JPS58115235A - Control circuit of air conditioner - Google Patents

Control circuit of air conditioner

Info

Publication number
JPS58115235A
JPS58115235A JP56210793A JP21079381A JPS58115235A JP S58115235 A JPS58115235 A JP S58115235A JP 56210793 A JP56210793 A JP 56210793A JP 21079381 A JP21079381 A JP 21079381A JP S58115235 A JPS58115235 A JP S58115235A
Authority
JP
Japan
Prior art keywords
defrosting
heat exchanger
rotational speed
room temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56210793A
Other languages
Japanese (ja)
Other versions
JPS621496B2 (en
Inventor
Yoshiyuki Noda
芳行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56210793A priority Critical patent/JPS58115235A/en
Publication of JPS58115235A publication Critical patent/JPS58115235A/en
Publication of JPS621496B2 publication Critical patent/JPS621496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To shorten the defrosting operation of the titled air conditioner and accelerate the rise-up thereof after defrosting by setting the rotational speed of an electrically-driven compressor to a value higher than the set rotational speed computed on the basis of the room temperature and the room temperature set value during the defrosting operation and within a predetermined period of time after or before that at the time of heating. CONSTITUTION:The coolant discharged from the compressor during the heating operation is circulated in the sequence of four-way valve 1a, indoor heat exchanger 5, voltage reducing device 4 and outdoor heat exchanger 3. During the heating operation, when an AND condition is established between a signal from a defrosting timer contained in a microcomputer 8 and a signal from a defrosting thermostat 19 detecting the temperature of the outdoor heat exchanger 3, the rotational speed of the compressor motor 2 is increased up to the maximum rotational speed while continuing the heating operation by the operation of the microcomputer 8 and the inverter unit 14. After the motor 2 reaches the maximum rotational speed, the four-way valve 1a is changed over, to shift the freezing cycle to the defrosting operation.

Description

【発明の詳細な説明】 本発明は、冷媒圧縮サイクルを有する空気調和機の制御
l1li′回路、特にインバータ制御による能力可変形
の空気調和機の制御回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for an air conditioner having a refrigerant compression cycle, and particularly to a control circuit for a variable capacity air conditioner controlled by an inverter.

電動圧縮機、冷媒流路切換弁、室外熱交換器、減圧器、
室内熱交換器を順次接続した冷媒圧縮サ1− イクルを備えると共に、その室外熱交換器及び室内熱交
換器に送風比を夫々倫えた空気調和機tこおいて、その
電動圧縮機への電源の周波数及び電圧を制御するインバ
ータ制御方式があり、これは回転数を室温、室温設定値
、及びその他外気温度等から演算し、負荷変動によって
自動的に回転数を制御し、室温の変動幅を小さく抑える
」二で効果的である。しかし暖房運転において電動圧縮
機を低い回転数で運転するような負荷状態で運転してい
て、室外熱交換器に霜が付いた場合、除霜運転に入って
その主主の回転数で除霜運転を行なうと、回転数が低い
ため除霜時間が長くなるといった問題があった。
Electric compressors, refrigerant flow switching valves, outdoor heat exchangers, pressure reducers,
An air conditioner is equipped with a refrigerant compression cycle in which indoor heat exchangers are sequentially connected, and the air conditioner has the same blowing ratio for the outdoor heat exchanger and the indoor heat exchanger, respectively, and the electric compressor is supplied with power. There is an inverter control system that controls the frequency and voltage of It is effective to keep it small. However, if the electric compressor is operated at a low rotation speed during heating operation and frost forms on the outdoor heat exchanger, it will enter defrost operation and defrost at its main rotation speed. During operation, there was a problem in that the defrosting time was long due to the low rotational speed.

本発明は、上記に鑑み、除霜運転中及びその前後におい
て電動IT、縮機の回転数を制御し、除霧運転時間を短
縮すると共に室温の低下をでとるだけ押え、更に除霜後
の室温の立上りを早く行なわせるようにした制御回路を
提供しようとするものである。
In view of the above, the present invention controls the rotation speed of the electric IT and compressor during and before and after defrosting operation, shortens the time of defrosting operation, suppresses the decrease in room temperature as much as possible, and furthermore, The present invention aims to provide a control circuit that allows room temperature to rise quickly.

