomputer 8 and inverter section 14 operate to increase the rotation speed of the compressor motor 2 to the maximum rotation speed while continuing the heating operation. Then, at point B, after T1 time has elapsed from point A, a defrosting signal for switching the four-way valve 1a to the OFF state (cooling side) is output, the four-way valve 1a is switched, and the defrosting operation is started. During the defrosting operation, the compressor motor 2 is rotated at the maximum rotation speed. At the end of the defrosting operation, when the defrosting end signal is input at point C, the microcomputer 8
operates, outputs a signal to switch the four-way valve 1a from the cooling side to the heating side, and switches the four-way valve 1a. However, the compressor motor 2 then operates at the maximum rotation speed for a time T2, returns to the normal set rotation speed at point D, and continues operating. Note that after point E in Figure 3, the defrost signal is not output because the defrost thermostat is 10°C or higher when the defrost timer operates, and therefore the defrost signal is not output at point E. The compressor continues to operate at maximum rotation speed for T3 hours,
After that, it returns to the set rotation speed.

この制御動作を第5図のフローチヤートで説明
すると、まずフラグF(除霜終了後の最大回転
数)により除霜終了直後C〜Dの間かどうか判定
し、C〜DでなければNOに分岐して、次に除霜
フラグ(除霜中はセツト)で除霜中かどうか判定
し、NOならば除霜タイマーで除霜時間前(第3
図のA点以降)かどうか判定する。そしてNOな
らばそのままOUTへ抜け、YESならば除霜に備
えて圧縮機の回転数を1ステツプづつ上げて最大
回転数にする。次に除霜タイマーでB点以上にな
るまで待つて、B点以上になれば除霜サーモスタ
ツトが−2.5℃以下かどうか判定し、以下ならば
除霜フラグをセツトしてOUTへ抜ける。次にIN
に戻り、「除霜フラグをセツト」でYESならば四
方弁を冷房側へ切換え、室内、室外送風機をオフ
して除霜運転に入いる。そして除霜タイマーがC
点になるか、除霜サーモスタツトが10℃以上にな
るまで待つて、どちらかで除霜を終了して除霜フ
ラグをリセツトし、四方弁を暖房側へ切換えると
共に室内、室外送風機をオンとし、除霜運転を終
了してフラグFをセツトしてOUTへ抜ける。次
にINに戻り、「フラグFをセツト」の判定でYES
へ分岐すれば圧縮機の回転数を1ステツプづつ下
げて設定回転数まで下げる。そして設定回転数に
なればフラグFをリセツトし、除霜タイマーをク
リアしてOUTへ抜ける。
To explain this control operation using the flowchart in Fig. 5, first, it is determined by flag F (maximum rotation speed after defrosting) whether or not it is between C and D immediately after defrosting, and if it is not C to D, it is set to NO. Branch, then use the defrost flag (set during defrosting) to determine whether defrosting is in progress, and if NO, use the defrost timer to turn on the defrost time before the defrost time (3rd time).
(after point A in the figure). If NO, the system goes straight to OUT, and if YES, the compressor rotation speed is increased one step at a time to the maximum rotation speed in preparation for defrosting. Next, wait until the defrost timer reaches point B or above, and if it reaches point B or above, determine whether the defrost thermostat is below -2.5°C, and if it is below, set the defrost flag and exit to OUT. Then IN
Return to , and if YES is selected for ``Set defrost flag,'' switch the four-way valve to the cooling side, turn off the indoor and outdoor blowers, and start defrosting operation. And the defrost timer is C
Wait until the temperature reaches 10 degrees or the defrost thermostat reaches 10°C or higher, then finish defrosting and reset the defrost flag, switch the four-way valve to the heating side, and turn on the indoor and outdoor blowers. , completes the defrosting operation, sets flag F, and exits to OUT. Next, return to IN and check YES for "Set flag F"
If it branches to , the rotation speed of the compressor will be lowered one step at a time to the set rotation speed. Then, when the set rotation speed is reached, flag F is reset, the defrost timer is cleared, and the engine exits to OUT.