以下、図示の実施例について本発明を詳述する2− と、第1図において、1は圧縮機、2はこの圧縮!1を
駆動する圧縮機モータで、これらによ1)電動圧縮機が
構成される。3は室外熱交換器、4はキャピラリチュー
ブ等の減圧器、5は室内熱交換器、1aは冷媒の流れを
切換える切換弁の一例としての四方弁であり、これらは
圧I@敗コと閉回路状に接続されて冷媒圧縮サイクルを
構成する。この冷媒圧縮サイクルは、前記四方弁1aの
オン状態で暖房運転を、オフ状態で冷房運転を行なうよ
うにされたちのである。6は室外熱交換器3に対応して
設けられた室外送風機、7は室内熱交換器5に対応して
設けられた室内送風機である。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiment.2- In FIG. 1, 1 is a compressor, 2 is a compressor! The compressor motor drives the compressor motor 1, which constitutes 1) an electric compressor. 3 is an outdoor heat exchanger, 4 is a pressure reducer such as a capillary tube, 5 is an indoor heat exchanger, and 1a is a four-way valve as an example of a switching valve that switches the flow of refrigerant. They are connected in a circuit to form a refrigerant compression cycle. In this refrigerant compression cycle, heating operation is performed when the four-way valve 1a is on, and cooling operation is performed when it is off. 6 is an outdoor blower provided corresponding to the outdoor heat exchanger 3, and 7 is an indoor blower provided corresponding to the indoor heat exchanger 5.

8は一般的なワンチップマイクロコンピュータ(以下マ
イコンと称する)で、入力端子IN1〜1N5及び出力
端子0UT1〜0UT6を有すると共に、内部にプログ
ラムROM、データRAM。
8 is a general one-chip microcomputer (hereinafter referred to as microcomputer), which has input terminals IN1 to 1N5 and output terminals 0UT1 to 0UT6, and has a program ROM and data RAM inside.

A l−IJ及び除霜タイマー(ソフトウェアタイマー
)を有し、基準クロック発振部9により駆動されている
。10は室温検出用のサーミスタ、11はA/D変換器
で、サーミスタ10で検出された室温3− をデジタル値に変換してマイコン8の入力端子■N1へ
入力する。12は室温設定用の可変抵抗、13はA/D
変換器で、可変抵抗12で設定された室ン晶をデジタル
値に変換してマイコン8の入力端子IN2に入力する。
It has an A1-IJ and a defrost timer (software timer), and is driven by a reference clock oscillation section 9. 10 is a thermistor for detecting room temperature, and 11 is an A/D converter, which converts the room temperature 3- detected by the thermistor 10 into a digital value and inputs it to the input terminal N1 of the microcomputer 8. 12 is a variable resistor for setting the room temperature, 13 is an A/D
A converter converts the internal value set by the variable resistor 12 into a digital value and inputs it to the input terminal IN2 of the microcomputer 8.

14はインバータ部で、電)原端子15.15’ から
入力された交流電ン原をダイオードD1〜D4で整流し
、コンデンサC4゜で平滑した後、トランジスタTr1
.Trl’でW相、トランジスタTr2.Tr2’で\
l相、トランジスタTr3.Tr3’でU相の三相を夫
々位相制御して三相交流を発生し、三相の圧縮機モータ
2を運転する。16は運転/停止スイッチで、マイコン
8の入力端子TN4に接続される。17は前記四方弁1
aを切換えるための冷房・暖房切換スイッチで、マイコ
ン8の入力端子IN3に接続される。
Reference numeral 14 denotes an inverter section, in which the AC power source input from the power source terminals 15 and 15' is rectified by diodes D1 to D4, smoothed by a capacitor C4°, and then transferred to a transistor Tr1.
.. Trl', W phase, transistor Tr2. At Tr2'\
l phase, transistor Tr3. The three phases of the U phase are each phase-controlled by Tr3' to generate three-phase alternating current, and the three-phase compressor motor 2 is operated. Reference numeral 16 denotes a run/stop switch, which is connected to the input terminal TN4 of the microcomputer 8. 17 is the four-way valve 1
This is a cooling/heating selector switch for switching between a and a, and is connected to the input terminal IN3 of the microcomputer 8.