ここでA→B及びC→Dの間を最大回転数で運
転する理由を第4図に基いて設明すると、第4図
aは除霜運転中のみ最大回転数で運転した場合の
室温変化を示すものであり、第4図bは本実施例
の如くA〜B、C〜Dも最大回転数で運転した場
合の室温変化を示すものである。このaの場合、
除霜運転開始時から室温が徐々に下がり始め、除
霜終了直後が最低になり、その後元の室温に復帰
するわけである。しかし、本実施例を示すbの場
合、除霜前、即ち第3図のA〜Bの間に室温が少
し上昇し、それから除霜に入つて下がり始め、除
霜終了直後が最低となり、それから暖房運転で上
がつて行くので、aの場合に比して室温の最低値
の絶対値が高く、即ちaとの差はJで表わされ
る。更に除霜終了時の室温の立上がり時間T4と
T5とでは、T4>T5となり、本例の方が早く元の
室温に戻る。
Here, the reason for operating at the maximum rotation speed between A → B and C → D is established based on Figure 4. Figure 4 a shows the room temperature change when operating at the maximum rotation speed only during defrosting operation. FIG. 4b shows the change in room temperature when A to B and C to D are also operated at the maximum rotational speed as in this embodiment. In the case of this a,
The room temperature begins to drop gradually from the start of defrosting operation, reaches its lowest level immediately after defrosting, and then returns to the original room temperature. However, in case b showing this embodiment, the room temperature rises a little before defrosting, that is, between A and B in FIG. Since the temperature increases with heating operation, the absolute value of the minimum room temperature is higher than in case a, that is, the difference from a is expressed as J. Furthermore, the temperature rise time T4 at the end of defrosting
With T5, T4>T5, and the temperature returns to the original room temperature faster in this example.

なお、第3図のタイムチヤートではA〜Dの回
転数を最大としたが、本発明では、特に最大でな
くとも最大付近の回転数でもよい。また本発明で
は、上記実施例の如き制御動作の他に第6図のフ
ローチヤートに示すような制御動作であつてもよ
い。即ちINから入つて除霜フラグ(除霜中はセ
ツト)を判定し、NOならば次に着霜信号を判定
し、そこでオフ(無着霜)ならばそのままOUT
へ、オン(着霜)ならば圧縮機の回転数を1ステ
ツプづつ上げて最大回転数にする。その後T1時
間経過したかどうか判定し、経過すればし除霜フ
ラグをセツトし、四方弁を冷房側へ切換えると共
に室内、室外送風機をオフとして除霜運転に入い
る。次にINに入つて除霜フラグの判定でYESへ
分岐すれば、着霜信号がオフかどうか判定し、着
霜ならばそのままOUTで、無着霜(除霜終了)
ならばYESへ分岐し、、四方弁を暖房側へ切換え
ると共に室内、室外送風機をオンとし、除霜運転
を終了して暖房運転に入いる。そしてT2時間経
過すれば圧縮機の回転数を1ステツプづつ下げて
行き、設定回転数になれば除霜フラグをリセツト
してOUTへ出る。
In the time chart of FIG. 3, the rotational speeds A to D are set to the maximum, but in the present invention, the rotational speed may not be the maximum, but may be around the maximum. Further, in the present invention, in addition to the control operation as in the above embodiment, a control operation as shown in the flowchart of FIG. 6 may be used. That is, it enters from IN and determines the defrost flag (set during defrosting), and if NO, then determines the frosting signal, and if it is OFF (no frosting), it goes directly to OUT.
If it is on (frosting), increase the rotation speed of the compressor one step at a time until it reaches the maximum rotation speed. Thereafter, it is determined whether the time T1 has elapsed, and if it has, the defrost flag is set, the four-way valve is switched to the cooling side, and the indoor and outdoor blowers are turned off to begin defrosting operation. Next, if it goes into IN and branches to YES based on the defrost flag judgment, it will judge whether the frosting signal is off, and if it is frosted, it will remain OUT and no frosting will occur (defrosting has finished).
If so, branch to YES, switch the four-way valve to the heating side, turn on the indoor and outdoor blowers, end the defrosting operation, and start the heating operation. Then, after T2 time has elapsed, the compressor rotation speed is lowered one step at a time, and when the set rotation speed is reached, the defrost flag is reset and the output goes out.

以上の説明から明らかな通り、本発明において
は、マイクロコンピユータは、暖房時の除霜運転
開始時に前記切換弁を暖房側から冷房側へ切換え
かつ除霜運転終了時に前記切換弁を冷房側から暖
房側へ切換える切換手段と、暖房時の除霜運転中
及びその前後の一定時間内は、電動圧縮機の回転
数を室温及び室温設定値に基いて計算される設定
回転数よりも高くする信号を前記インバータ部に
出力する圧縮機制御手段とが有せしめられたもの
である。
As is clear from the above description, in the present invention, the microcomputer switches the switching valve from the heating side to the cooling side at the start of the defrosting operation during heating, and switches the switching valve from the cooling side to the cooling side at the end of the defrosting operation. During the defrosting operation during heating and for a certain period of time before and after the defrosting operation during heating, a signal is sent to make the rotation speed of the electric compressor higher than the set rotation speed calculated based on the room temperature and the room temperature set value. Compressor control means for outputting to the inverter section is provided.

したがつて、本発明によると、特に、暖房時の
除霜運転時の切換弁の切換前に設定回転数よりも
高い回転数で運転することにより冷媒圧縮サイク
ル内の冷媒温度を上昇させることになり、その後
の切換弁の切換えにより、高温冷媒が室外熱交換
器に送られ、即座に除霜でき、除霜運転時間を短
縮できると共に室温の低下をできるだけ押えるこ
とができる。
Therefore, according to the present invention, in particular, the temperature of the refrigerant in the refrigerant compression cycle is increased by operating at a rotation speed higher than the set rotation speed before switching the switching valve during defrosting operation during heating. By subsequently switching the switching valve, the high-temperature refrigerant is sent to the outdoor heat exchanger, allowing immediate defrosting, shortening the defrosting operation time, and suppressing the drop in room temperature as much as possible.

また除霜運転後の設定回転数よりも高い回転数
による運転により、熱交換温度が早期に立ち上が
り、除霜後の室温の立上りも早く行うことができ
る。
Further, by operating at a rotation speed higher than the set rotation speed after defrosting operation, the heat exchange temperature can be raised quickly, and the room temperature can be raised quickly after defrosting.

さらに、冷媒圧縮サイクル切換えにより、高低
圧側が逆転するが、除霜運転後の設定回転数より
も高い回転数による運転により、冷媒圧縮サイク
ルの安定化が早期に実現できる。
Further, by switching the refrigerant compression cycle, the high and low pressure sides are reversed, but by operating at a rotation speed higher than the set rotation speed after the defrosting operation, the refrigerant compression cycle can be stabilized at an early stage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す制御回路図、
第2図は同じく四方弁の切換え状態を示す図、第
3図は同じく制御回路のタイムチヤート、第4図
a,bは従来の制御回路と比較したタイムチヤー
ト、第5図は同じくフローチヤート、第6図は本
発明の他の実施例で示すフローチヤートである。 1:圧縮機、1a:四方弁、2:圧縮機モー
タ、3:室外熱交換器、4:減圧器、5:室内熱
交換器、6:室外送風機、7:室内送風機、8:
マイクロコンピユータ、14:インバータ部、1
6:運転/停止スイツチ、17:冷房・暖房切換
スイツチ。
FIG. 1 is a control circuit diagram showing one embodiment of the present invention;
FIG. 2 is a diagram showing the switching state of the four-way valve, FIG. 3 is a time chart of the control circuit, FIG. 4 a and b are time charts compared to the conventional control circuit, and FIG. 5 is a flow chart. FIG. 6 is a flowchart showing another embodiment of the present invention. 1: Compressor, 1a: Four-way valve, 2: Compressor motor, 3: Outdoor heat exchanger, 4: Pressure reducer, 5: Indoor heat exchanger, 6: Outdoor blower, 7: Indoor blower, 8:
Microcomputer, 14: Inverter section, 1
6: Run/stop switch, 17: Cooling/heating switch.

Claims (1)