−、マイコン8は入力端子INIから室温、入力端子T
N2から室ンW設定値を夫々読込み、その値によりイン
バータ部14を介して圧縮機モータ2に通電する二相電
圧U、V、Wの周波数及び電圧を制御する信号を出力端
子0UT1〜0UT3から出力4− し、これによってトランジスタ駆動回路18を介して圧
縮機モータ2の回転数を制御し冷房(@房)能力を可変
とするものである。1つは着霜検出用のサーミスタ、2
0はA/D変換器で、サーミスタ19で検出された室温
をデジタル値に変換してマイコン8の入力端子INSへ
入力する。マイコン8は、その信号【こ応ヒて圧縮機モ
ータ2に通電する二相電圧U、V、Wの周波数、電圧を
制御する信号を出力端子01JT1〜0LlT3から出
力すると共に四方弁1aを切換える信号を出力する。こ
のようにマイコン8及びインバータ部14により、いわ
ゆるパルス幅変調方式のインバータ制御部が構成されて
いる。なお、インバータ部14のコンデンサc、、c、
’ 〜c、、c3’は、トランジスタTrl、Tri’
−Tr3.Tr3’がノイズにより誤動作するのを防止
するためのものである。また抵抗R1とコンデンサC,
,R4とC,、R2とC5゜R1とC,、R,とC6,
R,とC9とから成る各RC直列回路は、圧縮機モータ
2への通電オフ後の逆起電圧によるトランジスタ・Tr
i 、Tri ’ 〜Tr3゜5− Tr3’の損傷を防ぐための放電回路である。マイフン
の出力端子○UT4,0UT5.○UT6には夫々室外
送風機6、室内送風(幾7、四方弁1aの制御出力が発
生する。
−, the microcomputer 8 is connected from the input terminal INI to the room temperature, and the input terminal T
The chamber W setting values are read from N2, and signals for controlling the frequency and voltage of the two-phase voltages U, V, and W, which are energized to the compressor motor 2 via the inverter section 14, are sent from the output terminals 0UT1 to 0UT3. The output 4- is used to control the rotational speed of the compressor motor 2 via the transistor drive circuit 18, thereby making the cooling capacity variable. 1 is a thermistor for frost detection, 2
0 is an A/D converter that converts the room temperature detected by the thermistor 19 into a digital value and inputs it to the input terminal INS of the microcomputer 8. The microcomputer 8 outputs from the output terminals 01JT1 to 0LlT3 a signal that controls the frequency and voltage of the two-phase voltages U, V, and W that are energized to the compressor motor 2, and a signal that switches the four-way valve 1a. Output. In this way, the microcomputer 8 and the inverter section 14 constitute a so-called pulse width modulation type inverter control section. Note that the capacitors c, , c, of the inverter section 14
'~c,,c3' are transistors Trl, Tri'
-Tr3. This is to prevent Tr3' from malfunctioning due to noise. Also, resistor R1 and capacitor C,
, R4 and C, , R2 and C5° R1 and C, , R, and C6,
Each RC series circuit consisting of R, and C9 is connected to a transistor/Tr by a back electromotive voltage after the compressor motor 2 is turned off.
i, Tri' to Tr3°5- This is a discharge circuit to prevent damage to Tr3'. My fun output terminal ○UT4, 0UT5. ○The control outputs of the outdoor blower 6, the indoor blower 7, and the four-way valve 1a are generated in the UT 6, respectively.

上記構成において、冷房運転時には、圧縮機モータ2で
圧縮機1を駆動すると、圧縮機1で圧縮された冷媒は、
室外熱交換器3で室外送風機6の送風で冷却されて凝縮
した後、減圧器4で減圧され、室内熱交換器5で蒸発し
て冷却作用を行ない、室内送風機7が送風して室内を冷
房する。一方、暖房運転時には、四方弁1aが第2図の
如くオン状態に切換わり、冷媒がその流れを反転して圧
縮機1→四方弁1a→室内熱交換器5→)威圧器4→室
外熱交換器3と流れ、室内送風機7による送風で暖房運
転が行なわれる。
In the above configuration, when the compressor 1 is driven by the compressor motor 2 during cooling operation, the refrigerant compressed by the compressor 1 is
After being cooled and condensed in the outdoor heat exchanger 3 by the air blown by the outdoor blower 6, the pressure is reduced in the pressure reducer 4, evaporated in the indoor heat exchanger 5 to perform a cooling effect, and the indoor blower 7 blows air to cool the room. do. On the other hand, during heating operation, the four-way valve 1a is switched to the on state as shown in Figure 2, and the flow of refrigerant is reversed so that the compressor 1 → four-way valve 1a → indoor heat exchanger 5 →) inertia unit 4 → outdoor heat The air flows through the exchanger 3 and air is blown by the indoor blower 7 to perform heating operation.

次に暖房時における室外熱交換器の除霜運転を第3図の
タイムチャートに基いて説明する。第3図において除霜
信号とは、マイコン8に内aされある時間周期で動作す
る除霜タイマーからの信号と、室外熱交換器3の温度を
検出する除霜サーモ6− スタット等からの温度データ信号とに基いて出力する信
号である。例えば除霜タイマーが60分周期として50
分間の暖房運転、10分間の除霜運転を行なわしめるよ
う動作するものであり、除霜サーモスタットが1 (1
”C以」二で除霜終了の信号を出力し、−2,5°C以
下で着霜信号を出力するものであるとすると、除霜信号
は、除霜タイマーと除霜サーモスタットのAND条件で
除霜を開始し、OR条件で除霜を終了する。即ち除霜時
間は、除霜サーモスタットが10 ’C以」二になるか
、または10分間経過すれば終了し、暖房運転に戻る。
Next, the defrosting operation of the outdoor heat exchanger during heating will be explained based on the time chart of FIG. 3. In FIG. 3, the defrost signals include a signal from a defrost timer that is installed in the microcomputer 8 and operates at a certain time period, and a temperature from a defrost thermostat 6-stat that detects the temperature of the outdoor heat exchanger 3. This is a signal output based on the data signal. For example, if the defrost timer is set to 50 minutes with a 60 minute cycle.
It operates to perform heating operation for 1 minute and defrosting operation for 10 minutes, and the defrosting thermostat is set to 1 (1
Assuming that the defrosting end signal is output at "C or higher" and the frosting signal is output at -2.5°C or below, the defrosting signal is the AND condition of the defrosting timer and the defrosting thermostat. Defrosting is started under the OR condition, and defrosting is ended under the OR condition. That is, the defrosting time ends when the defrosting thermostat reaches 10'C or higher, or when 10 minutes have elapsed, and the heating operation returns.

例えば、除霜タイマーがA点になると、マイコン8、イ
ンバータ部14が働き、暖房運転を続けながら圧縮機モ
ータ2の回転数を最大回転数まで上昇させる。そしてA
点からT1時間経過後のB点で、四方弁1aをオフ状態
(冷房側)に切換える除霜信号を出力して四方弁1aを
切換え、除霜運転に入いる。そして除霜運転中は圧縮機
モータ2を最大回転数で回転させる。除霜運転終了時に
は、0点で除霜終了の信号が入力されると、上記と同様
にマイコン8が働鰺、四方弁1aを冷房側から暖房側へ
切換える信号を出力して四方弁1aを切換える。しかし
、圧縮機モータ2はその後T2時間、最大回転数で運転
し、D点で通常の設定回転数に戻って運転を続ける。な
お第3図ののE点以降では、除霜タイマーの動作時に除
霜サーモスタットが10’C以上であるため除霜信号が
出力されず、従ってE点で除霜に入いる予定が除霜に入
いることができず、圧縮機はT3時間最大回転数で運転
し続け、その後設定回転数に戻る。
For example, when the defrosting timer reaches point A, the microcomputer 8 and inverter section 14 operate to increase the rotation speed of the compressor motor 2 to the maximum rotation speed while continuing the heating operation. And A
At point B, after T1 time has elapsed from point B, a defrosting signal for switching the four-way valve 1a to the OFF state (cooling side) is output, the four-way valve 1a is switched, and defrosting operation begins. During the defrosting operation, the compressor motor 2 is rotated at the maximum rotation speed. At the end of the defrosting operation, when the defrosting end signal is input at point 0, the microcomputer 8 works in the same way as above, outputting a signal to switch the four-way valve 1a from the cooling side to the heating side, and turning the four-way valve 1a on. Switch. However, the compressor motor 2 then operates at the maximum rotation speed for a time T2, returns to the normal set rotation speed at point D, and continues operating. Note that after point E in Figure 3, the defrost signal is not output because the defrost thermostat is 10'C or higher when the defrost timer is activated, so the defrost signal is not output at point E, but instead of defrosting. The compressor continues to operate at maximum rotation speed for T3 hours, and then returns to the set rotation speed.