【特許請求の範囲】[Claims] 1 電動圧縮機、冷媒流路切換弁、室外熱交換
器、減圧器、室内熱交換器を順次接続した冷媒圧
縮サイクルを備えると共に、その室外熱交換器お
よび室内熱交換器に送風機を夫々備えた空気調和
機において、室温を検出する室温検出器と、室温
を設定する室温設定器とが設けられ、前記電動圧
縮機への電源の周波数及び電圧を制御するインバ
ータ部と、該インバータ部および切換弁を制御す
るマイクロコンピユータとからインバータ制御部
が構成され、前記マイクロコンピユータは、暖房
時の除霜運転開始時に前記切換弁を暖房側から冷
房側へ切換えかつ除霜運転終了時に前記切換弁を
冷房側から暖房側へ切換える切換手段と、暖房時
の除霜運転中及びその前後の一定時間内は、電動
圧縮機の回転数を室温及び室温設定値に基いて計
算される設定回転数よりも高くする信号を前記イ
ンバータ部に出力する圧縮機制御手段とが有せし
められたことを特徴とする空気調和機の制御回
路。
1 Equipped with a refrigerant compression cycle in which an electric compressor, a refrigerant flow switching valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger are connected in sequence, and each of the outdoor heat exchanger and indoor heat exchanger is equipped with a blower. The air conditioner is provided with a room temperature detector that detects the room temperature, a room temperature setter that sets the room temperature, an inverter section that controls the frequency and voltage of the power supply to the electric compressor, and the inverter section and the switching valve. An inverter control unit is constituted by a microcomputer that controls the switching valve, and the microcomputer switches the switching valve from the heating side to the cooling side at the start of the defrosting operation during heating, and switches the switching valve from the cooling side to the cooling side at the end of the defrosting operation. and a switching means for switching from to the heating side, and during defrosting operation during heating and for a certain period of time before and after, the rotation speed of the electric compressor is set higher than the set rotation speed calculated based on the room temperature and the room temperature set value. A control circuit for an air conditioner, comprising compressor control means for outputting a signal to the inverter section.
JP56210793A 1981-12-29 1981-12-29 Control circuit of air conditioner Granted JPS58115235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210793A JPS58115235A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210793A JPS58115235A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Publications (2)

Publication Number Publication Date
JPS58115235A JPS58115235A (en) 1983-07-08
JPS621496B2 true JPS621496B2 (en) 1987-01-13

Family

ID=16595219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210793A Granted JPS58115235A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Country Status (1)

Country Link
JP (1) JPS58115235A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069445A (en) * 1983-09-26 1985-04-20 Toshiba Corp Air conditioner
JPS6059042U (en) * 1983-09-30 1985-04-24 株式会社東芝 air conditioner
KR900005979B1 (en) * 1985-08-22 1990-08-18 미쓰비시 덴끼 가부시기가이샤 Air conditioning apparatus
JP2541177B2 (en) * 1991-02-15 1996-10-09 ダイキン工業株式会社 Refrigeration system operation controller
JP3598809B2 (en) 1997-08-25 2004-12-08 三菱電機株式会社 Refrigeration cycle device
JP2008128515A (en) * 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd Air conditioning device
JP4836212B2 (en) * 2009-07-22 2011-12-14 シャープ株式会社 Air conditioner
CN103673439A (en) * 2013-12-29 2014-03-26 苏州市牛勿耳关电器科技有限公司 Refrigerator defrosting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164053A (en) * 1977-12-23 1979-12-27 Matsushita Electric Ind Co Ltd Heat source
JPS5535859A (en) * 1978-09-04 1980-03-13 Matsushita Electric Ind Co Ltd Air conditioner
JPS5620947A (en) * 1979-07-30 1981-02-27 Matsushita Electric Ind Co Ltd Defrosting control apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531075Y2 (en) * 1974-04-08 1978-01-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164053A (en) * 1977-12-23 1979-12-27 Matsushita Electric Ind Co Ltd Heat source
JPS5535859A (en) * 1978-09-04 1980-03-13 Matsushita Electric Ind Co Ltd Air conditioner
JPS5620947A (en) * 1979-07-30 1981-02-27 Matsushita Electric Ind Co Ltd Defrosting control apparatus

Also Published As

Publication number Publication date
JPS58115235A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
JP2831838B2 (en) Air conditioner
JPS621496B2 (en)
US4604872A (en) Heat pump type air conditioning apparatus having a controlled variable capacity compressor
JPS58101281A (en) Control circuit for refrigerator
JPS6349640Y2 (en)
JPS624618B2 (en)
JP3977523B2 (en) Air conditioner
JPS6130176B2 (en)
JPH03195877A (en) Defrosting control method in heat pump air compressor
JPS58140571A (en) Control circuit for air conditioner
JPS6213948A (en) Air conditioner
JP3332012B2 (en) Air conditioner
JPH0721345B2 (en) Control device for air conditioner
JPH0633896B2 (en) Defrost control method for air conditioner
JPH062918A (en) Controller for air conditioner
JP3443442B2 (en) Air conditioner
JPS6151220B2 (en)
JPH01121645A (en) Defrosting control device for air conditioner
JPS62125244A (en) Air conditioner
JPH05346257A (en) Air conditioner
JPH0244140A (en) Heat pump type air conditioner
JPS6153624B2 (en)
JPS58115236A (en) Control circuit of air conditioner
JPH0510624A (en) Air conditioner
JPS6166038A (en) Defrosting control unit of air conditioner