この制御動作を第5図のフローチャートで説明すると、
まず7ラグF(除霜終了後の最大回転数)により除霜終
了直後C−Dの間がどうか’I’ll定し、C−Dでな
ければNOに分岐して、次に除霜フラグ(除霜中はセッ
ト)で除霜中かどうか判定し、NOならば除霜タイマー
で除霜時間前(第3図のA点以降)かどうか判定する。
This control operation is explained using the flowchart in Fig. 5.
First, it is determined by 7 lag F (maximum rotation speed after defrosting) whether it is between C-D immediately after defrosting, and if it is not C-D, it branches to NO, and then the defrosting flag is set. (Set during defrosting) to determine whether defrosting is in progress, and if NO, determine whether defrosting time is before the defrosting time (after point A in FIG. 3).

そしてNoならばそのままOUTへ抜け、YESならば
除霜に備えて圧縮機の回転数を1ステツプづつ上げて最
大回転数にする。次に除霜タイマーでB点以上になるま
で待って、B点以」二になれば除霜サーモスタットが−
2,5°C以下がどうが判定し、以下ならば除霜フラグ
をセットしてOUTへ抜ける。次にINに戻り、「除霜
フラグをセット」でYESならば四方弁を冷房側へ切換
え、室内、室外送風機をオフして除霜運転に人いる。そ
して除霜タイマーが0点になるが、除霜サーモスタット
が10℃以」二になるまで待って、どちらかで除霜を終
了して除霜フラグをリセットし、四方弁を暖房側へ切換
えると共に室内、室外送風機をオンとし、除霜運転を終
了して7ラグFをセットしてOUTへ抜ける。
If the answer is NO, the compressor goes straight to OUT, and if the answer is YES, the rotation speed of the compressor is increased one step at a time to the maximum rotation speed in preparation for defrosting. Next, wait until the defrost timer reaches point B or higher, and when it reaches point B or higher, the defrost thermostat will turn on.
It is determined whether the temperature is below 2.5°C, and if it is below, the defrost flag is set and the process goes to OUT. Next, return to IN, and if YES in "Set defrost flag", switch the four-way valve to the cooling side, turn off the indoor and outdoor blowers, and perform defrosting operation. Then, the defrost timer reaches 0 points, but wait until the defrost thermostat reaches 10℃ or higher, finish defrosting at either end, reset the defrost flag, and switch the four-way valve to the heating side. Turn on the indoor and outdoor blowers, finish defrosting operation, set 7 lag F, and exit to OUT.

次にTNに戻り、「フラグFをセット」の判定でYES
へ分岐すれば圧縮機の回転数を1ステツプづつ下げて設
定回転数まで下げる。そして設定回転数になれば7ラグ
Fをリセットし、除霜タイマーをクリアしてOUTへ抜
ける。
Next, return to TN and select YES for "Set flag F".
If it branches to , the rotation speed of the compressor will be lowered one step at a time to the set rotation speed. Then, when the set rotation speed is reached, the 7-lag F is reset, the defrost timer is cleared, and the engine exits to OUT.

ここでA−*B及びC→Dの間を最大回転数で運転する
理由を第4図に基いて設明すると、第4図(a)は除霜
運転中のみ最大回転数で運転した場合の室温変化を示す
ものであり、第4図(1))は本実9− 8− 施例の如くA−B、C−Dも最大回転数で運転した場合
の室温変化を示すものである。この(a)の場合、除霜
運転開始時から室温が徐々に下がり始め、除霜終了直後
が最低にな1)、その復元の室温に復帰するわけである
。しかし、本実施例を示す(b)の場合、除霜前、即ち
第3図のA−Hの間に室温が少し上昇し、それから除霜
に入って下が1)始め、除霜終了直後が最低となり、そ
れから暖房運転で」二がって行くので、(a)の場合に
比して室温の最低値の絶対値が高く、即も(、)との差
はJで表わされる。更に除霜終了時の室温の立上が1〕
時間T4とT5とでは、T 4. > T 5となり、
本例の方が早く元の室温に戻る。
Here, the reason for operating at maximum rotation speed between A-*B and C→D is established based on Figure 4. Figure 4 (a) shows the case where operation is performed at maximum rotation speed only during defrosting operation. Figure 4 (1)) shows the room temperature changes when A-B and C-D are also operated at the maximum rotational speed as in this example. . In the case of (a), the room temperature starts to drop gradually from the start of the defrosting operation, reaches its lowest point immediately after the end of defrosting (1), and returns to the original room temperature. However, in the case of (b) showing this embodiment, the room temperature rises a little before defrosting, that is, between A-H in Fig. 3, and then defrosting begins and the lower part starts 1), immediately after the end of defrosting. is the lowest, and then decreases during heating operation, so the absolute value of the lowest room temperature is higher than in case (a), and the difference from (,) is expressed as J. Furthermore, the rise in room temperature at the end of defrosting is 1]
At times T4 and T5, T4. > T 5,
In this example, the room temperature returns to the original temperature more quickly.

なお、第3図のタイムチャートではA−Dの回転数を最
大としたが、本発明では、特に最大でなくとも最大イτ
1近の回転数でもよい。また本発明では、上記実施例の
如き制御動作の他に第6図のフローチャートに示すよう
な制御動作であってもよい。即ちINから入って除霜フ
ラグ(除霜中はセット)を判定し、Noならば次に着霜
信号を’I’l+定10− し、そこでオフ(無着霜)ならばそのままOtJ Tへ
、オン(着霜)ならば圧縮機の回転数を1ステツプづつ
」二げて最大回転数にする。その後T1時間経過したか
どうか判定し、経過すればし除霜フラグをセットし、四
方弁を冷房側へ切換えると共に室内、室外送風機をオフ
として除霜運転に人いる。次にINに入って除霜フラグ
の判定でYESへ分岐すれば、着霜信号か゛オフかどう
か1′11定し、着霜ならばそのままOUTへ、無着霜
(除霜終了)ならばYESへ分岐し1、四方弁を暖房側
へ切換えると共に室内、室外送風機をオンとし、除霜運
転を終了して暖房運転に入いる。そして12時間経過す
れば圧縮機の回転数を1ステツプづつ下げて行き、設定
回転数になれば除霜フラグをリセットして0しITへ出
る。
In addition, in the time chart of FIG. 3, the rotation speed of A-D is set to the maximum, but in the present invention, even if it is not the maximum, the maximum rotation speed τ
The number of rotations may be close to 1. Further, in the present invention, in addition to the control operation as in the above embodiment, a control operation as shown in the flowchart of FIG. 6 may be used. That is, enter from IN, check the defrost flag (set during defrosting), if No, then set the frosting signal to 'I'l + constant 10-, and if it is off (no frosting), go directly to OtJ T. If it is on (frosting), increase the rotation speed of the compressor one step at a time until it reaches the maximum rotation speed. Thereafter, it is determined whether T1 time has elapsed, and if it has, the defrosting flag is set, the four-way valve is switched to the cooling side, and the indoor and outdoor blowers are turned off to perform defrosting operation. Next, if it goes into IN and branches to YES based on the defrost flag judgment, it determines whether the frosting signal is off or not, and if it is frosted, it goes directly to OUT, and if there is no frosting (defrosting is finished), it goes to YES. 1. Switch the four-way valve to the heating side, turn on the indoor and outdoor blowers, end the defrosting operation, and start the heating operation. After 12 hours have elapsed, the compressor rotational speed is lowered one step at a time, and when the set rotational speed is reached, the defrost flag is reset to 0 and sent to IT.

以−1この説明からも明らかな通り、本発明は、暖房時
の除霜運転中及びその前後の一定時間内は、電動圧縮機
の回転数を室温及び室温設定値に基いて計算される設定
回転数よ1)も高くするように構成したものであるから
、本発明によると、除爲運11− 転時間を短縮で外ると共に室温の低下をできるだけ押え
ることができ、除霜後の室温の立上りも早く行うことが
できる。
(1) As is clear from this explanation, the present invention sets the rotation speed of the electric compressor to a setting calculated based on the room temperature and the room temperature set value during the defrosting operation during heating and during a certain period of time before and after the defrosting operation. Since the rotation speed is set to be higher than 1), according to the present invention, the defrosting operation time can be shortened and the drop in room temperature can be suppressed as much as possible, and the room temperature after defrosting can be It is also possible to start up quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す制御回路図、第2図は
同じく四方弁の切換え状態を示す関、第3図は同しく制
御回路のタイムチャート、第4図(a)(+))は従来
の制御回路と比較したタイムチャート、第5図は同じく
フローチャート、第6図は本発明の他の実施例で示すフ
ローチャートである。 1:圧縮機、1a:四方弁、2:圧縮機モータ、3:室
外熱交換器、4:i威圧器、5:室内熱交換器、6:室
外送風機、7二室内送風機、8:マイクロフンピユータ
、14:インバータ部、16:運転/停止スイッチ、1
7:冷房・暖房切換スイッチ。 出 願 人  シャープ株式全社 代理人 中村恒久 12− 162
FIG. 1 is a control circuit diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the switching state of a four-way valve, FIG. 3 is a time chart of the control circuit, and FIG. 4 (a) (+ )) is a time chart in comparison with a conventional control circuit, FIG. 5 is a flowchart, and FIG. 6 is a flowchart showing another embodiment of the present invention. 1: Compressor, 1a: Four-way valve, 2: Compressor motor, 3: Outdoor heat exchanger, 4: I intimidator, 5: Indoor heat exchanger, 6: Outdoor blower, 72 Indoor blower, 8: Micro pump User, 14: Inverter section, 16: Run/stop switch, 1
7: Cooling/heating selector switch. Applicant Sharp Corporation Companywide Agent Tsunehisa Nakamura 12-162

Claims (1)

【特許請求の範囲】[Claims] 電動圧縮機、冷媒流路切換弁、室外熱交換器、減圧器、
室内熱交換器を順次接続した冷媒圧縮サイクルを備える
と共に、その室外熱交換器及び室内熱交換器に送風機を
夫々備え、電動圧縮機への電源の周波数及び電圧を制御
するインバータ制御部を設けた空気調和機の制御回路に
おいて、暖房時の除霜運転中及びその前後の一定時間内
は、電動圧縮機の回転数を室温及び室温設定値に基いて
計W−される設定回転数よりも高くするように構成した
ことを特徴とする空気調和機の制御回路。
Electric compressors, refrigerant flow switching valves, outdoor heat exchangers, pressure reducers,
It is equipped with a refrigerant compression cycle in which indoor heat exchangers are sequentially connected, a blower is provided in each of the outdoor heat exchanger and indoor heat exchanger, and an inverter control unit is provided to control the frequency and voltage of the power supply to the electric compressor. In the control circuit of the air conditioner, during the defrosting operation during heating and for a certain period of time before and after, the rotation speed of the electric compressor is set higher than the set rotation speed calculated based on the room temperature and the room temperature setting value. A control circuit for an air conditioner, characterized in that it is configured to.
JP56210793A 1981-12-29 1981-12-29 Control circuit of air conditioner Granted JPS58115235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210793A JPS58115235A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210793A JPS58115235A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Publications (2)

Publication Number Publication Date
JPS58115235A true JPS58115235A (en) 1983-07-08
JPS621496B2 JPS621496B2 (en) 1987-01-13

Family

ID=16595219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210793A Granted JPS58115235A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Country Status (1)

Country Link
JP (1) JPS58115235A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069445A (en) * 1983-09-26 1985-04-20 Toshiba Corp Air conditioner
JPS6059042U (en) * 1983-09-30 1985-04-24 株式会社東芝 air conditioner
US4709554A (en) * 1985-08-22 1987-12-01 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JPH04332359A (en) * 1991-02-15 1992-11-19 Daikin Ind Ltd Controlling device for operation of refrigerating plant
EP0899520A2 (en) 1997-08-25 1999-03-03 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
JP2008128515A (en) * 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd Air conditioning device
WO2011010506A1 (en) * 2009-07-22 2011-01-27 シャープ株式会社 Air conditioner
CN103673439A (en) * 2013-12-29 2014-03-26 苏州市牛勿耳关电器科技有限公司 Refrigerator defrosting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128754U (en) * 1974-04-08 1975-10-22
JPS54164053A (en) * 1977-12-23 1979-12-27 Matsushita Electric Ind Co Ltd Heat source
JPS5535859A (en) * 1978-09-04 1980-03-13 Matsushita Electric Ind Co Ltd Air conditioner
JPS5620947A (en) * 1979-07-30 1981-02-27 Matsushita Electric Ind Co Ltd Defrosting control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128754U (en) * 1974-04-08 1975-10-22
JPS54164053A (en) * 1977-12-23 1979-12-27 Matsushita Electric Ind Co Ltd Heat source
JPS5535859A (en) * 1978-09-04 1980-03-13 Matsushita Electric Ind Co Ltd Air conditioner
JPS5620947A (en) * 1979-07-30 1981-02-27 Matsushita Electric Ind Co Ltd Defrosting control apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069445A (en) * 1983-09-26 1985-04-20 Toshiba Corp Air conditioner
JPS6059042U (en) * 1983-09-30 1985-04-24 株式会社東芝 air conditioner
JPH0317184Y2 (en) * 1983-09-30 1991-04-11
US4709554A (en) * 1985-08-22 1987-12-01 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JPH04332359A (en) * 1991-02-15 1992-11-19 Daikin Ind Ltd Controlling device for operation of refrigerating plant
EP0899520A2 (en) 1997-08-25 1999-03-03 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
EP0899520A3 (en) * 1997-08-25 2000-07-26 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
JP2008128515A (en) * 2006-11-17 2008-06-05 Matsushita Electric Ind Co Ltd Air conditioning device
WO2011010506A1 (en) * 2009-07-22 2011-01-27 シャープ株式会社 Air conditioner
JP2011027286A (en) * 2009-07-22 2011-02-10 Sharp Corp Air conditioner
EP2458306A4 (en) * 2009-07-22 2015-08-05 Sharp Kk Air conditioner
CN103673439A (en) * 2013-12-29 2014-03-26 苏州市牛勿耳关电器科技有限公司 Refrigerator defrosting device

Also Published As

Publication number Publication date
JPS621496B2 (en) 1987-01-13

Similar Documents

Publication Publication Date Title
JP2831838B2 (en) Air conditioner
US5285646A (en) Method for reversing a compressor in a heat pump
JPH11182995A (en) Method and device for controlling air conditioner
US5632155A (en) Air-conditioning apparatus with an indoor unit incorporating a compressor
CN110953662A (en) Air conditioner
JP2001280769A (en) Method and apparatus for controlling defrosting of reversible heat pump device
JP2001248937A (en) Heat pump hot water supply air conditioner
US4604872A (en) Heat pump type air conditioning apparatus having a controlled variable capacity compressor
JPS58115235A (en) Control circuit of air conditioner
JP4231247B2 (en) Air conditioner
JPS62162834A (en) Air conditioner
JP2003050066A (en) Controller for air conditioner
JPH05346256A (en) Method for controlling compressor of air conditioner
JPH11257718A (en) Method of controlling air conditioner
JPS624618B2 (en)
JPS59189243A (en) Defrosting control device of air conditioner
JPS6130176B2 (en)
JP3224079B2 (en) Air conditioner
JP3443442B2 (en) Air conditioner
JP3462551B2 (en) Speed control device for blower for condenser
KR100210081B1 (en) Airconditioner outdoor device operating control device
JPH0721345B2 (en) Control device for air conditioner
JPH01121645A (en) Defrosting control device for air conditioner
KR100231055B1 (en) Control method for defrosting operation of air conditioner
JPH0739897B2 (en) Refrigeration cycle equipment